## Chapter 4

## Learning Objectives

## After reading this chapter, you will understand

*Focus on option-free bond
$\star$ the price-yield relationship

* the price-volatility properties
* Duration:
-the Macaulay duration, modified duration, and dollar duration of a bond
* a measure of a bond's price sensitivity to yield changes
*the spread duration measure for fixed-rate and floating-rate
bonds
*portfolio duration
* limitations of using duration as a measure of price volatility


## Learning Objectives (continued)

## Review of the Price-Yield Relationship for Option-Free Bonds

After reading this chapter, you will understand
> An increase in the required yield decreases the PV of its expected cash flows and the bond's price.
\%how price change estimated by duration can be adjusted for a bond's convexity

* how to approximate the duration and convexity of a bond
* the duration of an inverse floater
* how to measure a portfolio's sensitivity to a nonparallel shift in interest rates (key rate duration and yield curve reshaping duration)
- An decrease in the required yield increases the PV of its expected cash flows and the bond's price.
$>$ See next slide:
$>$ The percentage price change w.r.t. change in yield is not the same for all bonds.

| Exhibit 4-1 | Price-Yield Relationship for Six Hypothetical Bonds |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Required <br> Yield (\%) | Price at Required Yield (coupon/maturity in years) |  |  |  |  |  |
| 6.00 | 112.7953 | 138.5946 | 100.0000 | 100.0000 | 74.4094 | 22.8107 |
| 7.00 | 108.3166 | 123.4556 | 95.8417 | 88.2722 | 70.8919 | 17.9053 |
| 8.00 | 104.0554 | 110.7410 | 91.8891 | 78.5178 | 67.5564 | 14.0713 |
| 8.50 | 102.0027 | 105.1482 | 89.9864 | 74.2587 | 65.9537 | 12.4795 |
| 8.90 | 100.3966 | 100.9961 | 88.4983 | 71.1105 | 64.7017 | 11.3391 |
| 8.99 | 100.0395 | 100.0988 | 88.1676 | 70.4318 | 64.4236 | 11.0975 |
| 9.00 | 100.0000 | 100.0000 | 88.1309 | 70.3570 | 64.3928 | 11.0710 |
| 9.01 | 99.9604 | 99.9013 | 88.0943 | 70.2824 | 64.3620 | 11.0445 |
| 9.10 | 99.6053 | 99.0199 | 87.7654 | 69.6164 | 64.0855 | 10.8093 |
| 9.50 | 98.0459 | 95.2539 | 86.3214 | 66.7773 | 62.8723 | 9.8242 |
| 10.00 | 96.1391 | 90.8720 | 84.5565 | 63.4881 | 61.3913 | 8.7204 |
| 11.00 | 92.4624 | 83.0685 | 81.1559 | 57.6712 | 58.5431 | 6.8767 |
| 12.00 | 88.9599 | 76.3572 | 77.9197 | 52.7144 | 55.8395 | 5.4288 |



EXHIBIT 4-3 Instantaneous Percentage Price Change for Six Hypothetical Bonds
Six hypothetical bonds, priced initially to yield $9 \%$ :
$9 \%$ coupon, 5 years to maturity, price $=100.00006 \%$ coupon, 25 years to maturity, price $=70.3570$ $9 \%$ coupon, 25 years to maturity, price $=100.000 \quad 0 \%$ coupon, 5 years to maturity, price $=64.3928$ $6 \%$ coupon, 5 years to maturity, price $=88.1309 \quad 0 \%$ coupon, 25 years to maturity, price $=11.0710$
Yield (\%) Change in Percentage Price Change (coupon/maturity in years)

