

Financial Engineering and Computations Basic Financial Mathematics

Dai, Tian-Shyr

Outline

- Time Value of Money
- Annuities
- Amortization
- Yields
- Bonds

Time Value of Money

 $PV = FV(1+r)^{-n}$

 $FV = PV(1+r)^n$

- FV: future value
- PV: present value
- r: interest rate
- n: period terms

Quotes on Interest Rates

Annualized rate.

r is assumed to be constant in this lecture.

Time Value of Money

• Periodic compounding (If interest is compounded *m* times per annum)

$$FV = PV \left(1 + \frac{r}{m}\right)^{nm}$$
(3.1)
Continuous compounding

$$FV = PVe^{rn}$$

$$\lim_{t \to \infty} (1 + \frac{1}{t})^t = e \to \lim_{m \to \infty} (1 + \frac{r}{m})^{nm} = \lim_{m \to \infty} (1 + \frac{1}{m/r})^{\frac{m}{r}r} = e^{rr}$$

• Simple compounding

Common Compounding Methods

- Annual compounding: m = 1.
- Semiannual compounding: m = 2.
- Quarterly compounding: m = 4.
- Monthly compounding: m = 12.
- Weekly compounding: m = 52.
- Daily compounding: m = 365

Two widely used yields

- Bond equivalent yield (BEY)
 - --Annualize yield with semiannual compounding
- Mortgage equivalent yield (MEY)
 - --Annualize yield with monthly compounding

Equivalent Rate per Annum

- Annual interest rate is 10% compounded twice per annum.
- Each dollar will grow to be 1.1025 one year from now.

$$(1 + (0.1/2))^2 = 1.1025$$

• The rate is equivalent to an interest rate of 10.25% compounded once *per annum*.

Conversion between compounding Methods

- Suppose r_1 is the annual rate with continuous compounding.
- Suppose r_2 is the equivalent compounded m times per annum.

• Then
$$\left(1 + \frac{r_2}{m}\right)^m = e^{r_1}$$

• Therefore $r_1 = m \ln\left(1 + \frac{r_2}{m}\right) \Rightarrow r_2 = m\left(\frac{r_1}{m} - 1\right)$

Are They Really "Equivalent"?

- Recall r_1 and r_2 on the previous example.
- They are based on different cash flow.
- In what sense are they equivalent?

Annuities

- Ordinary annuity
- Annuity due
- Perpetual annuity

Ordinary annuity

- An annuity pays out the same *C* dollars at the end of each year for *n* years.
- With a rate of *r*, the FV at the end of *n*th year is

General annuity

(3.6)

• If m payments of *C* dollars each are received per year (the general annuity), then Eq.(3.4) becomes

$$C \frac{\left(1 + \frac{r}{m}\right)^{n m} - 1}{\frac{r}{m}}$$

• The *PV* of a general annuity is

$$\sum_{i=1}^{nm} C \left(1 + \frac{r}{m} \right)^{-i} = C \frac{1 - \left(1 + \frac{r}{m} \right)^{-n}}{\frac{r}{m}}$$

Annuity due

• For the annuity due, cash flow are received at the beginning of each year. The FV is

$$\sum_{i=1}^{n} C(1+r)^{i} = C \frac{(1+r)^{n} - 1}{r} (1+r)$$
(3.5)

• If m payments of C dollars each are received per year (the general annuity), then Eq.(3.5) becomes

$$C \frac{\left(1 + \frac{r}{m}\right)^{nm} - 1}{\frac{r}{m}} \left(1 + \frac{r}{m}\right)$$

$$\int \frac{1}{1} \frac{1}{2} \frac{1}{3} \frac$$

Formula

- Ordinary annuity General annuity
- PV: $C \frac{1-(1+r)^{-n}}{r} \longrightarrow C \frac{1-(1+\frac{r}{m})^{-nm}}{\frac{r}{m}}$

• FV:
$$C \frac{(1+r)^n - 1}{r} \longrightarrow C \frac{(1+\frac{r}{m})^{nm} - 1}{\frac{r}{m}}$$

- Annuity due
- PV: $C\frac{1-(1+r)^{-n}}{r}(1+r) \longrightarrow C\frac{1-(1+\frac{r}{m})^{-n}}{\frac{r}{m}}\left(1+\frac{r}{m}\right)$

• FV:
$$C\frac{(1+r)^n-1}{r}(1+r) \longrightarrow C\frac{(1+\frac{r}{m})^{nm}-1}{\frac{r}{m}}\left(1+\frac{r}{m}\right)$$

Perpetual annuity

• An annuity that lasts forever is called a perpetual annuity. We can drive its *PV* from Eq.(3.6) by letting *n* go to infinity:

$$PV = \lim_{n \to \infty} \sum_{i=1}^{nm} C \left(1 + \frac{r}{m} \right)^{-i} = \lim_{n \to \infty} C \frac{1 - \left(1 + \frac{r}{m} \right)^{-nm}}{\frac{r}{m}} = \frac{mC}{r}$$

• This formula is useful for valuing *perpetual fix-coupon debts*.

