Financial Engineering and Computations Basic Financial Mathematics

Dai, Tian-Shyr

Outline

- Time Value of Money
- Annuities
- Amortization
- Yields
- Bonds

Time Value of Money

$\xrightarrow[\text { Time } 0]{ }$	Period 1	Time 1	Time 2	Time 3	Time 4

$$
\begin{aligned}
& P V=F V(1+r)^{-n} \\
& F V=P V(1+r)^{n}
\end{aligned}
$$

- FV : future value
- PV: present value
- r: interest rate
- n: period terms

Quotes on Interest Rates

r is assumed to be constant in this lecture.

Time Value of Money

- Periodic compounding
(If interest is compounded m times per annum)

$$
\begin{equation*}
F V=P V\left(1+\frac{r}{m}\right)^{n m} \tag{3.1}
\end{equation*}
$$

- Continuous compounding

$$
\begin{aligned}
& F V=P V e^{r n} \\
& \lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{t}=e \rightarrow \lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m n}=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m / r}\right)^{\frac{m}{r}} r^{m}=e^{r n}
\end{aligned}
$$

- Simple compounding

Common Compounding Methods

- Annual compounding: $m=1$.
- Semiannual compounding: $m=2$.
- Quarterly compounding: $m=4$.
- Monthly compounding: $m=12$.
- Weekly compounding: $m=52$.
- Daily compounding: $m=365$

Two widely used yields

- Bond equivalent yield (BEY)
--Annualize yield with semiannual compounding
- Mortgage equivalent yield (MEY)
--Annualize yield with monthly compounding

Equivalent Rate per Annum

- Annual interest rate is 10% compounded twice per annum.
- Each dollar will grow to be 1.1025 one year from now.

$$
(1+(0.1 / 2))^{2}=1.1025
$$

- The rate is equivalent to an interest rate of 10.25% compounded once per annum.

Conversion between compounding Methods

- Suppose \boldsymbol{r}_{I} is the annual rate with continuous compounding.
- Suppose r_{2} is the equivalent compounded m times per annum.
- Then $\left(1+\frac{r_{2}}{m}\right)^{m}=e^{r_{1}}$
- Therefore $r_{1}=m \ln \left(1+\frac{r_{2}}{m}\right) \Rightarrow r_{2}=m\left(e^{\frac{r_{1}}{m}}-1\right)$

Are They Really "Equivalent"?

- Recall \boldsymbol{r}_{1} and \boldsymbol{r}_{2} on the previous example.
- They are based on different cash flow.
- In what sense are they equivalent?

Annuities

- Ordinary annuity
- Annuity due
- Perpetual annuity

Ordinary annuity

- An annuity pays out the same \boldsymbol{C} dollars at the end of each year for n years.
- With a rate of \boldsymbol{r}, the FV at the end of \boldsymbol{n} th year is

$$
\begin{equation*}
\sum_{i=0}^{n-1} C(1+r)^{i}=C \frac{(1+r)^{n}-1}{r} \tag{3.4}
\end{equation*}
$$

General annuity

- If m payments of \boldsymbol{C} dollars each are received per year (the general annuity), then Eq.(3.4) becomes

$$
C \frac{\left(1+\frac{r}{m}\right)^{n m}-1}{\frac{r}{m}}
$$

- The $\boldsymbol{P V}$ of a general annuity is

$$
\begin{equation*}
\sum_{i=1}^{n m} C\left(1+\frac{r}{m}\right)^{-i}=C \frac{1-\left(1+\frac{r}{m}\right)^{-n m}}{\frac{r}{m}} \tag{3.6}
\end{equation*}
$$

Annuity due

- For the annuity due, cash flow are received at the beginning of each year. The FV is

$$
\begin{equation*}
\sum_{i=1}^{n} C(1+r)^{i}=C \frac{(1+r)^{n}-1}{r}(1+r) \tag{3.5}
\end{equation*}
$$