| Change to: | Basis Points | Percnage Price Change (coupon/maturity y |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 9\% / 5 | 9\% / 25 | 6\% / 5 | 6\% / 25 | 0\% / 5 | 0\% / 25 |
| 6.00 | -300 |  | 38.59 | 13.47 | 42.13 | 15.56 | 106.04 |
| 7.00 | -200 | 8.32 | 23.46 | 8.75 | 25.46 | 10.09 | 61.73 |
| 8.00 | -100 | 4.06 | 10.74 | 4.26 | 11.60 | 4.91 | 27.10 |
| 8.50 | -50 | 2.00 | 5.15 | 2.11 | 5.55 | 2.42 | 12.72 |
| 8.90 | -10 | 0.40 | 1.00 | 0.42 | 1.07 | 0.48 | 2.42 |
| 8.99 | small -1 | 0.04 | 0.10 | 0.04 | 0.11 | 0.05 | 0.24 |
| 9.01 | change 1 | -0.04 | -0.10 | -0.04 | -0.11 | -0.05 | -0.24 |
| 9.10 | 10 | -0.39 | -0.98 | -0.41 | -1.05 | -0.48 | -2.36 |
| 9.50 | 50 | -1.95 | -4.75 | -2.05 | -5.09 | -2.36 | -11.26 |
| 10.00 | 100 | -3.86 | -9.13 | -4.06 | -9.76 | -4.66 | -21.23 |
| 11.00 | 200 | -7.54 | -16.93 | -7.91 | -18.03 | -9.08 | -37.89 |
| 12.00 | 300 | -11.04 | -23.64 | -11.59 | -25.08 | -13.28 | -50.96 |

## Characteristics of a Bond that Affect its Price Volatility

There are two characteristics of an option-free bond that determine its price volatility: coupon and term to maturity.

1) First, for a given term to maturity and initial yield, the price volatility of a bond is greater, the lower the coupon rate
$\checkmark$ This characteristic can be seen by comparing the $9 \%, 6 \%$, and zero-coupon bonds with the same maturity in the previous slide
2) Second, for a given coupon rate and initial yield, the longer the term to maturity, the greater the price volatility.
$\checkmark$ This can be seen by comparing the five-year bonds with the 25 year bonds with the same coupon in the previous slide.

## Effects of Yield to Maturity

$>$ Holding other factors constant, the higher the yield to maturity at which a bond trades, the lower the price volatility.
$\checkmark \quad$ An implication of this is that for a given change in yields, price change is greater (lower) when yield levels in the market are low (high).

| EXHIBIT 44 | Price Change for a 100-Basis-Point Change in Yield for a 9\% 25-Year Bond Trading at Different Yield Levels |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Yield Level (\%) | Initial Price | New Price ${ }^{\text {a }}$ | Price Decline | Percent Decline |
| 7 | \$123.46 | \$110.74 | \$12.72 | 10.30 |
| 8 | 110.74 | 100.00 | 10.74 | 9.70 |
| 9 | 100.00 | 90.87 | 9.13 | 9.13 |
| 10 | 90.87 | 83.07 | 7.80 | 8.58 |
| 11 | 83.07 | 76.36 | 6.71 | 8.08 |
| 12 | 76.36 | 70.55 | 5.81 | 7.61 |
| 13 | 70.55 | 65.50 | 5.05 | 7.16 |
| 14 | 65.50 | 61.08 | 4.42 | 6.75 |

${ }^{\text {a }}$ As a result of a 100-basis-point increase in yield.

## Price Value of a Basis Point

$>$ Also called the dollar value of an 01 ,
$>$ is the change of the bond price if the required yield changes by 1 bp .
$>$ indicates dollar price volatility
$>$ opposed to percentage price volatility (price change as a percent of the initial price).
$>$ dividing the price value of a basis point by the initial price gives the percentage price change for a 1 -basis-point change in yield.
> Typically, the price value of a basis point is expressed as the absolute value of the change in price.

| Bond | Initial Price | Price at $9.01 \%$ | Price Value of a BP |
| :--- | :---: | :---: | ---: |
| 5year 9\% | 100 | 99.9604 | 0.0396 |
| 25year 9\% | 100 | 99.9031 | 0.0987 |

