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Payoffsfor European Optionson Maturity?

e Suppose that you have bought one European put
and an European call on DELL with the same strike
price of $55. The payoffs of your options certainly
depend on the price of DELL on maturity

Stock Price $30 40 50 60 70 80

Call Value 0 0 0 5 15 25
Put Value 25 15 5 0 0 0
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Call Value o
(Intrinsic value + time value)

Call wvalue
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Put Value 3
(Intrinsic value + time value)
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Some Terminologies

In the money

Call : S>X, Put : S<X
At the money

Call, put: S=X
Out of the money

Call : S<X, Put: S>X

In the money options at expiration should be
exercised.
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heory of Rational Option Pricing
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e No arbitrage and Dominance Principle
e Put-Call Parity
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Notation

S: Current stock price

X: Strike price of option

t: Time to expiration of option (unit: year)

r: Continuously compound a year risk-free rate of interest
C: value of American call option to buy one share

c: value of European call option to buy one share

P: value of American put option to buy one share

p: value of European put option to buy one share



No ar bitrage concept

e If two securities have the exactly the same payoff or
cash flows 1n every state of each future period, these
two securities should have the same price; otherwise
there 1s an arbitrage opportunity.



Dominance Principle

e A risk-less arbitrage opportunity is one that, without
any 1nitial investment, generates nonnegative returns
under all circumstances.

e The portfolio dominance principle says portfolio A
should be more valuable than B if A’s payoff is at

least as good under all circumstances and better under
some.



Put-Call Parity

e Let p(X.,t) and c(X,t) be the prices of a European put
and a call with same strike prices of X and maturity
of t. Then we have

c(X,t)=S8,+ p(X,t)— Xe™"

c(X,t)+ Xe™" =8, + p(X,1)
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c+tPVX)=p+S
SRR 5T PV(X)=Xe
e Consider the following two portfolios.

e A: Buy one European call option plus an zero coupon
bond amount of cash equal to PV(X) X is par value

e B: Buy one European put option plus one share stock.

Initial cost S, = X S, <X
A ctPV(X) (S, -X)+X=S, X
B p+S S S, +H(X- S, )=X
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Consequences of Put-Call Parity

e There 1s only one kind of European option because the
other can be replicated from it in combination with the
underlying stock and risk-less lending or borrowing.

(1)S =c¢ —p +PV(X) says a stock 1s equivalent to a portfolio
containing a long call, a short put, and lending PV (X).

(2)c —p =S — PV(X) implies a long call and a short put
amount to a long position in stock and borrowing the PV
of the strike price .
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Maturity and Option Value

o Theoreml

An American call (put) with a longer time to expiration
cannot be worth less than an otherwise identical call (put)
with a shorter time to expiration

Pr oof
e Suppose instead that C,; > C,, where ¢, < ,.

e Buy C,, and sell C,; to generate a net cash tlow of C,; —
C,, at time zero.

e Exercise C,, when C, 1s exercised.
e Otherwise, sell C, at time t1.




Strike Price and Option Value

o Theorem?2

A call (put) option with a higher (lower) strike price cannot be
worth more than an otherwise identical call (put) with a lower
(higher) strike price.

Pr oof

e [ectthe two strike prices be X; < X,. Suppose C,, < C,, instead.

! | | maturity
+ e If holder exercise Cy,,
write the Cy, (St Xy) then you exercise the Cy,

at the same time
Cash inflow=C,,—Cy; Cash inflow= X, - X;>0
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Upper bounds

e Theorem3

A call is never worth more than the stock price, an American put
is never worth more than the strike price, and a European put is
never worth more than the PV of the strike price.

e If the call value exceeded the stock price, then we
earn risk-less profit by longing stock & shorting call.

e If the put value exceeded the strike price, writing a
cash-secured put earns arbitrage profits.



|ntrinsic value and Call Value

e Theorem4

A European call on a non-dividend-paying stock is
never worth less than its intrinsic value, we prove
c= Max (S-PV(X), 0) instead

See later slide

e Theorem5

An American call on a non-dividend-paying stock
will never be exercise prior to expiration, and hence,

it has the same value as a European call.
See later slide



Proof (Theorem4) :

Consider the following two investment:

A: Buy the one European call for ¢ = 1ot investment: =c+ Pv(x)
Buy one zero bond at price PV (X)

B: Buy the common stock for S Total investment: S

Suppose at the end of t years, the common stock price is St.