Example: The Golden Model

Determine the intrinsic value of a stock.

- Let the dividend grows at a **constant rate**
- Stock price= Present value of the infinite series of future dividends.

Where

D: Expected dividend per share one year from now.

r: Required rate of return for equity investor.

g: Growth rate in dividends (in perpetuity).

In Class Exercise:

• Show that

 $PV(All future dividends) = \frac{D}{r-g} ; r > g$

Computed by Excel

- Present value
 - PV(rate, nper, pmt, fv, type)
 - Rate:各期的利率。
 - Nper:年金的總付款期數。
 - Pmt : 各期所應給付(或所能取得)的固定金額。
 - Fv : 最後一次付款完成後,所能獲得的現金餘額。
 - Type 0=>期末支付 1=>期初支付

Computed by Excel

- Future value
 - FV (rate, nper, pmt, pv, type)
 - Rate:各期的利率。
 - Nper:年金的總付款期數。
 - Pmt :指分期付款。
 - Pv : 指現值或一系列未來付款的目前總額。
 - Type 0=>期末支付 1=>期初支付

Example 3.2.1

× 1	Microsoft Ex	ccel - Booki				
: 💌	檔案(E) 編	輯(E) 檢視((り 插入①	格式(2) 工	具(I) 資料(I	2) 視窗(W)
1	📂 🖬 🖪	a 🖪 🗳	I 🍣 🔣 I 🐰	🖹 🖹 - <	🌮 – 🖓	- 🥺 Σ
- 🔁	🏞 🐮 🖕					
	A9	-	fx			
	А	В	С	D	E	F
1						
2	PV	\$418	=PV(J	33,B4,B5,B	<mark>6,B7)</mark>	
3	Rate	0.0625				
4	Nper	5				
5	Pmt	-100				
6	Fv	0				
7	Туре	0				
8		$-T_{b}$ D	<i>I</i> of one of		f ¢ 100	
9			or all a	muny o	1 2100 b	ei annun
10		5 years	at an ar	nual int	erest rate	e of 6.259

In Class Exercise

• In above example, please use Excel to compute the FV of an annuity of \$100 per annum for 5 years at an annual interest rate of 6.25%. Verify this result equal to the future value of the PV of \$418.39.

Amortization

- It is a method of repaying a loan through regular payment of interest and principal.
- The size of the loan (the original balance) is reduced by the principal part of each payment.
- The interest part of each payment pays the interest incurred on the remaining principal balance.
- As the principal gets paid down over the term of the loan, the interest part of the payment diminishes.

See next example!

Example: Home mortgages

- Consider a 15-year, \$250,000 loan at 8.0% interest rate, repay the interest 12 per month.
- Because *PV* = 250,000, *n* = 15, *m*= 12, and *r* = 0.08 we can get a monthly payment *C* is \$2,389.13.

$$\$250000 = \frac{C}{(1+\frac{0.08}{12})} + \frac{C}{(1+\frac{0.08}{12})^2} + \dots + \frac{C}{(1+\frac{0.08}{12})^{12\times15}}$$
$$= \sum_{i=1}^{180} C \left(1 + \frac{0.08}{12}\right)^{-i} = C \left(\frac{1 - (1+\frac{0.08}{12})^{-180}}{0.08/12}\right) \Rightarrow C = 2389.13$$

Calculating the Remaining Principal

• Right after the *k*th payment, the remaining principal is the PV of the future *nm-k* cash flows,

$$C(1+\frac{r}{m})^{-1} + C(1+\frac{r}{m})^{-2} + \dots + C(1+\frac{r}{m})^{-(nm-k)} = C\frac{1-(1+\frac{r}{m})^{-nm+k}}{\frac{r}{m}}$$

Yields

- The term **yield** denotes the return of investment.
- It has many variants.
 - (1) Nominal yield (coupon rate of the bond)
 - (2) Current yield
 - (3) Discount yield
 - (4) CD-equivalent yield

Discount Yield

- U.S *Treasury bills* is said to be issue on a discount basis and is called a discount security.
- When the discount yield is calculated for short-term securities, a year is assumed to have **360 days**.
- The discount yield (discount rate) is defined as Interest