## Measures of Bond Price Volatility

* Money managers, arbitrageurs, and traders need to have a way to measure a bond's price volatility to implement hedging and trading strategies.
* Three measures that are commonly employed:

1) price value of a basis point
2) yield value of a price change
3) duration

## Yield Value of a Price Change

- change in the yield to maturity for a specified price change
- compare the yield before and after a specified bond price changes
> The smaller this value, the greater the dollar price volatility, because it would take a smaller change in yield to produce a price change of $X$ dollars.

| Bond | Initial Price Minus a $32 n d^{a}$ | Yield at New Price | $\begin{aligned} & \text { Initiat } \\ & \text { Yield } \end{aligned}$ | Yield Value of a 32 nd |
| :---: | :---: | :---: | :---: | :---: |
| 5 -year 9\% coupon | 99.96875 | 9.008 | 9.000 | 0.008 |
| 25-year 9\% coupon | 99.96875 | 9.003 | 9.000 | 0.003 |

## Measures of bond price volatility

- Duration
- the percentage price change for a given yield changes
- a summary measure of bond price volatility
- incorporate the effect of coupon and maturity


## Macaulay Duration

- A measure of bond sensitivity to changes in interest rate
- The price of bond

$$
P=\frac{C}{1+y}+\frac{C}{(1+y)^{2}}+\cdots+\frac{C}{(1+y)^{n}}+\frac{M}{(1+y)^{n}}
$$

- The approximate change in price for a small change in yield, by taking the first derivative with respect to the required yield

$$
\begin{aligned}
\frac{d P}{d y} & =\frac{(-1) C}{(1+y)^{2}}+\frac{(-2) C}{(1+y)^{3}}+\cdots+\frac{(-n) C}{(1+y)^{n+1}}+\frac{(-n) M}{(1+y)^{n+1}} \\
\frac{d P}{d y} & =\frac{-1}{(1+y)}\left[\frac{1 C}{(1+y)^{1}}+\frac{2 C}{(1+y)^{2}}+\cdots+\frac{n C}{(1+y)^{n}}+\frac{n M}{(1+y)^{n}}\right]
\end{aligned}
$$

- The approximate percentage change

$$
\frac{d P}{d y} \frac{1}{P}=\frac{-1}{(1+y)}\left[\frac{1 C}{(1+y)^{1}}+\frac{2 C}{(1+y)^{2}}+\cdots+\frac{n C}{(1+y)^{n}}+\frac{n M}{(1+y)^{n}}\right] \frac{1}{P}
$$

## Macaulay Duration

- Macaulay's duration

$$
\text { Macaulay duration }=\frac{\frac{1 C}{(1+y)^{1}}+\frac{2 C}{(1+y)^{2}}+\cdots+\frac{n C}{(1+y)^{n}}+\frac{n M}{(1+y)^{n}}}{P}
$$

- the average period of payment of a bond
- weighted average term to maturity of the cash flows divided by prices, where the weights are the present value of the cash flow



## Modified Duration

$>$ Investors refer to the ratio of Macaulay duration to $1+y$ as the modified duration. The equation is:

$$
\text { modified duration }=\frac{\text { Macaulayduration }}{1+y}
$$

$>$ The modified duration is related to the approximate percentage change in price for a given change in yield as given by:

$$
\frac{\boldsymbol{d P}}{\boldsymbol{d y}} \frac{1}{\boldsymbol{P}}=- \text { modified duration }
$$

where $\boldsymbol{d} \mathbf{P}=$ change in price, $\boldsymbol{d} \boldsymbol{y}=$ change in yield, $\boldsymbol{P}=$ price of the bond .

## Measures of Bond Price Volatility

$>$ Because for all option-free bonds modified duration is positive, (dP/dy )(1/P)<0,
> an inverse relationship between the approximate percentage price change and the yield change.
$>$ This is to be expected from the fundamental principle that bond prices move in the opposite direction of the change in interest rates.
> Example for calculating Macaulay duration and modified duration of two five-year coupon bonds.
$\checkmark$ The durations computed in these exhibits are in terms of duration per period.

