Chapter 6
 Treasury and Agency Securities Markets

The Roles of Treasury Securities

$>$ Two factors account for the prominent role of U.S. Treasury securities:
i. volume (in terms of dollars outstanding)
ii. liquidity
$>$ The Department of the Treasury is the largest single issuer of debt in the world.
$>$ The large volume of total debt and the large size make the Treasury market the most active and hence the most liquid market in the world.
$>$ The bid-ask spread is considerably narrower than in other sectors of the bond market.

Types of Treasury Securities

\checkmark The Treasury issues both marketable and non-marketable securities.
\checkmark marketable: heavily traded in secondary markets
\checkmark nonmarketable: hold by government-managed fund and can't be transferred
\checkmark Our focus here is on marketable securities.
\checkmark Marketable Treasury securities are categorized as
\checkmark fixed-principal securities
\checkmark inflation-indexed securities.
\checkmark Fixed-income principal securities include:
i. Treasury bills
ii. Treasury notes
iii. Treasury bonds

Treasury Bills, Notes and Bonds

- T-bills, T-notes and T-bonds issued by the U.S. Treasury to finance the national debt and other federal government expenditures
- Backed by the full faith and credit of the U.S. government and are default risk free
- T-bills
- Maturities up to one year
- No coupon payment
- Mature at par value
- Sold on discount basis
- Return to the investor is the difference between the maturity value and the purchase price

Treasury Bills, Notes and Bonds

- T-notes and T-bonds
- Coupon issues
- Notes: 1-10 years
- Bonds: 10+-30 years
- Sold by auction by the Federal Reserve banks
- issued at approximately par and matured at par value.
- Pay relatively low rates of interest (yields to maturity)
- Given their longer maturity, not entirely risk free due to interest rate fluctuations
- Pay coupon interest semiannually

Treasury Inflation Protection Securities (TIPS)

- Design to protect the inflation risk
- Issued since 1997
- The principal is adjusted according to the CPI-U (Consumer Price Index for all Urban Consumers
- Inflation-adjusted principal
- Principal is adjusted periodical (semiannual) by multiplying the inflation rate
- Example:
period 1: $100,000 \times(1+1.5 \%)=101,500$
period 2: $101,500 \times(1+1 \%)=102,515$

Treasury Inflation Protection Securities (TIPS)

- The coupon rate on an issue is set at a fixed rate
- Each coupon payment is the fixed coupon rate multiplied by the inflation-adjusted principal
- Example:

$$
\text { period 1: } 1.75 \% \times 101,500=1,776.25
$$

period 2: $1.75 \% \times(102,515)=1,794.01$

- The inflation rate used to adjust the principal is
- The ratio of the CPI-U (reference CPI) for the settlement date to the CPI-U for the issue date
- There is three-month lagged for CPI-U
- The May 1 reference CPI is the CPI-U reported in February

The Treasury Auction Process

\checkmark The Public Debt Act of 1942 grants the Department of the Treasury considerable discretion in deciding on the terms for a marketable security.
\checkmark An issue may be sold on an
\checkmark interest-bearing or discount basis
\checkmark competitive or other basis,
\checkmark Congress imposes a restriction on the total amount of bonds outstanding.

The Primary Market in Treasury Securities

- Treasury securities are sold in the primary market through sealed-bid auctions
- Bills with maturities of 4, 13, 26 and 52 weeks are offered on a regular cycle
- Cash management bills on a irregular interval
- Notes and bonds issues are not on regular cycles
- Reopening
- Offer additional amount of outstanding securities
- Debt buyback program
- The Treasury redeems outstanding unmatured Treasury securities by purchasing them in the secondary market through reverse auctions

The Primary Market in Treasury Securities

- Auction process
investors submit applications for either competitive or noncompetitive bid
- competitive bids specify both yield and quantity wish to buy
- noncompetitive bids specify only quantity only
- noncompetitive bid will be accepted anyway
- maximum 5 million for each noncompetitive bidder
- First deducting the total noncompetitive tenders from the total securities being auctioned, remainder is the amount for competitive bid
- competitive bid will be accepted from the lowest yield (highest price) up, until the total amount of issues is fulfill

The Primary Market in Treasury Securities

- Auction process

- The highest yield accepted is referred to as the stop-out yield (or high yield)
- All successful bidders are awarded at the stop-out yield
- Single-price auctions (Dutch auction)
- The Treasury adjust the coupon rate and the price so that the yield offered on the security is approximately equal to the stop-out yield
- The securities are sold near the par value

Secondary Market

\checkmark The secondary market for Treasury securities is an over-the-counter market where a group of U.S. government securities dealers offer continuous bid and ask prices on outstanding Treasuries.There is virtual 24-hour trading of Treasury securities.
\checkmark The three primary trading locations are New York, London, and Tokyo.
\checkmark The normal settlement period for Treasury securities is the business day after the transaction day ("next day" settlement).