- If m payments of C dollars each are received per year (the general annuity), then Eq.(3.5) becomes

$$
\begin{aligned}
& C \frac{\left(1+\frac{r}{m}\right)^{n m}-1}{\frac{r}{m}}\left(1+\frac{r}{m}\right)
\end{aligned}
$$

Formula

- Ordinary annuity
- PV: $C \frac{1-(1+r)^{-n}}{r} \longrightarrow C \frac{1-\left(1+\frac{r}{m}-n m\right.}{\frac{r}{m}}$
- FV: ${ }^{C} \frac{(1+r)^{n}-1}{r} \longrightarrow C \frac{\left(1+\frac{r}{m}\right)^{n m}-1}{\frac{r}{m}}$
- Annuity due
- PV: $C \frac{1-(1+r)^{-n}}{r}(1+r) \longrightarrow C \frac{1-\left(1+\frac{r}{m}\right)^{-n m}}{\frac{r}{m}}\left(1+\frac{r}{m}\right)$
- FV: $C \frac{(1+r)^{n}-1}{r}(1+r) \longrightarrow C \frac{\left(1+\frac{r}{m}\right)^{n m}-1}{\frac{r}{m}}\left(1+\frac{r}{m}\right)$

Perpetual annuity

- An annuity that lasts forever is called a perpetual annuity. We can drive its $P V$ from Eq.(3.6) by letting n go to infinity:

$$
P V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n m} C\left(1+\frac{r}{m}\right)^{-i}=\lim _{n \rightarrow \infty} C \frac{1-\left(1+\frac{r}{m}\right)^{-n m}}{\frac{r}{m}}=\frac{m C}{r}
$$

- This formula is useful for valuing perpetual fixcoupon debts.

Example: The Golden Model

- Determine the intrinsic value of a stock.
- Let the dividend grows at a constant rate

■Stock price= Present value of the infinite series of future dividends.

$$
P V(\text { All future dividends })=\frac{D}{r-g} \quad ; r>g
$$

Where
D: Expected dividend per share one year from now.
r : Required rate of return for equity investor.
g : Growth rate in dividends (in perpetuity).

In Class Exercise:

- Show that

$$
P V(\text { All future dividends })=\frac{D}{r-g} \quad ; r>g
$$

Computed by Excel

－Present value
－PV（rate，nper，pmt，fv，type）

- Rate：各期的利率。
- Nper：年金的總付款期數。
- Pmt ：各期所應給付（或所能取得）的固定金額。
- Fv ：最後一次付款完成後，所能獲得的現金稌額。
- Type $0=>$ 期末支付 $1=>$ 期初支付

Computed by Excel

－Future value
－FV（rate，nper，pmt，pv，type）

- Rate：各期的利率。
- Nper：年金的總付款期數。
- Pmt ：指分期付款。
- Pv ：指現值或一系列未來付款的目前總額。
- Type $0=>$ 期末支付 $1=>$ 期初支付

Example 3.2.1

-2 7 - $=$						
A9		\checkmark	*			
		B	c	D	E	F
1						
2	PV	\$418	=PV(B3,B4,B5,B6, B7)			
3	Rate	0.0625				
4	Nper	5				
5	Pmt	-100				
6	Fv	0				
7	Type	0				
9		The PV	fan	,	,	
10		years	an	al		

In Class Exercise

- In above example, please use Excel to compute the FV of an annuity of $\$ 100$ per annum for 5 years at an annual interest rate of 6.25%. Verify this result equal to the future value of the PV of \$418.39.

Amortization

■ It is a method of repaying a loan through regular payment of interest and principal.

- The size of the loan (the original balance) is reduced by the principal part of each payment.
- The interest part of each payment pays the interest incurred on the remaining principal balance.

■ As the principal gets paid down over the term of the loan, the interest part of the payment diminishes.

See next example!