## Duration (Conversion)

$>$ In general, if the cash flows occur $m$ times per year, the durations are adjusted by dividing by $m$, that is,

$$
\text { duration in years }=\frac{\text { durationinm periods per year }}{m}
$$

## Calculation of Duration




## Properties of Duration

- For coupon-bearing bonds, both Macaulay and modified durations are always less than term to maturity
- For zero-coupon bonds, Macaulay Duration is exactly the same as term to maturity, Modified is less than the maturity
- A longer term to maturity increases duration, all other things being equal - Duration increases with term to maturity at a decreasing rate

| Bond | Macaulay Duration (years) | Modified Duration |
| :--- | :---: | :---: |
| $9 \% / 5$-year | 4.13 | 3.96 |
| $9 \% / 25$-year | 10.33 | 9.88 |
| $6 \% / /$-year | 4.35 | 4.16 |
| $6 \% / 25$-year | 11.10 | 10.62 |
| $0 \% / 5$-year | 5.00 | 4.78 |
| $0 \% / 25$-year | 25.00 | 23.92 |

## Properties of Duration

- Lower coupon rates generally lead to longer durations, all other things being equal
- Higher yields lead to shorter durations

| Yield (\%) | Modified Duration |
| :---: | :---: |
| 7 | 11.21 |
| 8 | 10.53 |
| 9 | 9.88 |
| 10 | 9.27 |
| 11 | 8.70 |
| 12 | 8.16 |
| 13 | 7.66 |
| 14 | 7.21 |

## Approximating the Percentage Price Change

$>$ The below equation can be used to approximate the percentage price change for a given change in required yield:

$$
\frac{\boldsymbol{d P}}{\boldsymbol{P}}=-(\text { modified duration })(\boldsymbol{d y})
$$

## Approximating the Dollar Price Change

$>$ Modified duration is a proxy for the percentage change in price. Investors also like to know the dollar price volatility of a bond.
$>$ For small changes in the required yield, the price change is estimated as
$\boldsymbol{d P}=-($ dollar duration $)(\boldsymbol{d y})$
where Dollar duration= -(modified duration)*P
Ex: 6\% 25-year bond sell at 70.357 given yield=9\%. Dollar duration=747.2009
An increment of 1 bp :

$$
d P=-747.2009 * 0.0001=-0.0747
$$

Bond price decreases is about $-0.0747 \rightarrow 70.2824-70.357=-0.0746$

| Required <br> Yield (\%) | Price at Required Yield (coupon/maturity in years) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 9\% / 5 | 9\% / 25 | 6\% / 5 | 6\% / 25 | 0\% / 5 | 0\% / 25 |
| 9.00 | 100.0000 | 100.0000 | 88.1309 | 70.3570 | 64.3928 | 11.0710 |
| 9.01 | 99.9604 | 99.9013 | 88.0943 | 70.2824 | 64.3620 | 11.0445 |

$>$ Due to convex property between yield and price, dollar and modified durations are not adequate to approximate when dy is large.
$>$ Duration will overestimate the price change when the required yield rises, thereby underestimating the new price.
$>$ When the required yield falls, duration will underestimate the price change and thereby underestimate the new price


## Spread Duration

- This measure is used in two ways: for fixed bonds and floating-rate bonds.
- Duration measures $\Delta$ bond value w.r.t. $\Delta$ yield
- For fixed rate security:
- Treasury bond $\rightarrow$ treasury rate
- non-Treasury bond $\rightarrow$ treasury rate + credit spread
- A measure of how non-Treasury bond's price change w.r.t. spread change is called Spread duration
- For floating rate security:
- Coupon reset as : reference rate+ quoted margin
- Spread duration measures the change of security price w.r.t. the change in quoted margin.


