

Option Basic

Financial Engineering and Computations

Dai, Tian-Shyr

Outline

- Introduction of Option
- Theory of Rational Option Pricing
- Put-Call Parity
- Option strategies

選擇權簡介(1)

- 選擇權給予持有人在特定的時間點上,以約定好的價格,買入或賣出特定的資產的權利
 - 契約上載明的日期稱為到期日(maturity date)
 - 假定合約起始點為0, 到期日為T
 - 交易的資產稱為標的資產(underlying asset)
 - 假定在時間t時,標的資產價格為S(t)
 - 契約上載明的價格稱為履約價格(exercise price)
 - 假定履約價格為X

選擇權簡介(2)

- 買權(call)給予持有人以X價格購買標的物權利
 - 到期日損益:max(S(T)-X, 0)
 - 在到期日時, S(T)>X, 持有人履約(exercise)
 - payof f = S(T) X
 - 在到期日時, S(T) < X, 持有人放棄合約
- 賣權(put)給予持有人以X價格售出標的物權利
 - 到期日損益:max(X-S(T), 0)
- 購買選擇權的成本稱為權利金

Payoff (假設無權利金,歐式選擇權)

Payoffs for European Options on Maturity

ity

• Suppose that you have bought one European put and an European call on DELL with the same strike price of \$55. The payoffs of your options certainly depend on the price of DELL on maturity

Stock Price	\$30	40	50	60	70	80
Call Value	0	0	0	5	15	25
Put Value	25	15	5	0	0	0

選擇權的種類

- 歐式選擇權(European option)只能在到期日時才 能決定是否履約
 - 前一頁的損益針對歐式選擇權
- 美式選擇權(American option)可在到期日之前履約
 - exercise at time t:
 - Call: S(t)-X
 - Put: X-S(t)
- 美式選擇權的權利金>=歐式選擇權

選擇權的價值

- 對選擇權買方而言,為了取得未來買進(賣出)的權利,自 然必須付出代價,此代價便是選擇權的價值,也就是權利 金(Premium)。
- 權利金和一般現貨市場的報價一樣,隨著買方與賣方願意 支付與接受的情況,形成市場上的供需,當價格達到買賣 雙方均能接受的條件時便可成交。
- 選擇權之權利金是由內含價值(Intrinsic value)與時間價值 (time value)所組成
 - 一內含價值即是選擇權履約價格與現貨價格之差,時間價值則是權利金扣除內含價值的部分。

權利金(Premium) vs. 保證金(Margin)

- 權利金為選擇權之價值,但與保證金不同。
- 賣方賣出選擇權之後,背負履約的義務,為保證 到期能履行義務,故要求賣方繳存一定金額之保 證金。
- 保證金繳交之對象:買權、賣權的賣方。
- 需進行每日結算,以控制違約風險。

時間價值

- 影響時間價值的二個重要因素:到期日、標的物的價格波動率(下一章會詳細探討)。
- 接近到期日,時間價值遞減的速度愈快;在到期日時,時間價值降為零,只剩下內在價值的部分。
- 當時間價值減少時,獲利的是選擇權的賣方,因此在 到期日接近時,反而對賣方有利。

Call Value (Intrinsic value + time value)

Put Value (Intrinsic value + time value)

Put value

Some Terminologies

- In the money
 - Call : S>X, Put : S<X
- At the money
 - Call, put : S=X
- Out of the money
 - Call : S<X, Put : S>X
- In the money options at expiration should be exercised.