Example: Home mortgages

- Consider a 15 -year, $\$ 250,000$ loan at 8.0% interest rate, repay the interest 12 per month.
- Because $P V=250,000, n=15, m=12$, and $r=0.08$ we can get a monthly payment C is $\$ 2,389.13$.

$$
\begin{aligned}
\$ 250000 & =\frac{C}{\left(1+\frac{0.08}{12}\right)}+\frac{C}{\left(1+\frac{0.08}{12}\right)^{2}}+\ldots . .+\frac{C}{\left(1+\frac{0.08}{12}\right)^{12 \times 15}} \\
& =\sum_{i=1}^{180} C\left(1+\frac{0.08}{12}\right)^{-i}=C\left(\frac{1-\left(1+\frac{0.08}{12}\right)^{-180}}{0.08 / 12}\right) \Rightarrow C=2389.13
\end{aligned}
$$

Calculating the Remaining Principal

- Right after the k th payment, the remaining principal is the PV of the future $n m-k$ cash flows,

$$
C\left(1+\frac{r}{m}\right)^{-1}+C\left(1+\frac{r}{m}\right)^{-2}+\ldots . .+C\left(1+\frac{r}{m}\right)^{-(n m-k)}=C \frac{1-\left(1+\frac{r}{m}\right)^{-n m+k}}{\frac{r}{m}}
$$

Yields

- The term yield denotes the return of investment.
- It has many variants.
(1) Nominal yield (coupon rate of the bond)
(2) Current yield
(3) Discount yield
(4) CD-equivalent yield

Discount Yield

- U.S Treasury bills is said to be issue on a discount basis and is called a discount security.
- When the discount yield is calculated for short-term securities, a year is assumed to have $\mathbf{3 6 0}$ days.
- The discount yield (discount rate) is defined as

CD-equivalent yield

- It also called the money-market-equivalent yield.
- It is a simple annualized interest rate defined as

$$
\begin{equation*}
\frac{\text { par value }- \text { purchase price }}{\text { purchase price }} \times \frac{365 \text { days }}{\text { number of days to maturity }} \tag{3.10}
\end{equation*}
$$

Example 3.4.1: Discount yield

- If an investor buys a U.S. \$ 10,000, 6-month T-bill for U.S. $\$ 9521.45$ with 182 days remaining to maturity.

$$
\text { Discountyield }=\frac{10000-9521.45}{10000} \times \frac{360}{182}=0.0947
$$

Internal Rate of Return (IRR)

- It is the interest rate which equates an investment's PV with its price X.

$$
X=C_{1} \times(1+I R R)^{-1}+C_{2} \times(1+I R R)^{-2}+\ldots+C_{n} \times(1+I R R)^{-n}
$$

- IRR assumes all cash flows are reinvested at the same rate as the internal rate of return.
- It doesn't consider the reinvestment risk.

Evaluating real investment with IRR

- Multiple IRR arise when there is more than one sign reversal in the cash flow pattern, and it is also possible to have no IRR.
- Evaluating real investment, IRR rule breaks down when there are multiple IRR or no IRR.
- Additional problems exist when the term structure of interest rates is not flat.
\rightarrow there is ambiguity about what the appropriate hurdle rate (cost of capital) should be.

Class Exercise

- Assume that a project has cash flow as follow respectively, and initial cost is $\$ 1000$ at date 0 , please calculate the IRR. If cost of capital is 10%, do you think it is a good project?

CF at date					
0	1	2	3	4	IRR
-1000	800	1000	1300	-2200	$?$

Class Exercise (Excel)

12	Time	CF	
13	0	-1000	
14	1	800	
15	2	1000	
16	3	1300	
17	4	-2200.	=IRR(B13:B17,0.1)
18		7\%	
19		37\%)	=IRR(B13:B17,0.2)
20	Multiple IRR		
21			

Holding Period Return

- The FV of investment in n period is $F V=P(1+y)^{n}$
- Let the reinvestment rates r_{e}, the FV of per cash income is

$$
C \times\left(1+r_{e}\right)^{n-1}+C \times\left(1+r_{e}\right)^{n-2}+\ldots+C \times\left(1+r_{e}\right)+C \longrightarrow \text { Value is given }
$$