## Portfolio duration

- Portfolio duration is the weighted average duration of the bonds in the portfolio
- Example

| Bond | Market Value | Portfolio Weight | Duration |
| :---: | :---: | :---: | :---: |
| A | $\$ 10$ million | 0.10 | 4 |
| B | $\$ 40$ million | 0.40 | 7 |
| C | $\$ 30$ million | 0.30 | 6 |
| D | $\$ 20$ million | 0.20 | 2 |

- Portfolio duration $=0.1 \times 4+0.4 \times 7+0.3 \times 6+0.2 \times 2=5.4$
- This linear property is only an approximation when the yield curve is not flat


## Ex: Portfolios of Lehman Bother Portfolio Duration

## Contribution to Portfolio duration

- Contribution to portfolio duration
- Weight of issue in portfolio $\times$ duration of issue
- Important to bond fund managers

| Bond | Market Value | Weight in <br> Portfolio | Duration | Contribution <br> to Duration |
| :---: | :---: | :---: | :---: | :---: |
| A | $\$ 10,000,000$ | 0.10 | 4 | 0.40 |
| B | $\$ 40,000,000$ | 0.40 | 7 | 2.80 |
| C | $\$ 30,000,000$ | 0.30 | 6 | 1.80 |
| D | $\$ 20,000,000$ | $\underline{0.20}$ | 2 | $\underline{0.40}$ |
| Total | $\$ 100,000,000$ | 1.00 |  | 5.40 |


| EXHIBIT 4-7 | Calculation of Duration and Contribution to Portfolio <br> Duration for an Asset Allocation to Sectors of the <br> Lehman Brothers U.S. Aggregate Index: October 26, |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Sector | Portfolio <br> Weight | Sector <br> Duration | Contribution to <br> Portfolio <br> Duration |
| Sreasury | 0.000 | 4.95 | 0.00 |  |
| Agency | 0.121 | 3.44 | 0.42 |  |
| Mortgages | 0.449 | 3.58 | 1.61 |  |
| Commercial Mortgage-Backed Securities | 0.139 | 5.04 | 0.70 |  |
| Asset-Backed Securities | 0.017 | 3.16 | 0.05 |  |
| Credit |  | 0.274 | 6.35 | 1.74 |


| EXHIDIT 4-8 | Calculation of Duration and Contribution to the Lehman <br> Brothers Aggregate Index Duration: October 26, 2007 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Sector | Weight <br> in Index | Sector <br> Duration | Contribution to <br> Index Duration |
| Treasury | 0.230 | 4.95 | 1.14 |
| Agency | 0.105 | 3.44 | 0.36 |
| Mortgages | 0.381 | 3.58 | 1.36 |
| Commercial Mortgage-Backed Securities | 0.056 | 5.04 | 0.28 |
| Asset-Backed Securities | 0.010 | 3.16 | 0.03 |
| Credit | 0.219 | 6.35 | 1.39 |
|  | 1.000 |  | 4.56 |

The portfolio durations are close.

## Ex: Portfolios of Lehman Bother Spread Duration

* The spread durations are in
* Exhibit 4-9 (see next slide) and
- Exhibit 4-10
- While the portfolio and the index have the same duration, the spread duration for the recommended portfolio is 4.60 vs .3 .49 for the index
- The larger spread duration for the recommended portfolio is expected given the greater allocation to non-Treasury sectors.

| EXHIBIT 4-9 | Calculation of Spread Duration and Contribution to <br> Portfolio Spread Duration for an Asset Allocation to <br> Sectors of the Lehman Brothers U.S. Aggregate Index: <br> October 26, 2007 |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Sector | Portfolio <br> Weight | Sector <br> Spread <br> Duration | Contribution to <br> Portfolio Spread <br> Duration |  |
| Treasury |  | 0.000 | 0.00 | 0.00 |
| Agency | 0.121 | 3.53 | 0.43 |  |
| Mortgages | 0.449 | 3.62 | 1.63 |  |
| Commercial Mortgage-Backed Securities | 0.139 | 5.04 | 0.70 |  |
| Asset-Backed Securities | 0.017 | 3.16 | 0.05 |  |
| Credit |  | 0.274 | 6.35 | 1.79 |
|  | Total | $\underline{1.000}$ |  | 4.60 |