影響選擇權價格的因素

	標的物 價格	履約 價格	無風險利率	到期 期限	標的物價格 波動率
Call	+		+	+	+
Put		+		不一定	+

(各因素影響的原因後面會詳細介紹)

波動性愈大的現貨,其選擇權的價格愈高。以向上波動而言,買權獲利無限而賣權損失有限;以向下波動來說,買權損失有限而賣權最大獲利爲履約價格

Theory of Rational Option Pricing

- 以下將介紹幾個關於選擇權價格的重要定理,在 這之前必須先了解兩個重要概念。
- No arbitrage and Dominance Principle
- Put-Call Parity

Notation

- S: Current stock price
- X: Strike price of option
- t: Time to expiration of option (unit: year)
- r: Continuously compound a year risk-free rate of interest
- C: value of American call option to buy one share
- c: value of European call option to buy one share
- P: value of American put option to buy one share
- p: value of European put option to buy one share

No arbitrage concept

• If two securities have the exactly the same payoff or cash flows in every state of each future period, these two securities should have the same price; otherwise there is an arbitrage opportunity.

Dominance Principle

- A risk-less arbitrage opportunity is one that, without any initial investment, generates nonnegative returns under all circumstances.
- The portfolio dominance principle says portfolio A should be more valuable than B if A's payoff is at least as good under all circumstances and better under some.

Put-Call Parity

• Let p(X,t) and c(X,t) be the prices of a European put and a call with same strike prices of X and maturity of t. Then we have

$$c(X,t) = S_0 + p(X,t) - Xe^{-rt}$$
 Or
$$c(X,t) + Xe^{-rt} = S_0 + p(X,t)$$

若已知買權價格,透過賣買權平價理論可以推的賣權價格,不過有幾個重要前提必須成立:歐式選擇權、買賣權的履約價格與到期日均相同

Put-Call Parity (Proof)

$$c + \mathbf{PV}(X) = p + S$$

在連續複利的假定下PV(X)=Xe-rt

- Consider the following two portfolios.
- A: Buy one European call option plus an zero coupon bond amount of cash equal to PV(X) X is par value
- B: Buy one European put option plus one share stock.

	Initial cost	$S_t \ge X$	$S_t < X$
A	c+PV(X)	$(S_t - X) + X = S_t$	X
В	p+S	S_{t}	$S_t + (X - S_t) = X$

未來的報酬均相同,在無套利的空間下,期初的投資成本應該要相同。

Consequences of Put-Call Parity

- There is only one kind of European option because the other can be replicated from it in combination with the underlying stock and risk-less lending or borrowing.
- (1)S = c p + PV(X) says a stock is equivalent to a portfolio containing a long call, a short put, and lending PV(X).
- (2)c p = S PV(X) implies a long call and a short put amount to a long position in stock and borrowing the PV of the strike price.

選擇權價格關係

- 選擇權的價格必須滿足特定的關係
 - 否則存在套利的空間
 - 例如:選擇權的價格>=0
 - Otherwise:
 - Long a option (Gain initial benefits.)
 - Exercise the option if it is beneficial.

Maturity and Option Value

• Theorem1

An American call (put) with a longer time to expiration cannot be worth less than an otherwise identical call (put) with a shorter time to expiration

Proof

- Suppose instead that $C_{t1} > C_{t2}$ where $t_1 < t_2$.
- Buy C_{t2} and sell C_{t1} to generate a net cash flow of C_{t1} C_{t2} at time zero.
- Exercise C_{t2} when C_{t1} is exercised.
- Otherwise, sell C_{t2} at time t1.

• Theorem2

A call (put) option with a higher (lower) strike price cannot be worth more than an otherwise identical call (put) with a lower (higher) strike price.

Proof

• Let the two strike prices be $X_1 < X_2$. Suppose $C_{X_1} < C_{X_2}$ instead.

