

Computer Organization

OBJECTIVES

After reading this chapter, the reader should be able to:

- Distinguish between the three components of a computer hardware.
- List the functionality of each component.
- Understand memory addressing and calculate the number of bytes for a specified purpose.
- Distinguish between different types of memories.

Understand how each input/output device works.

Continued on the next slide

OBJECTIVES (continued)

- Understand the systems used to connect different components together.
- Understand the addressing system for input/output devices.
- Understand the program execution and machine cycles.
- Distinguish between programmed I/O, interrupt-driven I/O and direct memory access (DMA).
- Understand the two major architectures used to define the instruction sets of a computer: CISC and RISC.

Computer hardware (subsystems)

CPU

Three Major Parts of CPU

- Arithmetic logic unit (ALU).
 - Arithmetic operations
 - Logical operations
- Register
 - Data Registers
 - Instruction registers
 - Program counter
- Control Unit

Main Memory

- A collection of storage allocations, each with a unique identifier called the address.
- Word: Data are transferred from memory in groups of bits called words.
- Address space: The total number of uniquely identifiable locations.

Table 5.1Memory units

Unit	Exact Number of bytes	Approximation
	2^{10} bytes 2^{20} bytes 2^{30} bytes 2^{40} bytes 2^{50} bytes	10^3 bytes 10^6 bytes 10^9 bytes 10^{12} bytes 10^{15} bytes
	2^{60} bytes	10^{18} bytes

Main memory

Memory addresses are defined using unsigned binary integers.

Example 1

A computer has 32 MB (megabytes) of memory. How many bits are needed to address any single byte in memory?

Solution

The memory address space is 32 MB, or 2^{25} ($2^5 x 2^{20}$). This means you need $\log_2 2^{25}$ or 25 bits, to address each byte.

Example 2

A computer has 128 MB of memory. Each word in this computer is 8 bytes. How many bits are needed to address any single word in memory?

Solution

The memory address space is 128 MB, which means 2^{27} . However, each word is 8 (2^3) bytes, which means that you have 2^{24} words. This means you need $\log_2 2^{24}$ or 24 bits, to address each word.

Memory Types

- RAM (Random access memory):
 - SRAM (Static RAM) (flip-flop gates)
 - DRAM (Dynamic RAM)
- ROM (Read only memory)
 - PROM (programmable)
 - EPROM (erasable programmable)
 - EEPROM (electronically erasable programmable)

A simple flip-flop circuit

Setting the output of a flip-flop to 1

a. 1 is placed on the upper input.

Setting the output of a flip-flop to 1 (continued)

b. This causes the output of the OR gate to be 1 and, in turn, the output of the AND gate to be 1.

Setting the output of a flip-flop to 1

c. The 1 from the AND gate keeps the OR gate from changing after the upper input returns to 0.

Memory hierarchy

Fastest Speed (Registers)

Faster Speed (Cache Memory)

Fast Speed (Main Memory)

Cache

Input/ Output

- Non-storage devices
 - Keyboards, mouses
 - Monitors
 - Printers
- Storage device
 - Cheaper than main memory
 - Contents are not erased when power is off.
 - Either magnetic or optical.

Magnetic Storage devices

- Magnetic disk
 - Random access device
 - Expense: Tape<Disk<memory</p>
- Magnetic tape
 - Sequential access device
 - Cheap
 - Store large amount of data

Physical layout of a magnetic disk

Surface organization of a disk

A random access device.

Performance: Rotational speed, seek time, transfer time

Mechanical configuration of a tape

A sequential access device.

Surface organization of a tape

dok y

9 tracks store 8 data bits and 1 correction bit.

No addressing mechanism to access each block. Performance: Slower than magnetic disk but cheaper. It is used to back up large amounts of data.

Optical Storage devices

- Use laser to store and retrieve data
- Follow the invention of the CD (compact disc)
- CD-ROM
- CD- R
- CD-RW
- DVD

CD-ROM

- Compact disc read-only memory
- Follow CD technology.
- Expensive in creating master disc.
- Economical when mass produced.

Creation and use of CD-ROM

Create Master disc.
 Pit and land represent 0 and 1.
 Create mold by hymning

- 2. Create mold by bumping.
- 3. Polycarbonate resin(碳酸鹽樹)
 脂) is injected to produce the same pits/lands as master disc.
 Add reflective, protective, and label layer.
 Reflective layer is made of

Reflective layer is made of aluminum.

CD-ROM Reading

- Use low power laser beam.
- Passing through lands
 - the light is reflected by reflective layer
- Passing through pits
 - Reflected twice
 - pit boundary and reflective layer
 - Destructive effect: pit depth=1/4 beam wavelength.