| EXHIBIT 4-10 | Calculation of Spread Duration and Contribution <br> to the Lehman Brothers Aggregate Index Spread <br> Duration: October 26, 2007 |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Sector | Weight <br> in Index | Sector <br> Spread <br> Duration | Contribution to <br> Index Spread <br> Duration |
| Treasury | 0.230 | 0.00 | 0.00 |
| Agency | 0.105 | 3.53 | 0.37 |
| Mortgages | 0.381 | 3.62 | 1.38 |
| Commercial Mortgage-Backed Securities | 0.056 | 5.04 | 0.28 |
| Asset-Backed Securities | 0.010 | 3.16 | 0.03 |
| Credit | 0.219 | 6.53 | 1.43 |
| Total | $\underline{1.000}$ |  |  |

## Exhibit 4-11

## Measures of Bond Price Volatility and Their Relationships to One Another

## Notation:

D = Macaulay duration
$\boldsymbol{D}^{*}=$ modified duration
$\boldsymbol{P V B P}=$ price value of a basis point
$\boldsymbol{y}=$ yield to maturity in decimal form
$\boldsymbol{Y}=$ yield to maturity in percentage terms $(\boldsymbol{Y}=100 \times y)$
$\boldsymbol{P}=$ price of bond
$\boldsymbol{m}=$ number of coupons per year

## Exhibit 4-11

## Measures of Bond Price Volatility and Their

 Relationships to One Another (continued)
## Relationships:

$D^{*}=\frac{D}{1+y / m} \rightarrow$ by definition
$\frac{\Delta \boldsymbol{P} / \boldsymbol{P}}{\Delta \boldsymbol{y}} \approx \boldsymbol{D}^{*} \rightarrow$ to a close approximation for a small $\Delta \mathrm{y}$
$\Delta \boldsymbol{P} / \Delta \boldsymbol{Y} \approx$ slope of price-yield curve $\rightarrow$ to a close approximation for a small $\Delta y$
$\boldsymbol{P V B P} \approx \frac{\boldsymbol{D}^{*} \times \boldsymbol{P}}{10,000} \rightarrow$ to a close approximation
For Bonds at or near par :
$\boldsymbol{P V B P}=\boldsymbol{D} * / 100 \rightarrow$ to a close approximation
$\boldsymbol{D}^{*}=\Delta \boldsymbol{P} / \Delta \boldsymbol{Y} \rightarrow$ to a close approximation for a small $\Delta \mathrm{y}$

## Why Need Convexity?

* All the duration measures are only approximations for small changes in yield,
* Do not capture the effect of the convexity
* The duration measure can be supplemented with an additional measure to capture the curvature (or convexity)
* In Exhibit 4-13 (next slide), a tangent line is drawn to the price-yield relationship at yield $\boldsymbol{y}^{*}$.
* The approximation will always understate the actual price.
* When yields decrease, the estimated price change will be less than the actual price change, thereby underestimating the actual price
* When yields increase, the estimated price change will be greater than the actual price change, resulting in an underestimate of the actual price

Exhibit 4-13. Price Approximation Using Duration


Copyright © 2010 Pearson Education, Inc.
Publishing as Prentice Hall

## Measuring convexity

- Use the first two terms of a Taylor series to approximate the price change of a bond

- The percentage price change

$$
\frac{d P}{P}=\frac{d P}{d y} \frac{1}{P} d y+\frac{1}{2} \frac{d^{2} P}{d y^{2}} \frac{1}{P} \widehat{(d y)^{2}+\frac{\text { error }}{P}} \quad \text { Convexity measure }
$$

- Measures of convexity

$$
\text { dollar convexity measure }=\frac{d^{2} P}{d y^{2}}
$$

```
convexity measure = 䙲P
```