台股指數選擇權

由此圖可看出履約價格與買(賣)權的關係

月份: 200	月份: 2007/04 當天大盤收盤指數為 7757												
買權					賣權								
履約價	時間	成交價	買價	賣價	漲跌	總量	履約價	時間	成交價	買價	賣價	漲跌	總量
<u>6900</u>	09:55	820	820	835	∇15	11	<u>6900</u>	13:43	9.1	8.6	9.1	∇2.9	1674
<u>7000</u>	11:27	740	690	740	∆5	9	<u>7000</u>	13:44	12	12	12.5	∇5	959
<u>7100</u>	11:30	630	630	645	∇10	22	<u>7100</u>	13:44	18	17	18	∇8.5	2125
<u>7200</u>	13:36	550	540	550	∆5	48	<u>7200</u>	13:44	25	26	27	∇12	5237
<u>7300</u>	13:37	470	445	470	∆13	72	<u>7300</u>	13:44	38.5	38.5	39.5	∇ 11.5	6776
<u>7400</u>	13:40	397	372	397	∆17	105	<u>7400</u>	13:44	55	55	56	∇14	6650
<u>7500</u>	13:44	307	304	307	∆3	158	<u>7500</u>	13:44	78	78	79	∇ 21	7271
<u>7600</u>	13:44	235	231	235	∇ 2	335	<u>7600</u>	13:44	109	109	110	∇ 22	4500
<u>7700</u>	13:44	173	173	174	∇ 3	1816	<u>7700</u>	13:44	148	148	149	∇ 22	4786
<u>7800</u>	13:44	120	120	121	∇9	6088	<u>7800</u>	13:44	194	195	196	∇ 21	1043
<u>7900</u>	13:44	79	80	81	\triangle 8	10637	<u>7900</u>	13:44	258	250	258	∇32	173
8000	13:44	48.5	48.5	49	∇6 . 5	13697	8000	13:28	323	323	332	∇33	175
<u>8200</u>	13:44	15.5	15.5	16.5	∇3	8519	<u>8200</u>	11:58	493	493	505	∇17	10
<u>8400</u>	13:41	4.1	4.1	4.2	∇0.6	1032	<u>8400</u>	_	_	_	_	_	_
<u>8600</u>	12:08	1	1	2	∇0.7	64	<u>8600</u>	08:47	855	825	855	∇15	7
8800	13:29	0.6	0.6	0.9	∆0.1	27	8800	_	_	_	_	_	_

Upper bounds

• Theorem3

A call is never worth more than the stock price, an American put is never worth more than the strike price, and a European put is never worth more than the PV of the strike price.

- If the call value exceeded the stock price, then we earn risk-less profit by longing stock & shorting call.
- If the put value exceeded the strike price, writing a cash-secured put earns arbitrage profits.

Intrinsic value and Call Value

• Theorem4

A European call on a non-dividend-paying stock is never worth less than its intrinsic value, we prove

 $c \ge Max (S-PV(X), 0)$ instead

See later slide

• Theorem5

An American call on a non-dividend-paying stock will never be exercise prior to expiration, and hence, it has the same value as a European call.

See later slide

Proof (Theorem4)

- Consider the following two investment:
- A: Buy the one European call for c Total investment: =c+ PV(X)

 Buy one zero bond at price PV(X)
- B: Buy the common stock for S Total investment: S
- Suppose at the end of t years, the common stock price is St.

	A	В	
$St \leq X$	X	S_{t}	A dominate B
St > X	$(S_t-X)+X=S_t$	S_{t}	

By dominance principle, A will dominate B, c+ PV(X)

 \geq S It implies that C \geq Max (S-PV(X), 0)

Call (different maturity)

Proof(Theorem5)

• From Theorem 4, $c \ge Max$ (S-PV(X), 0), because the owner of an American call has all the exercise opportunities, we must have $C \ge c$.

$$\rightarrow$$
 C \geq Max (S-PV(X), 0)

- Given r > 0, it follows that S PV(X) > S X.
- If it were optimal to exercise early, C=S-X. We deduce it can never be optimal to exercise early.

Special Example : Dividend Case (Early Exercise of American Calls)

- Surprisingly, an American call will only be exercised at expiration or just before an ex-dividend date.
- Early exercise may become optimal for American calls on a dividend-paying stock.
 - —Stock price declines as the stock goes ex-dividend.
- This point will be discussed further in next chapter.

Intrinsic value and Put Value

• Theorem6

For European puts, $p \ge Max (PV(X) - S, 0)$.