CD-equivalent yield

- It also called the money-market-equivalent yield.
- It is a simple annualized interest rate defined as

par value – purchase price	365 days	(3.10)
purchase price	number of days to maturity	(5.10)

Example 3.4.1: Discount yield

• If an investor buys a U.S. \$ 10,000, 6-month T-bill for U.S. \$ 9521.45 with 182 days remaining to maturity.

$$Discount yield = \frac{10000 - 9521.45}{10000} \times \frac{360}{182} = 0.0947$$

Internal Rate of Return (IRR)

• It is the interest rate which equates an investment's PV with its price X.

 $X = C_1 \times (1 + IRR)^{-1} + C_2 \times (1 + IRR)^{-2} + \dots + C_n \times (1 + IRR)^{-n}$

- IRR assumes all cash flows are reinvested at the same rate as the internal rate of return.
- It doesn't consider the reinvestment risk.

Evaluating real investment with IRR

- Multiple IRR arise when there is more than one sign reversal in the cash flow pattern, and it is also possible to have no IRR.
- Evaluating real investment, IRR rule breaks down when there are multiple IRR or no IRR.
- Additional problems exist when the term structure of interest rates is not flat.

 \rightarrow there is ambiguity about what the appropriate hurdle rate (cost of capital) should be.

Class Exercise

• Assume that a project has cash flow as follow respectively, and initial cost is \$1000 at date 0, please calculate the IRR. If cost of capital is 10%, do you think it is a good project?

CF at da	ate				
0	1	2	3	4	IRR
-1000	800	1000	1300	-2200	?

Class Exercise (Excel)

			•	I
12	Time	CF		
13	0	-1000		
14	1	800		
15	2	1000		
16	3	1300		
17	4	-2200	=IRR(B13:B17,0.1)	
18		7%		
19		37%	=IRR(B13:B17.0.2)	
20	Multiple			
21				

- The FV of investment in n period is $FV = P(1+y)^n$
- Let the reinvestment rates r_e , the FV of per cash income is $C \times (1+r_e)^{n-1} + C \times (1+r_e)^{n-2} + ... + C \times (1+r_e) + C \longrightarrow$ Value is given
- We define HPR (y) is

 $P(1+y)^{n} = C \times (1+r_{e})^{n-1} + C \times (1+r_{e})^{n-2} + \dots + C \times (1+r_{e}) + C$

Methodology for the HPR(y)

- Calculate the FV and then find the yield that equates it with the P
- Suppose the reinvestment rates has been determined to be r_e .

Step	Periodic compounding	Continuous compounding
(1)Calculate the future value	$FV = \sum_{t=1}^{n} C (1+r_e)^{n-t}$	$FV = C \times \frac{(e^{r_e n} - 1)}{e^{r_e} - 1}$
(2)Find the HPR	$y = \sqrt[n]{\frac{P}{FV}} - 1$	$y = \frac{-1}{n} \ln(\frac{P}{FV})$

Example 3.4.5:HPR

• A financial instrument promises to pay \$1,000 for the next 3 years and sell for \$2,500. If each cash can be put into a bank account that pays an effective rate of 5%.

• The FV is
$$\sum_{t=1}^{3} 1000 \times (1+0.05)^{3-t} = 3152.5$$

• The HPR is $2500(1 + HPR)^3 = 3125.5$

$$\Rightarrow HPR = \left(\frac{3152.5}{2500}\right)^{1/3} - 1 = 0.0804$$

Numerical Methods for Yield

• Solve $f(r) = \sum_{t=1}^{n} \frac{C_t}{(1+r)^t} - x = 0$, for $r \ge -1$, x is market price

Recall
$$X = C_1 \times (1 + IRR)^{-1} + ... + C_n \times (1 + IRR)^{-n}$$

 $\Rightarrow C_1 \times (1 + IRR)^{-1} + ... + C_n \times (1 + IRR)^{-n} - X = 0$
Let $f(r) = C_1 \times (1 + r)^{-1} + ..., C_n \times (1 + r)^{-n} - X$

• The function f(r) is monotonic in r, if $C_t > 0$ for all t, hence a unique solution exists.

The Bisection Method

- Start with *a* and *b* where a < b and f(a) f(b) < 0.
- Then f(r) must be zero for some $r \in (a, b)$.
- If we evaluate *f* at the midpoint c ≡ (a + b) / 2
 (1) f(a) f(c) < 0 → a < r < c
 (2) f(c) f(b) < 0 → c < r < b
- After *n* steps, we will have confined *r* within a bracket of length (*b* − *a*) / 2ⁿ.