- We define $\operatorname{HPR}(y)$ is

$$
P(1+y)^{n}=C \times\left(1+r_{e}\right)^{n-1}+C \times\left(1+r_{e}\right)^{n-2}+\ldots+C \times\left(1+r_{e}\right)+C
$$

Methodology for the $\operatorname{HPR}(y)$

- Calculate the FV and then find the yield that equates it with the P
- Suppose the reinvestment rates has been determined to be \boldsymbol{r}_{e}.

Step	Periodic compounding	Continuous compounding
(1)Calculate the future value	$F V=\sum_{t=1}^{n} C\left(1+r_{e}\right)^{n-t}$	$F V=C \times \frac{\left(e^{r^{r} n}-1\right)}{e^{r_{e}}-1}$
(2)Find the HPR	$y=\sqrt[n]{\frac{P}{F V}}-1$	$y=\frac{-1}{n} \ln \left(\frac{P}{F V}\right)$

Example 3.4.5:HPR

- A financial instrument promises to pay $\$ 1,000$ for the next 3 years and sell for $\$ 2,500$. If each cash can be put into a bank account that pays an effective rate of 5%.
- The FV is $\sum_{t=1}^{3} 1000 \times(1+0.05)^{3-t}=3152.5$
- The HPR is $2500(1+H P R)^{3}=3125.5$

$$
\Rightarrow H P R=\left(\frac{3152.5}{2500}\right)^{1 / 3}-1=0.0804
$$

Numerical Methods for Yield

- Solve $f(r)=\sum_{t=1}^{n} \frac{C_{t}}{(1+r)^{t}}-x=0$, for $r \geq-1, x$ is market price

$$
\begin{aligned}
& \text { Recall } X=C_{1} \times(1+I R R)^{-1}+\ldots+C_{n} \times(1+I R R)^{-n} \\
& \quad \Rightarrow C_{1} \times(1+I R R)^{-1}+\ldots+C_{n} \times(1+I R R)^{-n}-X=0 \\
& \quad \text { Let } f(r)=C_{1} \times(1+r)^{-1}+\ldots C_{n} \times(1+r)^{-n}-X
\end{aligned}
$$

- The function $f(r)$ is monotonic in r, if $\mathrm{C}_{\mathrm{t}}>0$ for all t , hence a unique solution exists.

The Bisection Method

- Start with a and b where $a<b$ and $f(a) f(b)<0$.
- Then $f(r)$ must be zero for some $r \in(a, b)$.
- If we evaluate f at the midpoint $c \equiv(a+b) / 2$
(1) $f(a) f(c)<0 \rightarrow a<r<c$
(2) $f(c) f(b)<0 \rightarrow c<r<b$
- After n steps, we will have confined r within a bracket of length $(b-a) / 2^{n}$.

Bisection Method

- $\operatorname{Let} f(r)=C \times(1+r)^{-1}+C \times(1+r)^{-2}+\ldots+C \times(1+r)^{-n}-X$
- Solve $f(r)=0$

C＋＋：使用 while 建構二分法

用Bisection method縮小根的範圍

－已知 $f(r)=c \times(1+r)^{-1}+c \times(1+r)^{-2}+\ldots+c \times(1+r)^{-n}-x$
－$f(r)<0 \rightarrow r>R$
－$f(r)>0 \rightarrow r<R$

- 令 Middle＝（High＋Low）／2
- 將根的範圍從（Low，High）縮減到
－（Low，Middle）
－（Middle，High）

$$
c \times(1+r)^{-1}+c \times(1+r)^{-2}+\ldots+c \times(1+r)^{-n}
$$

用計算債券的公式計算
縮小根的範圍
float Middle＝（Low＋High）／2；
float Value＝0；
for（int $i=1 ; i<=n ; i=i+1)$
\｛
Discount＝1；
for（int j＝1；j＜＝i；j＋＋）
\｛
Discount＝Discount／（1＋Middle）
\}
Value＝Value＋Discount＊；
\}
Value＝Value－x；
if（Value＞0）
\｛ Low＝Middle；\}
else
\｛High＝Middle；\}