- A European put on a non-dividend-paying stock may be worth less than its intrinsic value.
- Proof

$$\therefore c + PV(X) = p + S$$

$$\Rightarrow p = PV(X) - S + c \ge PV(X) - S$$
as the put goes deeper in the money, $c \approx 0$

$$\Rightarrow p \approx (X - S) + (PV(X) - X) < X - S$$

Early Exercise of American Puts

• Theorem7

It can be optimal to exercise an American put option on a non-dividend paying stock early. Besides, $P \ge Max(X - S, 0)$.

As the put goes deeper in the money, $c \approx 0$

$$p = PV(X) - S + c \approx (X - S) + (PV(X) - X) < X - S$$

The value to exercise the option immediately.

$$P = \max(\text{continuation value}, X - S, 0) \ge \max(X - S, 0)$$

Summary (Option Bounds)

(If no dividends)	Upper bounds	lower bounds
European call	S	$\max(S-PV(X),0)$
American call	S	$\max(S-PV(X),0)$
European put	PV(X)	max(PV(X) - S,0)
American put	X	max(X-S,0)

Convexity of Option Prices

• Theorem8

If C and P is a rationally determined American call and put price, then C and P is convex function of its exercise price (X)

$$C_{X2} \le \omega C_{X1} + (1 - \omega) C_{X3}$$

 $P_{X2} \le \omega P_{X1} + (1 - \omega) P_{X3}$

three otherwise identical calls with strike prices $X_1 < X_2 < X_3$

where
$$\omega = (X_3 - X_2)/(X_3 - X_1)$$
.

Remarks: The above arguments can also be applied to European options.

Robert C. Merton (1973)

Proof (1)

- Assume $C_{X2} > \omega C_{X1} + (1 \omega) C_{X3}$
- Write C_{X2} , buy ωC_{X1} , and buy $(1 \omega)C_{X3}$ to generate a positive cash flow now.
- If the short call is not exercised before expiration, hold the calls until expiration.

	$S \leq X_1$	$X_1 < S \le X_2$	$X_2 < S < X_3$	$X_3 \leq S$
$-c_{X_2}$	0	0	$X_2 - S$	$X_2 - S$
C_{X_1}	0	$\omega(S-X_1)$	$\omega(S-X_1)$	$\omega(S-X_1)$
C_{X_3}	0	0	0	$(1-\omega)(S-X_3)$
Net	0	$\omega(S-X_1)$	$\omega(S - X_1) + (X_2 - S)$	0

Proof (2)

- Suppose the short call is exercised early when the stock price is *S*.
- If $\omega C_{X1} + (1 \omega) C_{X3} > S X_2$, sell the long calls to generate positive net cash flow.

$$\omega C_{X1} + (1 - \omega) C_{X3} - (S - X_2) > 0.$$

- Otherwise, exercise the long calls and deliver the stock.
- The net cash flow is $-\omega X_1 (1 \omega) X_3 + X_2 = 0$.

there is an arbitrage profit!

Class Exercise

利用下圖試著驗算theorem8 (eg. K=6900,7000,7100)

月份: 2007/04										
買權										
履約價	時間	成交價	買價	賣價	漲跌	總量				
<u>6900</u>		820	820	825	∇ 15	11				
<u>7000</u>		740	735	740	∆5	9				
<u>7100</u>		630	630	635	∇ 10	22				
<u>7200</u>		550	540	550	△5	48				
<u>7300</u>		470	445	470	△13	72				
<u>7400</u>		397	372	397	△17	105				
<u>7500</u>		307	304	307	3	158				
<u>7600</u>		235	231	235	∇ 2	335				
<u>7700</u>		173	173	174	√3	1816				
<u>7800</u>		120	120	121	∇ 9	6088				
<u>7900</u>		79	80	81	∇8	10637				
<u>8000</u>		48.5	48.5	49	∇6.5	13697				
<u>8200</u>		15.5	15.5	16.5	√3	8519				
8400		4.1	4.1	4. 2	∇0.6	1032				
<u>8600</u>		1	1	2	∇0.7	64				
8800		0.6	0.6	0.9	△0.1	27				