Bisection Method

• Let $f(r) = C \times (1+r)^{-1} + C \times (1+r)^{-2} + ... + C \times (1+r)^{-n} - X$

C++:使用while 建構二分法

用Bisection method縮小根的範圍

- $\Box \not = c \times (1+r)^{-1} + c \times (1+r)^{-2} + \dots + c \times (1+r)^{-n} x$
 - $f(r) < 0 \rightarrow r > R$
 - $f(r)>0 \rightarrow r<R$
- 令 Middle=(High+Low)/2
 - 將根的範圍從(Low, High)縮減到
 - (Low,Middle)
 - (Middle,High)

 $c \times (1+r)^{-1} + c \times (1+r)^{-2} + \dots + c \times (1+r)^{-n}$

```
用計算債券的公式計算
縮小根的範圍
```

```
float Middle=(Low+High)/2;
float Value=0;
for(int i=1;i<=n;i=i+1)
</pre>
```

```
Discount=1;
for(int j=1;j<=i;j++)
```

```
Discount=Discount/(1+Middle)
```

```
Value=Value+Discount*c;
```

```
Value=Value-x;
```

```
if(Value>0)
```

```
{ Low=Middle;}
```

```
else
```

{High=Middle;}

Homework

• 第三章第十題

The Newton-Raphson Method

- Converges faster than the bisection method.
- Start with a first approximation X_0 to a root of f(x) = 0.
- Then $x_{k+1} \equiv x_k - \frac{f(x_k)}{f'(x_k)}$ (3.15)
- When computing yields,

$$f'(x) = -\sum_{t=1}^{n} \frac{t C_t}{(1+x)^{t+1}}$$

% Recall the bisection method, the X here is r (yield) in the bisection method!

If $f(X_{k+1})=0$, we can obtain X_{k+1} is yield

Computed by Excel

• Yield的計算

- RATE(nper, pmt, pv, fv, type) •
- Nper:年金的總付款期數。
- Pmt : 各期所應給付 (或所能取得) 的固定金額。
- Pv :期初付款金額。
- Fv :最後一次付款完成後,所獲得的現金餘額(年金終値)。
- Type 0=>期末支付 1=>期初支付

Example

	А	В	С	D	E	F
1	某政府公債票面利率為5%, 發行價格為\$95, 票面價格為 \$100, 半年支付一次, 到期 期間為10年, 求YTM? YTM=2	.83%*2=5	5.66%			
2	Nper	20				
3	Pmt	2.5				
4	Pv	-95				
5	Fv	100				
6	Туре	0				
7			k 1			
8	YTM	2.83%		E(B) B3 E	M R 5R6)	
9			-1.41	L(D2,D3,L	(000,0,0,0)	
10						

Bond

- A bond is a contract between the issuer (borrower) and the bondholder (lender).
- Bonds usually refer to long-term debts.
- Callable bond, convertible bond.
- Pure discount bonds vs. level-coupon bond

Zero-Coupon Bonds (Pure Discount Bonds)

• The price of a zero-coupon bond that pays *F* dollars in *n* periods is $P = \frac{F}{(1+r)^n}$

where *r* is the interest rate per period

- No coupon is paid before bond mature.
- Can meet future obligations without reinvestment risk.

Level-Coupon Bonds

- It pays interest based on coupon rate and the par value, which is paid at maturity.
- *F* denotes the par value and *C* denotes the coupon.

$$P = C \times (1+r)^{-1} + C \times (1+r)^{-2} + \dots + C \times (1+r)^{-n} + F \times (1+r)^{-n}$$

where

n: time to maturity (in years)

m: number of payments per year.

r : annual rate compounded m times per annum.

C = Fc/m where c is the annual coupon rate.

Yield To Maturity

- The YTM of a level-coupon bond is its IRR when the bond is held to maturity.
- For a 15% BEY, a 10-year bond with a coupon rate of 10% paid semiannually sells for

$$P = \frac{5}{(1 + \frac{0.15}{2})} + \dots + \frac{5}{(1 + \frac{0.15}{2})^{20}} + \frac{100}{(1 + \frac{0.15}{2})^{20}}$$
$$= 5 \times \frac{1 - (1 + (0.15/2))^{-2 \times 10}}{0.15/2} + \frac{100}{(1 + (0.15/2))^{2 \times 10}} = 74.5138$$

Yield To Call

- For a callable bond, the yield to states maturity measures its yield to maturity as if were not callable.
- The yield to call is the yield to maturity satisfied by Eq(3.18), when *n* denoting the number of remaining coupon payments until the first call date and *F* replaced with call price.