計算 IRR

（完整程式碼）
float c，x，Discount；
float Low＝0，High＝1；
int n ；
scanf（＂\％f＂，\＆c）；
scanf（＂\％f＂，\＆x）；
scanf（＂\％d＂，\＆n）；
while（High－Low＞＝0．0001）
用while控制根的範圍 \longrightarrow \｛ float Value＝0；
計算 $c \times(1+r)^{-1}+c \times(1+r)^{-2}+\ldots+c \times(1+r)^{-n} \longrightarrow$計算 $(1+r)^{-i} \longrightarrow$ Discount＝1

```
for(int j=1;j<=i;j++)
\｛
Discount＝Discount／（1＋Middle）；
```

\}
Value＝Value＋Discount＊；
\}
Value＝$=$ Value－X；
if（Value＞0）
\｛ Low＝Middle；\}
else
\｛High＝Middle；\}
\}
printf（＂Yield rate＝\％f＂，High）；

Homework

－第三章第十題

The Newton-Raphson Method

- Converges faster than the bisection method.
- Start with a first approximation X_{0} to a root of $f(x)=0$.
- Then

$$
\begin{equation*}
x_{k+1} \equiv x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{3.15}
\end{equation*}
$$

- When computing yields,

$$
f^{\prime}(x)=-\sum_{t=1}^{n} \frac{t C_{t}}{(1+x)^{t+1}}
$$

※ Recall the bisection method, the \mathbf{X} here is \mathbf{r} (yield) in the bisection method!

Figure3.5: Newton-Raphson method

$$
\text { (} \quad \because f^{\prime 2}
$$

If $f\left(X_{k+1}\right)=0$, we can obtain X_{k+1} is yield

Computed by Excel

- Yield的計算
- RATE（ nper，pmt，pv，fv，type）。
- Nper：年金的總付款期數。
- Pmt ：各期所應給付（或所能取得）的固定金額。
- Pv ：期初付款金額。
- Fv ：最後一次付款完成後，所獲得的現金餘額（年金終値）
- Type $0=>$ 期末支付 $1=>$ 期初支付

Example

	A	B	C	D	E	F
1	葉政府公脜票面利率為 5% ，發行價格為 $\$ 95$ ，票面價格為 $\$ 100$ ，半年支付一次，到期期間為10年，求YTM？YTM＝2	3\％＊2＝5	6\％			
2	Nper	20				
3	Pmt	2.5				
4	Pv	－95				
5	Fv	100				
6	Type	0				
7						
8	YTM	2．83\％	$=\mathrm{RATE}(\mathrm{B} 2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B}, 5 \mathrm{~B} 6)$			
9						

Bond

- A bond is a contract between the issuer (borrower) and the bondholder (lender).
- Bonds usually refer to long-term debts.
- Callable bond, convertible bond.
- Pure discount bonds vs. level-coupon bond

Zero-Coupon Bonds (Pure Discount Bonds)

- The price of a zero-coupon bond that pays F dollars in n periods is $P=\frac{F}{(1+r)^{n}}$
where r is the interest rate per period
- No coupon is paid before bond mature.
- Can meet future obligations without reinvestment risk.