假設上列爲同一時間的報價

• Theory9

If k is a positive constant. Let C and C_Q be two call options with the same underlying asset and maturity, If Q=kS; $X_Q=kX$, then we have $C_Q=k$ $\times C$

• Theory10

Consider a portfolio of non-dividend-paying assets with weights ωi . Let ci denote the price of a European call on asset i with strike price Xi. Then the call on the portfolio with a strike price $X \equiv \sum_{i} w_i X_i$ has a value at most $\sum_{i} w_i c_i$. All options expire on the same date.

Prove Theorem 10.

Consider a portfolio of non-dividend-paying assets with weights ω i. Let ci denote the price of a European call on asset i with strike price Xi. Then the call on the portfolio with a strike price $X = \sum_{i} w_i X_i$ has a value at most . $\sum_{i} w_i c_i$.All options expire on the same date.

#Homework 9-2 The relationship between the future and the options prices

- Denote the prices for call and put options with strike price X and maturity T as Vc and Vp.
- Denote the price for the future matured at T as Vf
- Consider the following two strategies:
- 1: Long a call and short a put:
 - Initial payoff: Vp-Vc At maturity: ST-X
- 2: Short a future: At maturity: Vf-ST
- Derive the relationship between Vp, Vc and Vf to avoid arbitrage

#Homework 10

 Write a program to check the quotes (simplified as follows) in the stocks, futures, and options markets for arbitrage opportunities. (r=1.844%,

maturity=1 month

TAIEX	7757	7758	Future	7756	7760

月份: 2007/04													
買權						膏 權							
履約價	時間	成交價	買價	賣價	漲跌	總量	履約價	時間	成交價	買價	賣價	漲跌	總量
<u>6900</u>	09:55	820	820	835	∇15	11	<u>6900</u>	13:43	9.1	8.6	9.1	∇2.9	1674
<u>7000</u>	11:27	740	690	740	∆5	9	<u>7000</u>	13:44	12	12	12.5	∇5	959
<u>7100</u>	11:30	630	630	645	▽10	22	<u>7100</u>	13:44	18	17	18	∇8.5	2125
<u>7200</u>	13 : 36	550	540	550	∆5	48	<u>7200</u>	13:44	25	26	27	∇ 12	5237
<u>7300</u>	13:37	470	445	470	△13	72	<u>7300</u>	13:44	38.5	38.5	39.5	∇11.5	6776
<u>7400</u>	13:40	397	372	397	△17	105	<u>7400</u>	13:44	55	55	56	∇14	6650
<u>7500</u>	13:44	307	304	307	∆3	158	<u>7500</u>	13:44	78	78	79	∇ 21	7271
<u>7600</u>	13:44	235	231	235	∇ 2	335	<u>7600</u>	13:44	109	109	110	∇ 22	4500
<u>7700</u>	13:44	173	173	174	∇ 3	1816	<u>7700</u>	13:44	148	148	149	∇ 22	4786
<u>7800</u>	13:44	120	120	121	∇ 9	6088	<u>7800</u>	13:44	194	195	196	∇ 21	1043
<u>7900</u>	13:44	79	80	81	∇8	10637	<u>7900</u>	13:44	258	250	258	∇32	173
8000	13:44	48. 5	48. 5	49	∇ 6.5	13697	8000	13:28	323	323	332	∇33	175
<u>8200</u>	13:44	15.5	15 . 5	16.5	√3	8519	<u>8200</u>	11:58	493	493	505	∇17	10
8400	13:41	4.1	4.1	4.2	∇0.6	1032	<u>8400</u>	_	_	_	_	_	_
<u>8600</u>	12:08	1	1	2	∇0.7	64	<u>8600</u>	08:47	855	825	855	∇15	7
8800	13:29	0.6	0.6	0.9	△0.1	27	8800	_	_	_	_	_	_

#Homework 10

Remark:

- Assume that we can long/short TAIEX
- Each point for TAIEX, futures, and options worth 1 TWD.
- All options are European ones
- The transaction costs for every trading =1 except saving/borrowing
 - Ex: Long a call, short a put, sell a TAIEX, save \$
 - Transaction cost =3
 - Transaction costs must be considered when performing arbitrage
- Program inputs: The bid and ask prices for TAIEX, TAIEX futures, calls, puts.
- Program outputs: Arbitrage strategies and profits.