Homework

• A company issues a 10-year bond with a coupon rate of 10%, paid semiannually. The bond is called at par after 5 years. Find the price that guarantees a return of 12% compounded semiannually for the investor. (You are able to use Excel to run it.)

Price Behaviors

- Bond price falls as the interest rate increases, and vice versa.
- A level-coupon bond sells
 - at a premium (above its par value) when its
 coupon rate is above the market interest rate.
 - at par (at its par value) when its coupon rate is equal to the market interest rate.
 - at a discount (below its par value) when its
 coupon rate is below the market interest rate.

Figure 3.8: Price/yield relations

)	Price (% of par	Yield (%)
	113.37	7.5
\rightarrow Premium bond	108.65	8.0
	104.19	8.5
\rightarrow Par bond	100.00	9.0
	96.04	9.5
\rightarrow Discount bond	92.31	10.0
	88.79-	10.5

Figure 3.9: Price vs. yield.

Plotted is a bond that pays 8% interest on a par value of \$1,000,compounding annually. The term is 10 years.

Day Count Conventions: Actual/Actual

- The first "actual" refers to the actual number of days in a month.
- The second refers to the actual number of days in a year.
- Example: For coupon-bearing Treasury securities, the number of days between June 17, 1992, and October 1, 1992, is *106*.

→13 days (June), 31 days (July), 31 days (August), 30 days (September), and 1 day (October).

Day Count Conventions:30/360

- Each month has 30 days and each year 360 days.
- The number of days between June 17, 1992, and October 1, 1992, is *104*.
 - 13 days (June), 30 days (July), 30 days (August),30 days (September), and 1 day (October).
- In general, the number of days from date1 to date2 is

 $\begin{array}{l} 360 \times (y2 - y1) + 30 \times (m2 - m1) + (d2 - d1) \\ Where \ Date1 \equiv (y1, m1, \ d1) \ Date \equiv (y2, m2, \ d2) \end{array}$

Bond price between two coupon date (Full Price, Dirty Price)

• In reality, the settlement date may fall on any day between two coupon payment dates.

Accrued Interest

- The original bond holder has to share accrued interest in 1-ω period
 - Accrued interest is $C \times (1 \omega)$
- The quoted price in the U.S./U.K. does not include the accrued interest; it is called the *clean price*.
- Dirty price= Clean price+ Accrued interest

Example 3.5.3

• Consider a bond with a 10% coupon rate, par value\$100 and paying interest semiannually, with clean price 111.2891. The maturity date is March 1, 1995, and the settlement date is July 1, 1993. The yield to maturity is 3%.

Example: solutions

- There are *60* days between July 1, 1993, and the next coupon date, September 1, 1993.
- The ω= 60/180, C=5,and accrued interest is
 5× (1-(60/180)) =3.3333
- Dirty price=114.6224 clean price = 111.2891

Exercise 3.5.6

- Before: A bond selling at par if the yield to maturity equals the coupon rate. (But it assumed that the settlement date is on a coupon payment date).
- Now suppose the settlement date for a bond selling at par (i.e., the *quoted price* is equal to the par value) falls between two coupon payment dates.
- Then its yield to maturity is less than the coupon rate.

 \rightarrow The short reason: Exponential growth is replaced by linear growth, hence "overpaying" the coupon.

C++: for 控制結構

C++:計算債券價格

- 考慮債券價格的計算
 - 假定單期利率為r

• 每一期支付coupon c,共付n期

債券價格 $P = c \times (1+r)^{-1} + c \times (1+r)^{-2} + ... + c \times (1+r)^{-n} + 100 \times (1+r)^{-n}$

計算第i次 payoff的 現值

- i<n 現値= (1+r)⁻ⁱ×c
- i=n 現值= (1+r)⁻ⁿ×(c+100)
- 用for計算 (1+r)⁻ⁱ

 計算 (1+r)⁻ⁱ

 計算 (1+r)⁻ⁱ

 計算 (1+r)⁻ⁱ

 計算 (1+r)⁻ⁱ

 * Zalue=Value+Discount/(1+r);

 * Yalue=Value+Discount*c;

 * Jalue=Value+Discount*100;

Homework

• Program exercise:

Calculate the dirty and the clean price for a bond under actual/actual and 30/360 day count conversion.

- Input: Bond maturity date, settlement date, bond yield, and the coupon rate. The bond is assumed to pay coupons
 - semiannually.