
1

Chapter 8

Algorithms

Understand the concept of an algorithm.Understand the concept of an algorithm.

Define and use the three constructs for developingDefine and use the three constructs for developing
algorithms: sequence, decision, and repetition.algorithms: sequence, decision, and repetition.

Understand and use three tools to represent algorithms:Understand and use three tools to represent algorithms:
flowchart, flowchart, pseudocodepseudocode, and structure chart., and structure chart.

After reading this chapter, the reader should After reading this chapter, the reader should
be able to:be able to:

OOBJECTIVESBJECTIVES

Understand the concept of modularity and Understand the concept of modularity and subalgorithmssubalgorithms..

List and comprehend common algorithms. List and comprehend common algorithms.

2

CONCEPTCONCEPT

8.18.1

Figure 8-1
Informal definition of an algorithm

used in a computer

3

Figure 8-2
Finding the largest integer

among five integers

Figure 8-3

Defining actions in FindLargest algorithm

4

Figure 8-4
FindLargest refined

Figure 8-5
Generalization of FindLargest

5

THREE CONSTRUCTSTHREE CONSTRUCTS

8.28.2

Figure 8-6
Three constructs

6

ALGORITHMALGORITHM
REPRESENTATIONREPRESENTATION

8.38.3

Figure 8-7
Flowcharts for three constructs

7

Figure 8-8
Pseudocode for three constructs

Example 1Example 1

Write an algorithm in pseudocode that finds
the average of two numbers

SolutionSolution

See Algorithm 8.1 on the next slide.

Sequence

8

AverageOfTwo
Input: Two numbers

1. Add the two numbers
2. Divide the result by 2
3. Return the result by step 2

End

Algorithm 8.1:Algorithm 8.1: Average of twoAverage of two

Example 2Example 2

Write an algorithm to change a numeric
grade to a pass/no pass grade.

SolutionSolution

See Algorithm 8.2 on the next slide.

Decision

9

Pass/NoPassGrade
Input: One number

1. if (the number is greater than or equal to 70)
then

1.1 Set the grade to “pass”
else

1.2 Set the grade to “nopass”
End if

2. Return the grade
End

Algorithm 8.2:Algorithm 8.2: Pass/no pass GradePass/no pass Grade

Example 3Example 3

Write an algorithm to change a numeric
grade to a letter grade.

SolutionSolution

See Algorithm 8.3 on the next slide.

(Multiple decision)

10

LetterGrade
Input: One number

1. if (the number is between 90 and 100, inclusive)
then

1.1 Set the grade to “A”
End if

2. if (the number is between 80 and 89, inclusive)
then

2.1 Set the grade to “B”
End if

Algorithm 8.3:Algorithm 8.3: Letter gradeLetter grade

Continues on the next slide

3. if (the number is between 70 and 79, inclusive)
then

3.1 Set the grade to “C”
End if

4. if (the number is between 60 and 69, inclusive)
then

4.1 Set the grade to “D”
End if

Algorithm 8.3:Algorithm 8.3: Letter grade (continued)Letter grade (continued)

Continues on the next slide

11

5. If (the number is less than 60)
then

5.1 Set the grade to “F”
End if

6. Return the grade
End

Algorithm 8.3:Algorithm 8.3: Letter grade (continued)Letter grade (continued)

Example 4Example 4

Write an algorithm to find the largest of a set
of numbers. You do not know the number of
numbers.

SolutionSolution

See Algorithm 8.4 on the next slide.

Repetition + Decision

12

FindLargest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)

2.1 if (the integer is greater than Largest)
then
2.1.1 Set largest to the value of the integer

End if
End while

3. Return Largest
End

Algorithm 8.4:Algorithm 8.4: Find largestFind largest

Example 5Example 5

Write an algorithm to find the largest of
1000 numbers.

SolutionSolution

See Algorithm 8.5 on the next slide.

Add a counter to the repetition structure

13

FindLargest
Input: 1000 positive integers

1. Set Largest to 0
2. Set Counter to 0
3. while (Counter less than 1000)

3.1 if (the integer is greater than Largest)
then
3.1.1 Set Largest to the value of the integer

End if
3.2 Increment Counter

End while
4. Return Largest

End

Algorithm 8.5:Algorithm 8.5: Find largest of 1000 numbersFind largest of 1000 numbers

©Brooks/Cole,
2003

In Class Exercise

• Write the pseudo code to get the second largest
number from the input.

14

FORMAL DEFINITIONFORMAL DEFINITION
••Ordered setOrdered set
••Unambiguous stepsUnambiguous steps
••EffectivenessEffectiveness
••TerminationTermination

8.48.4

©Brooks/Cole,
2003

Definition of Algorithm

• An algorithm is an ordered set of unambiguous
steps that produce results and halts in finite
time.

• Ordered set: Each instruction is well-defined.
• Unambiguous steps: Each step is certain
• Produce a result: Effectiveness
• Termination in finite time

– Infinite loop
– Unsolvable program : Halting problem

15

SUBALGORITHMSSUBALGORITHMS

8.58.5

Figure 8-9
Concept of a subalgorithm

16

FindLargest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)

2.1 FindLarger
End while

3. Return Largest
End

Algorithm 8.6:Algorithm 8.6: Find largestFind largest

FindLarger
Input: Largest and current integer

1. if (the integer is greater than Largest)
then

1.1 Set Largest to the value of the integer
End if
End

SubalgorithmSubalgorithm:: Find largerFind larger

17

BASICBASIC
ALGORITHMSALGORITHMS

8.68.6

Figure 8-10
Summation

18

Figure 8-11
Product

Figure 8-12
Selection sort

19

Figure 8-13: part I
Example of selection sort

Figure 8-13: part II
Example of selection sort

20

Figure 8-14
Selection sort
algorithm

©Brooks/Cole,
2003

In Class Exercise: Sort

• Sort 4,2,7,6,3,1,9,8

21

Figure 8-15
Bubble sort

Figure 8-16: part I
Example of bubble sort

22

Figure 8-16: part II
Example of bubble sort

Figure 8-17
Insertion sort

23

Figure 8-18: part I
Example of insertion sort

Figure 8-18: part II
Example of insertion sort

24

Figure 8-19
Search concept

Figure 8-20: Part I

Example of a sequential search

25

Figure 8-20: Part II

Example of a sequential search

Figure 8-21 Example of a binary search

26

RECURSIONRECURSION

8.18.1

Figure 8-22
Iterative definition of factorial

27

Figure 8-23

Recursive definition of factorial

Figure 8-24

Tracing recursive solution to factorial problem

28

Factorial
Input: A positive integer num

1. Set FactN to 1
2. Set i to 1
3. while (i is less than or equal to num)

3.1 Set FactN to FactN x I
3.2 Increment i
End while

4. Return FactN
End

Algorithm 8.7:Algorithm 8.7: Iterative factorialIterative factorial

Factorial
Input: A positive integer num

1. if (num is equal to 0)
then

1.1 return 1
else
1.2 return num x Factorial (num – 1)
End if
End

Algorithm 8.8:Algorithm 8.8: Recursive factorialRecursive factorial