選擇權的組合

- 選擇權和標的物可用不同形式組合(策略),組合出不同的損益
 - Hedge: Option +Underlying asset
 - Spread:同一類型的選擇權(只用call or put)
 - Combination:不同類型的選擇權。

Covered Position: Hedge

- A hedge combines an option with its underlying stock in such a way that one protects the other against loss.
- Protective put: A long position in stock with a long put. (Example:買進股票同時買進該股票的賣權,在股價下跌時,賣權的報酬可以彌補股票的損失)
- Covered call: A long position in stock with a short call. (Example:買進股票同時賣出該股票的買權,在股價上漲時,買權之虧損可由股票的收益彌補)

Protective Put

Covered Call

- 阿貴持有台指ETF(假設台股指數為5200點),並同時買一 張履約價5200賣權,權利金210點(契約乘數為一點50元), 透過此策略可保護指數低於履約價所造成的損失。
- 期初支付210點權利金:10500
- 最大可能損失:210點
- 損益兩平點:5410(5200+210)

到期指數	ETF損益	賣權損益	權利金	淨損益(點)
5600	400	0	-210	190
5400	200	0	-210	-10
5200	0	0	-210	-210

Covered Position: Spread

- A spread consists of options of the same type and on the same underlying asset but with different strike prices or expiration dates.
- We use X_L , X_M , and X_H to denote the strike prices with $X_L < X_M$ $< X_H$.
- Example : A bull call spread consists of \boldsymbol{a} long X_L call and \boldsymbol{a} short X_H call with the same expiration date.
 - The initial investment is $C_L C_H$.
 - The maximum profit is $(X_H X_L) (C_L C_H)$.
 - The maximum loss is $C_L C_H$.

Bull Spread

In Class Exercise (Bear Spread)

- Construct a bear spread with two put options.
 - -Long a put (strike price=X_H)
 - -short a put (strike price=X_L)
- Draw the payoff chart for the bear spread
- Calculate the maximum profits/loss.

Covered Position: Combination

- A combination consists of options of different types on the same underlying asset, and they are either all bought or all written.
- Straddle: A long call and a long put with the same strike price and expiration date.
- Strangle: Identical to a straddle except that the call's strike price is higher than the put's.

Straddle

同時買進一口買權與賣權,履約價與到期日均相同。

Strangle

Example (Straddle)

- Say the Federal Reserve has indicated that it is strongly considering raising the Fed Funds rate to control inflation. A shape increase in interest rates may send stocks sharply lower, while a decrease in interest rate may boost XYZ to an all-time high.
- An investor expects that either of these outcomes could move the market up or down by 5% or more over a timeframe of approximately one month.

Example (Straddle)

- Index XYZ is currently at 100. The investor buys a one-month XYZ 100 call for \$1.70, and a one-month XYZ 100 put for \$1.50.
- The cost for the straddle is: \$1.70 (call) + \$1.50 (put) = \$3.20.
- The total premium paid is therefore: \$3.20 x 100 multiplier = \$320.

Example (Straddle)

- By purchasing the straddle the investor is saying that by expiration he anticipates index XYZ to have either risen above the upside break-even point or below the downside break-even point:
- Upside Break-Even Point: 100 + \$3.20 = 103.20Downside Break-Even Point: 100 - \$3.20 = 96.80

If you are interested in any strategies, you may access to the website http://www.cboe.com/Strategies