Table 5.2CD-ROM speeds

Speed	Data Rate		Approximation
	153,600	bytes per second	150 KB/s
	307,200	bytes per second	300 KB/s
	614,400	bytes per second	600 KB/s
	921,600	bytes per second	900 KB/s
	1,228,800	bytes per second	1.2 MB/s
	1,843,200	bytes per second	1.8 MB/s
	2,457,600	bytes per second	2.4 MB/s
	3,688,400	bytes per second	3.6 MB/s
	4,915,200	bytes per second	4.8 MB/s
	6,144,000	bytes per second	6 MB/s

CD-ROM format

Each byte is stored by a symbol by using Hamming code as the error correction code.

Sector (98 frames)

CD-R

- Compact disc recordable
- Allow users to create few disks without the expense involved in creating CD-ROM
- Useful for backup
- Write once, read many (WORM)
- CD-R can be read as the CD-ROM is.
- The format for CD-R and CD-ROM are the same.

Making a CD-R

CD-RW

- Compact disc rewritable
- Also called erasable optical disc
- Can be rewritten for many times.
- Reading: the same as CD-R
- Format: the same as CD-R
- More expensive than CD-R
- Not so popular as CD-R

Making a CD-RW

DVD

- Digital versatile disc (DVD)
- Large capacity:
 - Pits are smaller: 0.4 micron instead of 0.8
 - Tracks are closer
 - Use red laser beam instead of infrared.
 - Use two record layers. Single side or double side.
- Use MPEG technology, it can hold 133 min. video program.

Table 5.3DVD capacities

Connecting CPU and memory using three buses

Three Buses that connect CPU and Memory

- All are made of several wires, each carrying 1 bit at a time.
- Data bus:
 - The number of wires depends on the size of the word.
 - -32 bits=>4 bytes
- Address bus:
 - Access particular word in the memory.
 - -2^n word memory=> n wires.
- Control bus:
 - Carry communication between CPU and memory.
 - M control lines determine 2^m operations.

Connecting I/O devices to the buses

Connecting I/O

• I/O devices can't be directly connected to the buses.

Different nature:

CPU and memory are electronic devices.

I/O are electromechanical, magnetic, optical.

Speed is slower.

Use I/O controllers as the interface.

I/O controllers

- Parallel
 - Has several connections.
 - Several bits can be transmitted at a time.
 - Like SCSI (Small Computer System Interface)
- Serial
 - Has one connection
 - FireWire (IEEE1394)
 - USB

SCSI controller (Small Computer System Interface)

A SCSI controller

FireWire controller (IEEE 1394) (Up to 50 MB per second)

Memory

An IEEE 1394 port

CPU

USB controller(Universal Serial Bus) Speed up to 1.5M/Sec

Memory ÷ ÷

A USB reader

Address I/O devices

- CPU transfer data between
 - main memory and I/O devices
 - Identified by the instructions.
- Isolated I/O
 - Memory and I/O access use different instructions.
 - Address overlap
- mamory-mapped I/O
 - Memory and I/O access use the same instructions.
 - Address not overlap
 - Advantage: Fewer instructions.
 - Disadvantage: Some address space is used by devices.

Isolated I/O addressing

Memory-mapped I/O addressing

Program Execution

- General-purpose computers use a set of instructions to process data.
 - Called program.
 - Program and data are stored in memory when executed.
- CPU repeats machine cycles to execute instructions.

Steps of a cycle

Three steps in a machine-cycle

- Fetch
 - CPU fetch a instruction into instruction register.
 - The address of next instruction is held in program counter.
- Decode
 - The instruction is decoded by the control unit.
- Execute
 - Execute the instruction being decoded.

An example of Machine Cycle Contents of memory and register before execution

Contents of memory and registers after each cycle

a. After first instruction

Figure 5-23.b

Contents of memory and registers after each cycle

b. After second instruction

Figure 5-23.c

Contents of memory and registers after each cycle

c. After third instruction

Contents of memory and registers after each cycle

d. After fourth instruction

Transfer data from I/O to CPU and Memory

- I/O devices operate at much slower speed than the CPU and memory.
- CPU needs to synchronized with the I/O.
- Three methods
 - Programmed I/O
 - CPU wait for I/O
 - Interrupt driven I/O
 - CPU inform by the I/O devices by interrupts when I/O devices finish.
 - Direct memory access
 - Transfer a large block of data between high speed I/O and memory.
 - DMA controller required.

Programmed I/O

CPU check the I/O status constantly. CPU time is wasted checking the status. **Interrupt-driven I/O**

Figure 5-25

DMA connection to the general bus

DMA input/output

Two different architectures

- CISC (Complex Instruction Set Computer)
 - A large set of instructions, include complex instructions.
 - Program in CISC is simple.
 - The circuits in CPU are complex.
 - To reduce the circuit complexity
 - Micro-operations-> executed by CPU
 - Micomemory->Store the instructions.
 - Intel Pentium series CPU
- RISC (Reduced Instruction Set Computer)
 - Small set of instructions.
 - Complex operations simulated by simple ones.
 - Apple computer PowerPC