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Term Structure of Interest Rates

e The interest rates vary with maturity.

BEREE REHE WRE #EEEW TEO SRHED

ceE -2 00 4 Ges pansE O 3 B-25 H

AL IE hittpsipostzere prsh gov e Traded03_ajsp
NygehER(+8)
HAr g H - 93F5H38

OB ( Fde— L7504 )

WA R A F F AR ( Fde —tTFLAH)

P

( A EMmEFRE—R )

£ 5 & ® (Bl %)

1A~4&i%3 A8 L. 0%

3 H~#ih 0 HH L 0%

b H~+imY A L. 0%

9 H ~ £ % — 5 L. 0%

o~ k%= L 0%

e L T o L 0%

= F# L 0%

B O oH %

EREN Y




Toarm Eriirntiiranf | ntoar oot D atoc
1 Ol OLI ULLUIlI © Ul 11 |LC| COlL T \CQULCO

e Concerned with how interest rates change with maturity.

e The set of yields to maturity for bonds forms the term
structure.

— The bonds must be of equal quality.
Credit spread.

— They differ solely 1n their terms to maturity.
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e A normal yield curve 1s upward sloping.

Four Shapes

e An inverted yield curve 1s downward sloping.

e A flat yield curve 1s flat.

e A humped yield curve 1s upward sloping at first
but then turns downward sloping.

Normal curve

—
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forward rate curve
spot rate curve

yield curve

Inverted curve
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yield curve
spot rate curve
forward rate curve
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Spot Rate (Zerorate) 2

e It is defined as yield of zero coupon bond

e A spot rate curve (zero-coupon yield curve) 1s a plot
of spot rates against maturity.

e Bond price can be expressed : C+F
C
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The procedure is called bootstrapping.

(1+S(n-1))""



float ZeroRate[5]; o E[, -

float Yield[5]: [

float & fiir S
scanf("%f",&C); )/'

for(int i=0;i<5;i=i+1

{

printf("fi; * Yield rate %d:",i+1);
scanf("%f",&Yield[i]);

) _ N
ZeroRate[0]=Yield[o]; 7~ *¥]Zero rate=Yield

for(int ]=0;j<=1;)=+1) .. e _
( SRR P+l
float Discount=1;
for(int k=0;k<=j;k++)
{

Discount=Discount/(1+Yield[i]);

}
BondValue=BondValue+Discount*C;

if(j==i)

{

BondValue=BondValue+Discount*100

}

for(i=0;i<=4;i++)

printf("27%di¥zero rate=%f\n",i,ZeroRate[i]);
1

JIH]zero rate

FL 57P4Y§h ZeroCurve project



CompareYield Curve and Spot rate curve

e Spot rate curve 1s zero coupon yield curve or zero
curve.

e Spot rate curve is consisted of zero rate.
zero coupon bond
e Yield curve 1s consisted of bond yield.

coupon bearing bond ~ zero coupon bond



Example

e Suppose the 1-year T-bill has yield of 8%. Because
this security 1s a zero-coupon bond, the 1-year spot
rate 1s 8%. When the 2-year 10% T-note 1s trading at
90, the 2-year spot rate satisfies

10 110
90 = + :
1.08 (1+S5(2))

= §(2)=0.1672 or 16.72%



Extracting Spot Ratesfrom Yield Curve | o2
(continuous compounding)

e Suppose three bonds paid semiannually with yield y
and 1nterest C.

e The prices of bonds :
P =(C+F)xe™
P2 = Cxe 72 _|_(C+F)Xe—y2><(t+0.5)

})3 —(Cxe 7 +C><e—y3><(t+0.5) +(C+F)><e—y3><(t+l)

y1eld Yi Y Y3

|
|
Now t t+0.5 t+1




Extracting Spot Ratesfrom Yield Curve | e
(continuous compounding)

e [et three kinds of zero rate 1s §(1),5(2),5(3).
e Given Y;=5(1).
e We can obtain the spot rate from process as below.

B=(C+F)e”" =(C+F)e "

f)z — Ce_y2><l‘ +(C+F)e—yzx(t+0.5)
— Ce—S(l)Xt 4+ (C+F)e—5(2)x(t+0.5) _)We can get S(2)

})3 _ Ce—y3>(t +Ce—y3><(t+0.5) +(C+F)e_y3x(t+1)
_ Ce—S(l)xt + Ce—S(2)><(t+0.5) _l_(C_l_F)e—S(3)><(t+1) —>We can get 8(3)



lass Exer clse °

1 WS

<~

e Suppose the 1-year T-bill has yield of 8%. Because
this security 1s a zero-coupon bond, the 1-year spot
rate 1s 8%. When the 2-year 10% T-note 1s trading at
90, please use continuous compounding to extract the
2-year spot rate.