A B
St =X X S, A dominate B
St >X (S-X)+X=S, [,

By dominance principle, A will dominate B, c+ PV(X)
=S Itimplies that C =Max (S-PV(X), 0)



Call (different maturity )

>t

c(t>=)=S

S—PV(X,)

S—PV(Xy)

PV(Xp)

PV(X) X



Pr oof (T heor em5) o

e From Theorem 4, ¢= Max (S-PV(X), 0), because the
owner of an American call has all the exercise
opportunities, we must have C =c.

> C = Max (S-PV(X), 0)

e Givenr > 0, it follows that S—PV(X) > S —X.

e If it were optimal to exercise early, C=S—X. We deduce it
can never be optimal to exercise early.



Special Example: Dividend Case °
(Early Exercise of American Calls)

e Surprisingly, an American call will only be exercised
at expiration or just before an ex-dividend date.

e Early exercise may become optimal for American
calls on a dividend-paying stock.

— Stock price declines as the stock goes ex-dividend.

e This point will be discussed further in next chapter.



| ntrinsic value and Put Value

e Theorem6
For European puts, p = Max (PV(X) — S, 0).

e A European put on a non-dividend-paying stock may be
worth less than 1ts intrinsic value.

e Proof
ce+PV(X)=p+S

> p=PV(X)-S+c=2PV(X)-S
as the put goes deeper in the money,c = (
> p=(X-S)+(PV(X)-X)<X-S
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e Theorem7

It can be optimal to exercise an American put option
on a non-dividend paying stock early. Besides, P >

Max (X — S, 0).
As the put goes deeper in the money,c =0
p=PV(X)-S+c=(X-S)+(PV(X)-X)<X-S
The value to exercise the option immediately.
P = max(continuation value,X —§,0) 2 max(X —S,0)



Summary (Option Bounds)

(If no dividends) | Upper bounds lower bounds
European call S max(S—PV(X),0)
American call S max(S —PV(X),0)
European put PV(X) max(PV(X) —S,0)
American put X max(X—S,0)




Convexity of Option Prices

e Theorem§8

If C and P is a rationally determined American call and put
price, then C and P is convex function of its exercise price (X)

Cxo2wCy; + (1-w)Cyy
Py, 2Py, + (1 - o) Pxs

three otherwise 1dentical calls with strike prices X, < X, <X,

where o = (X5 — X,)/(X; — X)).
Remarks: The above arguments can also be applied to

European options.
Robert C. Merton (1973)
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Proof (1)
e Write Cy, , buy ®Cy,, and buy (1 — ®)Cy; to
generate a positive cash flow now.
e If the short call 1s not exercised before expiration,
hold the calls until expiration.
S<X; X1<85<Xy Xg < S < X3 Xq < S
—-Cx, 0 0 Xo — S Xo — 5
Cx4 0 w(S = X1) w(S = X1) w(sS — Xq)
Cx, 0 0 0 (1 —w)(S — X3)
Net 0 w(S — X7) w(S = Xq) + (X9 — ) 0



Proof (2)

e Suppose the short call 1s exercised early when the 'stock
price 1s S.

o [fwC,,+ (1 —w)Cyy >§— X, sell the long calls to
generate positive net cash flow.

wWCyy + (1 -~ w) Cy3 = (S - X;) > 0.
e Otherwise, exercise the long calls and deliver the stock.
e The net cash flow1s —w X; — (1 — w) X5+ X, =0.

there 1s an arbitrage profit!
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Portfolio Option

e Theory9

If k is a positive constant. Let C and C, be two call options with

the same underlying asset and maturity, If Q=kS,; X,=kX, then
we have Cy=k xC

e TheorylO

Consider a portfolio of non-dividend-paying assets with
weights wi. Let ci denote the price of a European call on asset i
with strike price Xi. Then the call on the portfolio with a strike

priceX =Y wX, has a value at most ) w,c, .All options expire
on the same date. ’



#Homework 9-1

e Prove Theorem 10.