Level-Coupon Bonds

- It pays interest based on coupon rate and the par value, which is paid at maturity.
- \boldsymbol{F} denotes the par value and \boldsymbol{C} denotes the coupon.

$$
P=C \times(1+r)^{-1}+C \times(1+r)^{-2}+\ldots+C \times(1+r)^{-n}+F \times(1+r)^{-n}
$$

Pricing of Level-Coupon Bonds

$$
\begin{align*}
P & =\frac{C}{\left(1+\frac{r}{m}\right)}+\frac{C}{\left(1+\frac{r}{m}\right)^{2}}+\ldots \ldots+\frac{C}{\left(1+\frac{r}{m}\right)^{n m}}+\frac{F}{\left(1+\frac{r}{m}\right)^{n m}} \\
& =\sum_{i=1}^{n m} \frac{C}{\left(1+\frac{r}{m}\right)^{i}}+\frac{F}{\left(1+\frac{r}{m}\right)^{n m}}=C\left(\frac{1-\left(1+\frac{r}{m}\right)^{-n m}}{\frac{r}{m}}\right)+\frac{F}{\left(1+\frac{r}{m}\right)^{n m}} \tag{3.18}
\end{align*}
$$

where
n : time to maturity (in years)
m : number of payments per year.
r : annual rate compounded m times per annum.
$C=F c / m$ where c is the annual coupon rate.

Yield To Maturity

- The YTM of a level-coupon bond is its IRR when the bond is held to maturity.
- For a 15% BEY, a 10 -year bond with a coupon rate of 10% paid semiannually sells for

$$
\begin{aligned}
P & =\frac{5}{\left(1+\frac{0.15}{2}\right)}+\ldots \ldots \cdot \frac{5}{\left(1+\frac{0.15}{2}\right)^{20}}+\frac{100}{\left(1+\frac{0.15}{2}\right)^{20}} \\
& =5 \times \frac{1-(1+(0.15 / 2))^{-2 \times 10}}{0.15 / 2}+\frac{100}{(1+(0.15 / 2))^{2 \times 10}}=74.5138
\end{aligned}
$$

Yield To Call

- For a callable bond, the yield to states maturity measures its yield to maturity as if were not callable.
- The yield to call is the yield to maturity satisfied by $\mathrm{Eq}(3.18)$, when \boldsymbol{n} denoting the number of remaining coupon payments until the first call date and \boldsymbol{F} replaced with call price.

Homework

- A company issues a 10 -year bond with a coupon rate of 10%, paid semiannually. The bond is called at par after 5 years. Find the price that guarantees a return of 12% compounded semiannually for the investor. (You are able to use Excel to run it.)

Price Behaviors

- Bond price falls as the interest rate increases, and vice versa.
- A level-coupon bond sells
- at a premium (above its par value) when its coupon rate is above the market interest rate.
- at par (at its par value) when its coupon rate is equal to the market interest rate.
- at a discount (below its par value) when its coupon rate is below the market interest rate.

Figure 3.8: Price/yield relations

$\left.\begin{array}{cc}\text { Yield (\%) } & \begin{array}{c}\text { Price } \\ \text { (\% of par) }\end{array} \\ \hline 7.5 & 113.37 \\ 8.0 & 108.65 \\ 8.5 & 104.19 \\ 9.0 & 100.00 \\ 9.5 & 96.04 \\ 10.0 & 92.31 \\ 10.5 & 88.79\end{array}\right\} \rightarrow$ Premium bond

Figure 3.9: Price vs. yield.

Plotted is a bond that pays 8% interest on a par value of $\$ 1,000$,compounding annually. The term is 10 years.

Day Count Conventions: Actual/Actual

- The first "actual" refers to the actual number of days in a month.
- The second refers to the actual number of days in a year.
- Example: For coupon-bearing Treasury securities, the number of days between June 17, 1992, and October 1, 1992, is 106.
$\rightarrow 13$ days (June), 31 days (July), 31 days (August), 30 days (September), and 1 day (October).