Secondary Market (continued)

\checkmark The most recently auctioned issue is referred to as the on-the-run issue or the current issue.
\checkmark Securities that are replaced by the on-the-run issue are called off-the-run issues.
\checkmark There may be more than one off-the-run issue with approximately the same remaining maturity as the on-the-run issue.
\checkmark Treasury securities are traded prior to the time they are issued \checkmark when-issued market, or wi market.
\checkmark When-issued trading for both bills and coupon securities extends from the day the auction is announced until the issue day.

Treasury Securities (continued)

\checkmark Government dealers trade with the investing public and with other dealer firms.
\checkmark through intermediaries known as interdealer brokers.
\checkmark Dealers leave firm bids and offers with interdealer brokers who display the highest bid and lowest offer in a computer network tied to each trading desk and displayed on a monitor.
\checkmark Dealers use interdealer brokers because of the speed and efficiency with which trades can be accomplished.

Price quotes for Treasury bills

- T-bill is quoted on a bank discount basis

$$
Y_{d}=\frac{D}{F} \times \frac{360}{t}
$$

- Y_{d} : bank discount yield
- D: dollar discount (= face value - bill price)
- F: face value

$$
\text { price }=F-D=100,000-900=99,100
$$

- t: number of days remaining to maturity
- Example
- A treasury bill with 100 days to maturity, a face value of $\$ 100,000$, and selling for $\$ 99,100$, the bank discount yield is

$$
\begin{aligned}
& D=100,000-99100=900 \\
& Y_{d}=\frac{900}{100,000} \times \frac{360}{100}=3.24 \%
\end{aligned}
$$

Price quotes for Treasury bills

- Given the bank discount yield, calculate the bill price

$$
D=Y_{d} \times F \times \frac{t}{360}=0.0324 \times 100,000 \times \frac{100}{360}=900
$$

Bond Equivalent and CD

 Equivalent Yield
Price quotes for Treasury coupon

securities

- Problem for the quoted yield on a bank discount basis
- Return measure is based on a face-value investment rather than on the actual dollar amount invested
- Yield is annualized according to a 360-day rather than a 365day year
- Two alternative yields are often used
- Bond equivalent yield

$$
B E Y=\frac{D}{\text { purchase price }} \times \frac{365}{t}=\frac{900}{99100} \times \frac{365}{100}=3.31 \%
$$

- CD equivalent yield (also called money market equivalent yield) CD equivalent yield $=\frac{360 Y_{d}}{360-t\left(Y_{d}\right)}=\frac{360(0.0324)}{360-100(0.0324)}=0.327$ 6-17

Quotes on Treasury Coupon Securities

(continued)
\checkmark The 32nds are themselves often split by the addition of a plus sign or a number.

Quote	No. of 32nds	No. of 64ths	No. of 256ths	Price per \$100 par
$91-19+$	19	1	0	91.609375
$107-222$	22	0	2	107.6953125
$109-066$	6	0	6	109.2109375

Accrued Interest

- The portion of the coupon payment accrued between the last coupon payment and the settlement day.
- normally, settlement takes place 1 to 2 days after a trade date.
- At settlement, the buyer must pay the seller the purchase price of the T-note or T-bond plus accrued interest.
- Clean price: without accrued interest
- Dirty/full price: clean price + accrued interest

Why Clean Price?

Accrued Interest Calculation

accrued interest $=\frac{\text { int }}{2} \times \frac{\text { actual number of days since last coupon payment }}{\text { actual number of days in coupon period }}$

Day Count Convention

\checkmark The number of days in the accrued interest period and the coupon period may not be simply the actual number of calendar days between two dates.
\checkmark For Treasury coupon securities, the day count convention used is to determine the actual number of days between two dates.
\checkmark This is referred to as the actual/actual day count convention.

Day Count Conventions: Actual/Actual

- The first "actual" refers to the actual number of days in a month.
- The second refers to the actual number of days in a year.
- Example: For coupon-bearing Treasury securities, the number of days between June 17, 1992, and October 1, 1992, is 106.
$\rightarrow 13$ days (June), 31 days (July), 31 days (August), 30 days (September), and 1 day (October).

Day Count Conventions:30/360

- Each month has 30 days and each year 360 days.
- The number of days between June 17,1992 , and October 1, 1992, is 104.
- 13 days (June), 30 days (July), 30 days (August),

30 days (September), and 1 day (October).

- In general, the number of days from date1 to date2 is
$360 \times(y 2-y 1)+30 \times(m 2-m 1)+(d 2-d 1)$
Where Datel $\equiv(y 1, m 1, d 1)$ Date $\equiv(y 2, m 2, d 2)$

Stripped Treasury Securities

$>$ The Treasury does not issue zero-coupon notes or bonds.
$>$ Demand for zero-coupon instruments with no credit risk,
> Private sector has created such securities.

