
© Brooks/Cole,
2003

Chapter 7

Operating Systems

© Brooks/Cole,
2003

Define the purpose and functions of an operating system.Define the purpose and functions of an operating system.

Understand the components of an operating system.Understand the components of an operating system.

Understand the concept of virtual memory.Understand the concept of virtual memory.

Understand the concept of deadlock and starvation.Understand the concept of deadlock and starvation.

After reading this chapter, the reader should After reading this chapter, the reader should
be able to:be able to:

OOBJECTIVESBJECTIVES

List some of the characteristics of popular operating systemsList some of the characteristics of popular operating systems
such as Windows 2000, UNIX, and Linux.such as Windows 2000, UNIX, and Linux.

© Brooks/Cole,
2003

Figure 7-1
Computer System

Like Word, WinampLike Windows, Linux

© Brooks/Cole,
2003

DEFINITIONDEFINITION

7.17.1

© Brooks/Cole,
2003

An operating system is an interface An operating system is an interface
between the hardware of a computer between the hardware of a computer

and and
the user (program or human) that the user (program or human) that

facilitates the execution of the other facilitates the execution of the other
programs and the access to programs and the access to

hardware and software resources. hardware and software resources.

Note:Note:

© Brooks/Cole,
2003

Major Design Goals of an Operating
System

• Efficiency use of hardware
• Easy to use resources

© Brooks/Cole,
2003

EVOLUTION:EVOLUTION:
Batch systemsBatch systems

TimeTime--sharing systemssharing systems
Personal systemsPersonal systems
Parallel systemsParallel systems

Distributed systemsDistributed systems

7.27.2

© Brooks/Cole,
2003

Batch System

• Designed in 1950 for mainframe computers
• Punched cards, line printer, tape
• Each program is called a job.
• Programmer can’t interact with system
• OS simply ensures that all of the resources

were transferred from one job to the next.

© Brooks/Cole,
2003

Time-Sharing System

• Multiprogramming was introduced.
• Process: a program in memory waiting for execution.
• Assign a resource to a process when resource is

available.
– One process=> I/O, another =>CPU

• Time Sharing=> Each process are located a portion
of time to use the resource.
– Computer is faster than human

• Scheduling: Allocating resources to processes.

© Brooks/Cole,
2003

Personal System

• Introduced when Personal Computer (PC)
were introduced.

• Like DOS (Disk Operating System).

© Brooks/Cole,
2003

Parallel System

• Multiple CPU
• Each CPU can serve a program or part of a

program
• Tasks can be accomplished in parallel instead

of serially.

© Brooks/Cole,
2003

Distributed System

• A job was previously done by one computer.
• Networking creating a new dimension of OS.
• A program can be run on different computers

via network.
• Should handle controlling security

© Brooks/Cole,
2003

COMPONENTSCOMPONENTS

7.37.3

© Brooks/Cole,
2003

Figure 7-2

Components of an operating system

© Brooks/Cole,
2003

Memory Manager:

• Prevent “running out of the memory” problem.
• mono-programming
• multi-programming

© Brooks/Cole,
2003

Figure 7-3

Monoprogramming

• The whole program is in
memory for execution.

• When finished, replace by
another program.

• Program must fit memory.
• One program is running, no

other program can be
executed.
– Not efficient especially for

I/O waiting.

© Brooks/Cole,
2003

Figure 7-4
Multiprogramming

• More programs in memory.
• Executed concurrently.
• Non-swapping:

– Program remains in memory
for the duration of execution.

• Swapping:
– program can be swapped

between memory and disk.

© Brooks/Cole,
2003

Figure 7-5

Categories of multiprogramming

© Brooks/Cole,
2003

Figure 7-6
Partitioning

© Brooks/Cole,
2003

Partitioning

• Memory divide into variable length partitions.
• Each partition holds one program.
• A program occupy contiguous locations.
• CPU switches

– encounter an I/O operation
– the execution time has expired.

• Problem:
– Memory holes appear after programs are replaced.
– Remove the holes create extra overhead.

© Brooks/Cole,
2003

Figure 7-7
Paging

© Brooks/Cole,
2003

Paging
• Improve the efficiency of the partitioning.
• Memory is divided into frames.
• Program is divided into pages.
• Pages can be loaded into non-contiguous

frames.
• Problem:
• The program needs to wait when there are not

enough non-occupied frames.