Spot Rate Curveand Yield Curve |2

e If the yield curve 1s flat, the spot rate curve coincides
with the yield curve.

e y,: yield to maturity for the k-period coupon bond.

o S(k)=>y,,1fy, <y, <--- (yield curve is normal).

e S(k)<y,,1fy, >y, >+ (yield curve is inverted).

o S(k)=>y,,1£S(1)<S2)<- - (spotrate curve 1s normal).
o S(k)<y,, 1t S(1)>S2)> - - (spotrate curve 1s inverted).



Figure 5.6: Shapes of Curves

forward rate curve

spot rate curve

yield curve

Forward rate curves will be discussed later.

yield curve
spot rate curve
forward rate curve
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e The spot rate curve often has the same shape as the yield
curve.

— If the spot rate curve 1s mverted, then the yield curve is
inverted, and vice versa.

—However, a normal yield curve does not guarantee a
normal spot rate curve.

e When the final principal payment 1s relatively
insignificant, the spot rate curve and the yield curve do
share the same shape.



Shapes s

e Consider a 3-period coupon bond that pays $1 per
period and repays the principal of $100 at maturity.

e Assume spot rates S(1) =0.1, S(2) = 0.9, and S(3) = 0.901.

e Yields to maturity are y, = 0.1, y, = 0.8873, and y, = 0.8851,
not strictly increasing!
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Yield Spread 2

e Yield spread 1s the difference between the IRR of
the risky bond and that of a risk-free bond with
comparable same maturity.

})risk—free — ZC(I_'_y)_l +F><(1+y)_n
i=1
Pisky :Zcx(l—i-y—i—y')_i +FxX(A+y+ypy")™
i=1

v

Where y' 1s the yield spread.
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e The static spread 1s the amount S by which the spot rate
curve has to shift in parallel in order to price the risky
bond correctly,

o C
P, = :
o ;(1+S+S(t))t

e Unlike the V1eld anead the static sprea ad 1 Incorporates
information from the zero rate structure.

e The amount of static spread can be considered as the
constant credit spread to the Treasury spot rate curve
that reflects the risk premium of a corporate bond.
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Forward Rate

e The forward rate reflect information regarding future
interest rates implied by the market.

e [f we invest $1 from now to jth period.

(1+S()))’ jij 1

\\
(1+5())

1+S()) =A+S@) A+ fG )" = £ )) =[

Time () 1 f(1,)) j




Example: Spot and Forward Rate

In this example, if $1 is invest in 5-period zero-
coupon bond (maturity strategy), it will grow to be

$1x(1+0.04)° =$1.22

An alternative strategy is to invest $1 in one-period
zero-coupon bonds at 2% and then reinvest at the
one-period forward rates (rollover strategy). The
result 1s exactly the same as expected.

($1x1.02)x1.03%1.04x1.05x1.06 =$1.22



Forward Rates o

e By definition, f(0, j) = S(j).
e /(i, j) is called the (implied) forward rates.

— More precisely, the (j-i)-period forward rate i
periods from now.

Time Line
| f(0,1) f(1,2) | f(2,3)

Time O

| f(3,4)

(1)

S(2)

S(3)
g S(4)




Forward Rate and Future Zero Rate b

e We did not assume any a priori relation between f(i, j)
and future spot rate S(, j).

— This 1s the subject of the term structure theories.
e Term structure theories have different explanation.
— Unbiased expectation theory.

J(j)=E(S(i))
—Liquidity preference theory.

J(i,j)>E(5(i,)))



Unbiased Expectations Theory coo

e Forward rate equals the average future spot rate,
fa, b)=E[ S(a, D) ]

e Implies that a normal spot rate curve is due to the fact
that the market expects the future spot rate to rise.

— f(j,j+1)>S8(j+ 1)ifand only if S(j + 1) > S(j).
e Therefore, E[ S(j,7+1)]>SG+1)>--->5(1)1f
and only if S(G + 1) > ---> §(1).

e Conversely, the spot rate 1s expected to fall if and
only 1f the spot rate curve 1s inverted.



Liquidity Preference Theory

e The liquidity preference holds that investors demand
a risk premium for holding long-term bonds.

e This implies that f(a,b) > E( S(a,b) ).
e Even if people expect the interest rate to decline and

rise equally, the theory asserts that the curve 1s
upward sloping more often.