Consider a portfolio of non-dividend-paying assets
with weights wi. Let ci denote the price of a
European call on asset i with strike price Xi. Then
the call on the portfolio with a strike price x =3 w.x,
has a value at most . Zwici All options expirelon
the same date.



#Homework 9-2 ooe
The relationship between the e

future and the options prices

Denote the prices for call and put options with strike
price X and maturity T as Vc and Vp.

Denote the price for the future matured at T as Vf
Consider the following two strategies:

1: Long a call and short a put:
Initial payoff: Vp-Vc At maturity: ST-X
2: Short a future: At maturity: VI-ST

Derive the relationship between Vp, Vc and Vf to
avoid arbitrage



#Homework 10

e Write a program to check the quotes (simplifi
as follows) in the stocks, futures, and options

ed

markets for arbitrage opportunities. (r=1.844%,

maturity=1
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#Homework 10

e Remark:
Assume that we can long/short TAIEX
Each point for TAIEX, futures, and options worth 1 TWD.
All options are European ones

The transaction costs for every trading =1 except
saving/borrowing
Ex: Long a call, short a put, sell a TAIEX, save $
= Transaction cost =3

Transaction costs must be considered when performing
arbitrage

Program inputs: The bid and ask prices for TAIEX, TAIEX
futures, calls, puts.

Program outputs: Arbitrage strategies and profits.
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e A hedge combines an option with its underlying stock
in such a way that one protects the other against loss.

e Protective put: A long position in stock with a long put.

(Example : § 2% & o pF | 8350 L ." g BRI T
2= ‘% ﬁfm«-ﬂ; ﬁul"‘l l/ 5]§T A1 A% g-nj?'

e Covered call: A long position 1n stock with a short call.

(Example : B 2 L e prg D320 L e 4 0 B RPE
BHEZ A7 d KR T F AT )
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Covered Position: Spread

e A spread consists of options of the same type and on the same

underlying asset but with different strike prices or expiration
dates.

e We use X, X,,, and X}, to denote the strike prices with X; < X,
< Xy

e Example . A bull call spread consists of @ long X, call and a
short X}, call with the same expiration date.
— The mitial investment 1s C;, — C,,.
— The maximum profit is (X, — X;) — (C, — Cp).
— The maximum loss 1s C;, — C,,.



000
000
o0
Diill Chrnnnd °
puill Spread
Profit Bull spread (call)

Stock price




In Class Exercise
(Bear Spread)

e Construct a bear spread with two put options.

— Long a put (strike price=X)

—short a put (strike price=X,)
e Draw the payoff chart for the bear spread
e (Calculate the maximum profits/loss.




Covered Position: Combination o

e A combination consists of options of different types
on the same underlying asset, and they are either all
bought or all written.

e Straddle: A long call and a long put with the same
strike price and expiration date.

e Strangle: Identical to a straddle except that the call’s
strike price 1s higher than the put’s.
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Example (Straddle) o

e Say the Federal Reserve has indicated that 1t 1s
strongly considering raising the Fed Funds rate to
control inflation. A shape increase in interest rates
may send stocks sharply lower, while a decrease in
interest rate may boost XYZ to an all-time high.

® A n vvactnr ovnacte that a1thoer nf thece ou ton
AN INVCSTOT CAPULULLS LllClL CItNer 01 tCSC OUulComes

could move the market up or down by 5% or more
over a timeframe of approximately one month.



Example (Straddle)

Index XYZ is currently at 100. The investor buys a
one-month XYZ 100 call for $1.70, and a one-month
XYZ 100 put for $1.50.

The cost for the straddle is: $1.70 (call) + $1.50 (put)
= $3.20.

The total premium paid is therefore: $3.20 x 100
multiplier = $320.



Example (Straddle) o

e By purchasing the straddle the investor 1s saying that
by expiration he anticipates index XYZ to have either
risen above the upside break-even point or below the
downside break-even point:

e Upside Break-Even Point: 100+$3.20 = 103.20
Downside Break-Even Point: 100—$3.20 =96.80

If you are interested in any strategies, you may access to the website
http://www.cboe.com/Strategies