- Trademark products
- Treasury Income Growth Receipts (TIGRs)
- Merrill Lynch in 1982
$>$ Profit potential for a dealer who strips lies in arbitrage resulting from the mispricing of the security.
> The process of separating the interest on a bond from the underlying principal is called coupon stripping.
1.Purchase Treasury bonds and deposit them in a bank custody account
2 Issue receipts representing an ownership in each coupon payment on the underlying Treasury bond

3. Issue a receipt representing an ownership of the underlying Treasury bond's principal

Original bond

Stripped zero-coupon bonds

50
50

Stripped Treasury Securities

$>$ Zero-coupon Treasury securities were first created in August 1982 by dealer firms.
> The problem with these securities:
> identified with particular dealers
$>$ therefore reduced liquidity.
> involved legal and insurance costs
$>$ At 1985, Separate Trading of Registered Interest and Principal of Securities (STRIPS) program
> All Treasury notes and bonds (fixed-principal and inflationindexed) are eligible for stripping.
> The zero-coupon Treasury securities created under the STRIPS program are direct obligations of the U.S. government.

Confusion of "Stripped Treasury"

> Today, a stripped Treasury typically means a STRIPS product.
$>$ However, because there are trademark products and other types of pre-STRIPS zero-coupon products still outstanding, an investor should clarify what product is the subject of the discussion.

Stripped Treasury Securities

$>$ On dealer quote sheets and vendor screens STRIPS are identified by whether the cash flow is created from
> coupon (called $c i$),
> principal from a Treasury bond (called $b p$),
> or principal from a Treasury note (called $n p$)
$>$ Strips created from the coupon are called coupon strips and those from the principal are called principal strips.
$>$ Distinction is between coupon strips and principal strips is due to the tax treatment by non-U.S. entities
> See next slide

Tax Treatment

Reconstructing a Bond by STRIPs

\checkmark A disadvantage of stripped Treasury securities:
\checkmark accrued interest is taxed each year even though interest is not paid.

- negative cash flow because tax payments on interest earned but not received in cash
- For foreign buyers in some countries - interest from principal strips are treated as capital gain
- lower tax

Stripped Treasury Securities

- In reality, the sum of the sale price of the components of STRIPs is often greater than the fair present value of the original Treasury security
- Investors are willing to pay a small premium because the individual payments can be used in duration matching strategies or cash matching strategies that limit the investor's risk
- For instance, maintaining a given duration with coupon paying bonds requires periodic bond trading which generates transaction costs and perhaps tax consequences. Use of STRIPs avoids these costs
- This provides the motivation for creating STRIPS

Federal Agency Securities

Types of Federal Credit Agencies

- The most active buyers of agency securities include banks, state and local governments, government trust funds, and the Federal Reserve System
- The Federal Reserve is authorized to conduct open market operations in agency debts
- Major securities dealers who handle U.S. government securities also generally trade in agency issues

Federal Agency Securities

- To provide funding for certain sectors of the economy
- have a difficult time raising funds
- such as agriculture, housing, small businesses, and college students
- Beginning in 1916, the U.S. federal government created special agencies to make direct loans or guarantee private loans to these "disadvantaged" borrowers
- The agency market has soared in recent years, with the volume of outstanding securities climbing from about $\$ 2$ billion during the 1950s to almost $\$ 2$ trillion today
- Agency securities are generally short to medium term in maturity (running out to about 10 years)
- Government owned corporation
- Legally a part of the government structure, and their borrowing and lending activities are included in the federal budget
- Export-Import Bank (EXIM)
- Farmers Home Administration (FMHA)
- Government National Mortgage Association (Ginnie Mae)
- Federal Deposit Insurance Corporation (FDIC)
- Tennessee Valley Authority (TVA)
- The major issuer of Federal agency securities
- Provide flood control, navigation, and agriculture and industrial development
- The largest public power system in the U.S.
- Finance its capital requirements through internally generated funds and by issuing debt
- TVA debt is not guaranteed by the U.S. government

Types of Federal Credit Agencies

- Government-sponsored enterprises (GSEs)

Federally chartered but privately owned. Their borrowing and lending activities are not reflected in the federal government's budget.

- To reduce the cost of capital for certain borrowing sectors
- Farmers, homeowners, and students
- Issue securities directly to the marketplace
- Examples:
- Federal National Mortgage Association (Fannei Mae)
- Federal Home Loan Mortgage Corp (Freddie Mac)
- Federal Agricultural Mortgage Comporation
- Federal Farm Credit Bank System (FFCB)
- Federal Home Loan Bank System