Day Count Conventions:30/360

- Each month has 30 days and each year 360 days.
- The number of days between June 17, 1992, and October 1, 1992, is 104.
- 13 days (June), 30 days (July), 30 days (August), 30 days (September), and 1 day (October).
- In general, the number of days from date 1 to date 2 is

$$
360 \times(\mathbf{2}-\boldsymbol{y} 1)+30 \times(\boldsymbol{m} 2-\boldsymbol{m} 1)+(d 2-d 1)
$$

Where Datel \equiv $(y 1, m 1, d 1) \quad$ Date $\equiv(y 2, m 2, d 2)$

Bond price between two coupon datẹ: $:$: (Full Price, Dirty Price)

- In reality, the settlement date may fall on any day between two coupon payment dates.

DirtyPrice $=C \times(1+r)^{-\omega}+C \times(1+r)^{-\omega-1}+\ldots \ldots .+$

$$
C \times(1+r)^{-\omega-n+1}+100 \times(1+r)^{-\omega-n+1}
$$

Accrued Interest

- The original bond holder has to share accrued interest in 1- ω period
- Accrued interest is $C \times(1-\omega)$
- The quoted price in the U.S./U.K. does not include the accrued interest; it is called the clean price.
- Dirty price= Clean price + Accrued interest

Example 3.5.3

- Consider a bond with a 10% coupon rate, par value $\$ 100$ and paying interest semiannually, with clean price 111.2891 . The maturity date is March 1, 1995, and the settlement date is July 1, 1993. The yield to maturity is 3%.

Example: solutions

- There are 60 days between July 1, 1993, and the next coupon date, September 1, 1993.
- The $\omega=60 / 180, \mathrm{C}=5$, and accrued interest is
$5 \times(1-(60 / 180))=3.3333$
- Dirty price=114.6224
clean price $=111.2891$

Exercise 3.5.6

- Before: A bond selling at par if the yield to maturity equals the coupon rate. (But it assumed that the settlement date is on a coupon payment date).
- Now suppose the settlement date for a bond selling at par (i.e., the quoted price is equal to the par value) falls between two coupon payment dates.
- Then its yield to maturity is less than the coupon rate.
\rightarrow The short reason: Exponential growth is replaced by linear growth, hence "overpaying" the coupon.

C＋＋：for 控制結構

－透過for的結構，程式的片段可重複執行固定次串攵 for（int $j=1 ; j<5 ; j=j+1)$

C＋＋：計算債券價格

- 考慮債夋價格的計算
- 假定單期利率爲r
- 每一期支付coupon c ，共付 n 期
- 到期日還本100元

債夋價格 $P=c \times(1+r)^{-1}+c \times(1+r)^{-2}+\ldots+c \times(1+r)^{-n}+100 \times(1+r)^{-n}$

計算第 i 次 payoff的 現値

- $\mathrm{i}<\mathrm{n}$ 現値 $=(1+r)^{-i} \times c$
- $\mathrm{i}=\mathrm{n}$ 現値 $=(1+r)^{-n} \times(c+100)$
- 用for計算 $(1+r)^{-i}$

計算第i次 payoff的 現値	
計算 $(1+r)^{-i}$	Discount＝1；
	for（int j＝1；${ }^{\text {c }}$＝ $\mathrm{i} ; \mathrm{j}++$ ）
	Discount＝Discount／（1＋r）；
	$\begin{aligned} & \text { Value=Value+Discount**; } \\ & \text { if(i==n) } \end{aligned}$
	\｛
考慮最後一期本金折現	Value＝Value＋Discount＊100；
	$\}$

完整程式碼（包含巢狀結構）

\＃include＜stdio．h＞ void main（）
\｛
int n ；
float c, r ，Value $=0$ ，Discount；
scanf（＂\％d＂，\＆n）；
scanf（＂\％f＂，\＆c）；
scanf（＂\％f＂，\＆r）；
for（int $i=1 ; i<=n ; i=i+1)$

Value＝Value＋Discount＊100；
printf（＂BondValue＝\％f＂，Value）；

Homework

- Program exercise:

Calculate the dirty and the clean price for a bond under actual/actual and $30 / 360$ day count conversion.
Input: Bond maturity date, settlement date, bond yield, and the coupon rate. The bond is assumed to pay coupons semiannually.

