Chapter 8

Algorithms

ObJEctives

After reading this chapter, the reader should be able to:

Understand the concept of an algorithm.Define and use the three constructs for developing algorithms: sequence, decision, and repetition.
\square Understand and use three tools to represent algorithms:
flowchart, pseudocode, and structure chart.
Understand the concept of modularity and subalgorithms.
List and comprehend common algorithms.

Figure 8-3
Defining actions in FindLargest algorithm

Pseudocode for three constructs		
action 1 action 2 \vdots action n a. Sequence	If (condition) then action action else action action \cdots End if b. Decision	while (condition) action action End while c. Repetition

Example 1

Write an algorithm in pseudocode that finds the average of two numbers

S'olutions

See Algorithm 8.1 on the next slide. Sequence

Algorithm 8.1: Average of two

AverageOfTwo Input: Two numbers

1. Add the two numbers
2. Divide the result by 2
3. Return the result by step 2 End

Example 2

Write an algorithm to change a numeric grade to a pass/no pass grade.

Solutions

See Algorithm 8.2 on the next slide.
Decision

Algorithm 8.2: Pass/no pass Grade

Pass/NoPassGrade
Input: One number

1. if (the number is greater than or equal to 70) then
1.1 Set the grade to "pass"
else
1.2 Set the grade to "nopass"

End if
2. Return the grade End

Example 3

Write an algorithm to change a numeric grade to a letter grade.

Solutions

See Algorithm 8.3 on the next slide.
(Multiple decision)

Algorithm 8.3: Letter grade

LetterGrade
Input: One number

1. if (the number is between 90 and 100 , inclusive) then
1.1 Set the grade to " A "

End if
2. if (the number is between 80 and 89 , inclusive) then
2.1 Set the grade to " B " End if

Continues on the next slide

Algorithm 8.3: Letter grade (continued)

3. if (the number is between 70 and 79 , inclusive) then
3.1 Set the grade to " C "

End if
4. if (the number is between 60 and 69 , inclusive) then
4.1 Set the grade to " D "

End if
Continues on the next slide

Algorithm 8.3: Letter grade (continued)

5. If (the number is less than 60) then
5.1 Set the grade to " F " End if
6. Return the grade End

Example 4

Write an algorithm to find the largest of a set of numbers. You do not know the number of numbers.

Solution

See Algorithm 8.4 on the next slide.
Repetition + Decision

Algorithm 8.4: Find largest

FindLargest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)
2.1 if (the integer is greater than Largest) then
2.1.1 Set largest to the value of the integer End if
End while
3. Return Largest

End

Example 5

Write an algorithm to find the largest of 1000 numbers.

S'olution

See Algorithm 8.5 on the next slide.
Add a counter to the repetition structure

Algorithm 8.5: Find largest of 1000 numbers

FindLargest
Input: 1000 positive integers

1. Set Largest to 0
2. Set Counter to 0
3. while (Counter less than 1000)
3.1 if (the integer is greater than Largest)
then
3.1.1 Set Largest to the value of the integer

End if
3.2 Increment Counter

End while
4. Return Largest

End

In Class Exercise

- Write the pseudo code to get the second largest number from the input.

Definition of Algorithm

- An algorithm is an ordered set of unambiguous steps that produce results and halts in finite time.
- Ordered set: Each instruction is well-defined.
- Unambiguous steps: Each step is certain
- Produce a result: Effectiveness
- Termination in finite time
- Infinite loop
- Unsolvable program : Halting problem

Algorithm 8.6: Find largest

FindLargest
Input: A list of positive integers

1. Set Largest to 0
2. while (more integers)
2.1 FindLarger

End while
3. Return Largest

End

Subalgorithm: Find larger

FindLarger
Input: Largest and current integer

1. if (the integer is greater than Largest)
then
1.1 Set Largest to the value of the integer

End if
End

Figure 8-12
Selection sort

Figure 8-13: part II
Example of selection sort

After pass 3

After pass 4

After pass 5

In Class Exercise: Sort

- Sort 4,2,7,6,3,1,9,8

Figure 8-16: part I

Example of bubble sort

Figure 8-20: Part I

Example of a sequential search

Figure 8-22

Iterative definition of factorial

Factorial $\left.(n)=\left[\begin{array}{ll}1 & \text { if } n=0 \\ n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1 & \text { if } n>0\end{array}\right]\right]$

| Figure 8-23 | Recursive definition of factorial |
| :--- | :--- | :--- |
| | |
| Factorial $(n)-\left[\begin{array}{lll}1 & \text { if } n=0 & \\ n \times \text { Factorial }(n-1) & \\ \hline\end{array}\right]$ | |

Figure 8-24
Tracing recursive solution to factorial problem

Algorithm 8.7: Iterative factorial

Factorial
Input: A positive integer num

1. Set FactN to 1
2. Set ito 1
3. while (i is less than or equal to num)
3.1 Set FactN to FactN x I
3.2 Increment i

End while
4. Return FactN

End

Algorithm 8.8: Recursive factorial

Factorial
Input: A positive integer num

1. if (num is equal to 0)
then
1.1 return 1
else
1.2 return num x Factorial (num - 1)

End if
End