## Calculating Convexity



Calculating percentage price changes using both duration and convexity

- Approximate percentage price change for a given change in the yield
$\frac{d P}{P}=-($ modified duration $)(d y)+\frac{1}{2}\left(\right.$ convexity measure) $(d y)^{2}$
- price change $=$ duration estimate + convexity adjustment
- The convexity adjustment gets the estimate closer to the actual price

Calculating percentage price changes using both duration and convexity

## - Example

- A 25 -year $6 \%$ bond selling at 70.3570 to yield $9 \%$. The modified duration is 10.62 and the convexity measure is 182.92. Assuming yield increase by 200 basis points, from $9 \%$ to $11 \%$.
- \% change in price applying duration and convexity
$=-($ modified duration $)(\mathrm{dy})+1 / 2$ (convexity measure) $(\mathrm{dy})^{2}$
$=-10.62 \times 0.02+0.5 \times 182.92 \times 0.02^{2}$
= $-21.24 \%+3.66 \%$
= $-17.58 \%$
- The actual change is $-18.03 \%$


## Value of Convexity

The convexity of a bond has another important investment implication illustrated in Exhibit 4-16 (see next slide).
$>$ The two bonds, A and B , have the same duration and are offering the same yield
$>$ Bond B is more convex than bond A .
$>$ The market price reflects bond's convexity.
$>$ If investors expect that market yields will change very little, he will not pay much for convexity.
$>$ If the market prices convexity high, investors with expectations of low interest rate volatility will probably want to "sell convexity."

## Exhibit 4-16

Comparison of Convexity of Two Bonds


Yield

## Properties of Convexity

$>$ All option-free bonds have the following convexity properties illustrated in Exhibit 4-17 (see next slide),
i. the required yield increases (decreases), the convexity of a bond decreases (increases). This property is referred to as positive convexity.
ii. For a given yield and maturity, lower coupon rates will have greater convexity. (illustrated 2 pages later)
i. zero coupon bond has the highest convexity
iii. For a given yield and modified duration, lower coupon rates will have smaller convexity.

## Exhibit 4-17

## Change in Duration as the

 Required Yield Changes

Yield

## Copyright © 2010 Pearson Education, Inc.

Publishing as Prentice Hall

## Additional Concerns when Using Duration

## Properties of Convexity

| For same yield and maturity, <br> zero bonds are more convexity |  | For same duration and yield, zero- <br> Coupon bonds are less convexity |  |
| :---: | :---: | :---: | :---: |
| A | B | A | B |
| $\mathrm{N}=6$ | $\mathrm{~N}=6$ | $\mathrm{~N}=6$ | $\mathrm{~N}=5$ |
| $\mathrm{Y}=8 \%$ | $\mathrm{Y}=8 \%$ | $\mathrm{Y}=8 \%$ | $\mathrm{Y}=8 \%$ |
| $\mathrm{C}=8 \%$ | $\mathrm{C}=0 \%$ | $\mathrm{C}=8 \%$ | $\mathrm{C}=0 \%$ |
| $\mathrm{D}=5$ | $\mathrm{D}=6$ | $\mathrm{D}=5$ | $\mathrm{D}=5$ |
| $\mathrm{CX=28}$ | $\mathrm{CX}=36$ | $\mathrm{CX}=28$ | $\mathrm{CX}=25.72$ |

Relying on duration as the sole measure of the bond price volatility could be misleading.

* Two concerns should be point out:
i. First, we assume that all cash flows for the bond are discounted at the same discount rate.
- Flat yield curve assumption
- Parallel shift of yield curve
ii. Second, there is misapplication of duration to bonds with embedded options.

D is duration, and CX is convexity.

## Don't Think of Duration as a Measure of Time

* Market participants often confuse the main purpose of duration by constantly referring to it as "the weighted average life of a bond".
* CMO (collateralized mortgage obligation) are leveraged instruments: - Price sensitivity or duration are a multiple of the underlying mortgage loans
- A CMO bond class with a duration of 40 does not mean that it has some type of weighted average life of 40 years.
> It means that for a $1 \%$ change in yield, that bond's price will change by roughly $40 \%$.
* Like a CMO bond class, we interpret the duration of an option in the same way.