© Brooks/Cole,
2003

Demanded Paging

• Does require that entire program be in memory
for execution.

• Pages can be loaded, executed one by one.

© Brooks/Cole,
2003

Demanded Segmentation

• In paging, a program is dividend into pages.
• A program can be divided into modules.
• Demand segmentation: The program is divided

into segments .
• Demanding Paging and Segmentation:

– Divide a segment into pages.

© Brooks/Cole,
2003

Figure 7-8 Virtual memory
Used in Swapping technique

© Brooks/Cole,
2003

Process Manager
• Program: A set of instructions written by a

programmer.
• Job: A program becomes a job at the time it is

selected for execution until it finishes.
– It may be residing on the disk waiting for loading.
– It may be residing on the memory waiting for

execution.

• Process: A program in execution.
– A process is a job residing in the memory.

© Brooks/Cole,
2003

Figure 7-9 State diagram with the boundaries
between a program, a job, and a process

Swapping and
virtual memory
is not considered
here.

© Brooks/Cole,
2003

Schedulers
• To move a job (process) from one state to

another.
– Job schedulers
– Process schedulers

© Brooks/Cole,
2003

Figure 7-10
Job scheduler

© Brooks/Cole,
2003

Figure 7-11
Process scheduler

Waiting for some event like
I/O to happen.

Event has occurred.

Time expired.

CPU available

© Brooks/Cole,
2003

Figure 7-12
Queues for process management

Queue: waiting list (can use different policies).
Job (process) control blocks store information about
the job (process).
These blocks are stored in queues.

© Brooks/Cole,
2003

Process Synchronization

• Synchronize different processes with different
resources.

• Two problem:
– Deadlock
– Starvation

© Brooks/Cole,
2003

Figure 7-13
An Example of Deadlock

© Brooks/Cole,
2003

Deadlock occurs when the operatingDeadlock occurs when the operating
system allows a process to start system allows a process to start
running without first checking to running without first checking to
see if the required resources are see if the required resources are
ready and allows the process to ready and allows the process to

hold it as long as it wants.hold it as long as it wants.

Note:Note:

© Brooks/Cole,
2003

Deadlock
• Necessary conditions:

– Mutual exclusion (Only one process can hold a
resource)

– Hold a resource even through it can’t use it until
other resource is available.

– No preemption (OS can’t reallocate the resource)
– Circular waiting

• Prevent deadlock:
– Allow a process to run when resources are

available (starvation problem).
– Limit the time a process can hold a resource.

© Brooks/Cole,
2003

Figure 7-15.a
Starvation

© Brooks/Cole,
2003

Figure 7-15.b
Starvation

© Brooks/Cole,
2003

Figure 7-15.c
Starvation

© Brooks/Cole,
2003

Figure 7-16
Dining philosophers

© Brooks/Cole,
2003

Device Manager

• Input/Output manager
• Limit by the number and the speeds of I/O

devices. (slower than CPU and memory)
• Device manager

– Monitor the devices constantly
– Scheduling for accessing the I/O devices.

© Brooks/Cole,
2003

File Manager

• File manager control access to the files.
• Access right

– like read only, R/W-able , execute, can’t access

• Supervise the creation, deletion, and
modification of the files.

• Control the naming of the files.
• Storage of the files.
• Backup.

© Brooks/Cole,
2003

User Interface

• A program that accepts the requests from users
or processes and interpret them for the OS.

• UNIX– shell
• GUI (graphical user interface)– window

© Brooks/Cole,
2003

POPULAR OPERATING SYSTEMS:POPULAR OPERATING SYSTEMS:
Unix; Linux; WindowsUnix; Linux; Windows

7.47.4

© Brooks/Cole,
2003

Windows 2000

• Menu-driven operating system
• GUI
• virtual memory
• multiprogramming

© Brooks/Cole,
2003

UNIX

• Portable among different platforms
– written mostly in C program

• A powerful set of utilities that can be
combined by scripts.

• OS includes drivers itself.
• multi-programming
• virtual memory

© Brooks/Cole,
2003

LINUX

• Developed by Linus, Torvalds.
• Also called UNIX clone.

– Similar to UNIX.

• Can be run on PC.