Spot and Forward Rate under .
Continuous Compounding

e The formula for the forward rate:

e—jXS(J') — e—iXS(i)e—(j—i)Xf(i,j)

J8(j)—i5()

= —j5())==iS() - - f @)= f(Q,))= I

e The spot rate 1s an arithmetic average of forward rates.

oo S0 — oS (12) 5= (23) =S L)

= —jS()==-SO-f1.2)- f(23)..— f(G-LJ)
N AL AT, f;2,3)...+ f(i-1))




Spot and Forward Rate under .
Continuous Compounding

e The one-period forward rate:
S j+)=0G+DSG+D=75()  (5.10)

e Under continuous time instead of discrete time, the
instantaneous forward rate at T time equals

f(T,T+AT)=S(T+AT)+(S(T+AT)‘S(T))AT_T
= 1(T) EAl;mOf(TpT+AT) :S(T)+T§—“; (5.11)

Note that f(T) > S(T) if and only if (9S/OT) >0



Example: Spot and Forward Rate

e Compute the one-period forward rates from this spot
rate curve:

S(1):2.0%, S(2):2.5%, S(3):3.0%, S(4):3.5%, S(5):4.0%.

L2+ /(A2) _ 10
o Answer: "5 =232 /(12)=3%

243+ 1(2,3)

' 3

2+3+4+ f(3,4)

' 4

C2+3+4+5+f(45)
5

=3= £(2,3)=4%

=3.5= £(3,4)=5%

= 4= [(4,5)=6%
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1+Z,) =(1+Z,) 1+ f(a,b))"

(1+2,)
1+Z))"

-1

f(a,b) = bi/



i * Z WG R A F

Ffﬁ”\r'.}%ﬁ‘? 0 1 2 3 4 5
Sl

0 £(0,0) £(0,1) £(0,2) £(0,3) £(0,4) £(0,5)
1 X f(1,1) f(1,2) f(1,3) f(1,4) f(1,5)
2 X X f(2.,2) f(2,3) f(2.4) f(2,5)
3 X X X f(3.3) f(3.,4) f(3,5)
4 X X X X f(4,4) f(4,5)
5 X X X X X f(5,9)




for(int i=0;1<5;i=1+1)

{

printf("fiar * 5Y %d BRI S RLUF( [ i+ 1);
scanf("%{f',&ZeroRate[i]);

;

for(i=0;1<5;1=1+1)

{
Forward[0][i+1]=ZeroRate[i];
)

for(i=0;1<=5;1=1+1)

{

Forward[i][1]=0;

}

for(int a=1;a<5;a=a+1)/F} 5w F|| =<
{

for(int b=a+1;b<=5;b=b+1)

{

Forward[a][b]=pow(pow(1+Forward[0][b],b)/pow(1+Fo

rward[0][a],a),1.0/(b-a))-1;
h
}

a0 FEAE | o8

ForwardRate[0,i]=ZeroRate[i]

ForwardRateli,i]=0

. (1+Z)
f(a,b)= 1/(1 v Z Y
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Spot Rate and Forward Rate s

e When the spot rate curve 1s normal, the forward rate
dominates the spot rates,

JG. 7)) > 8G) > - > S83).

e When the spot rate curve is inverted, the forward rate
1s dominated by the spot rates,

S, j) < 8G) < -+ < S80).
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e Forward rates may not be realizes in the future (f(1,))
#S(1,])), but we can lock 1n any forward rate 1(1,j).

e Now we can make following strategies.
—Buy 1 unit j-year zero-coupon bond.

(1+ ()
—Sell (1755 units i-year zero-coupon bonds.

e No net initial investment, because

a+s@y' 1
(1+S()))’ (1+S(i))i 1+S()))’




L ocking in the Forward Rates s

e At time j there will be a cash inflow of $1. i
(1+5(1))
e At time i there will be a cash outflow of $ (1, gy

e The cash flow stream implies the rate f(i,j) between

times 7 and /. (1+S(i)>i.x(1+f(i,j))j =l
¢ (18D (1+5())))

(1+S()/ |
— J
o T |

1(ij)
$1
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2
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A+z)" | (1+Z.)
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(1+Z)
5 X X X X X
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#include <math.h> = ‘fﬁ__ﬁf ﬁi }\ };’,% eoe
#include <stdio.h> p<

void main()

{
double unit_short[6][6];
double ZeroRate[6];
int 1,j;
Y FEFE
for(i=1;1<=6;1++)

{
printf("SifE ¢ 2T %dEHRYSELFER: "),
scanf("%lIf",&ZeroRate[i-1]);

}

/I BT %;f(i,j)%ﬁ? R I'Ei ZT Y Eﬁ' A o
for( 1=0;1<6;1++)
for(j=i;j<6;j++)
unit short[1][j] = pow(1+ZeroRate[1],1)/pow(1+ZeroRate[j],j);
/il
for( 1=0;1<5;1++)
for(j=i+1;j<6;j++)
printf(“Z£1E (%d,%d) -- B %olf H i ST%dWIFRLE ST B — HIGE 5T%d IVl
[f155 \n",i+1,j+1,unit_short[i][j],i+1,j+1);
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e Exercise

The fact that forward rate can be locked in today
means that future spot rates must equal today’s
forward rates, or S(a,b)=f(a,b), in a certain economy.

Why? How about an uncertain economy? (Hint: ¥ #
- BHER G EJRA REP)