## Numerically Approximating a Bond's Duration and Convexity

* A simple formula to calculate the approximate duration of a bond or any other more complex derivative securities or options.
* The formula shows the percentage price change of a bond when interest rates change by a small amount:

$$
\text { approximate duration }=\frac{\boldsymbol{P}_{-}-\boldsymbol{P}_{+}}{2\left(\boldsymbol{P}_{0}\right)(\Delta \boldsymbol{y})}
$$

where $\Delta \boldsymbol{y}$ is the change in yield used to calculate the new prices
> The above formula measures the average percentage price change (relative to the initial price) per 1-basis-point change in yield.

* The convexity measure of any bond can be approximated using the following formula:

$$
\text { approximate convexity measure }=\frac{\boldsymbol{P}_{+}+\boldsymbol{P}_{-}-2 \boldsymbol{P}_{0}}{\boldsymbol{P}_{0}(\Delta \boldsymbol{y})^{2}}
$$

## Ex: Evaluating the Duration

- Increase the yield on the bond by a small number of basis point (10 bps) from $9 \%$ to $9.1 \%$, recalculate bond price using bond pricing formula, the new price $P_{+}$is 69.6164 .
- Decrease the yield on the bond by a small number of basis point (10 bps) from $9 \%$ to $8.9 \%$, recalculate bond price using bond pricing formula, the new price $P$ is 71.1105 .
- Because the initial price, $P_{0}$, is 70.3570 , the duration can be approximated as follows:
approximate duration $=\frac{P_{-}-P_{+}}{2 P_{0} \Delta y}=\frac{71.1105-69.6164}{2 \times 70.3570 \times 0.001}=10.62$


## Ex: Evaluating the Convexity

- Convexity measure can be calculated

$$
\begin{aligned}
& \text { approximate convexity measure }=\frac{P_{+}+P_{-}-2 P_{0}}{P_{0}(\Delta y)^{2}} \\
& =\frac{71.1105+69.6164-2 \times(70.3570)}{70.3570 \times(0.001)^{2}}=183.3
\end{aligned}
$$

## Duration of floaters and inverse floaters

- A floater and an Inverse floater can be created from their underlying collateral bond
- Duration of the underlying collateral bond $D_{c}$ is the weighted average of $D_{f}$ and $D_{i}$

$$
w \times D_{i}+(1-w) \times D_{f}=D_{c}
$$

- Duration of a floater is close to 0
- Price of floater is close to its par value, regardless the change of yield

$$
w \times D_{i}=D_{c}
$$

$\mathrm{D}_{\mathrm{i}}=\frac{\mathrm{D}_{\mathrm{c}}}{\mathrm{w}}=\mathrm{D}_{\mathrm{c}} \times \frac{\text { Value }(\text { Collateral })}{\text { Value }(\text { Inverse })}=\mathrm{D}_{\mathrm{c}} \times \frac{\operatorname{Par}(\text { Collateral }) \times \text { Collateral Price }}{\text { Par }(\text { Inverse }) \times \text { Inverse Price }}$
$=\left(1+\frac{\operatorname{Par}(\text { Floater })}{\operatorname{Par}(\text { Inverse })}\right) \times \mathrm{D}_{\mathrm{c}} \times \frac{\text { Collateral Price }}{\text { Inverse Price }}$

## Measuring a Bond Portfolio's Responsiveness to Nonparallel Changes in

## Interest Rates

## * Yield Curve Reshaping Duration

$>$ The yield curve reshaping duration approach focuses on the sensitivity of a portfolio to a change in the slope of the yield curve.

## * Key Rate Duration

> The most popular measure for estimating the sensitivity of a portfolio to the changes in the yield curve
$>$ Change the yield for a particular maturity and determine the sensitivity of a portfolio given all other yields constant.

