Chapter 4

Operations

on
Bits

$O_{\text {BJectives }}$

After reading this chapter, the reader should be able to:

\square Apply arithmetic operations on bits when the integer is represented in two's complement.
\square Apply logical operations on bits.
\square Understand the applications of logical operations using masks.
\square Understand the shift operations on numbers and how a number can be multiplied or divided by powers of two using shift operations.

Operations on bits

4.1

ARITHMETIC OPERATIONS

Table 4.1 Adding bits

Q

Rule of Adding Integers in Two's Complement

Add 2 bits and propagate the carry to the next column. If there is a final carry after the leftmost column addition, discard it.

Example 1

Add two numbers in two's complement representation: $(+17)+(+22) \rightarrow(+39)$

Solution

Carry1

$$
\begin{aligned}
& \begin{array}{lllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & + \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 &
\end{array} \\
& \begin{array}{llllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & \boldsymbol{O} & 39
\end{array}
\end{aligned}
$$

Result

Example 2

Add two numbers in two's complement representation: $(+24)+(-17) \rightarrow(+7)$

```
Solution
Carry 
0
1 1 1 1 0
Result
\(\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & \boldsymbol{\rightarrow}\end{array}+7\)
```


Example 3

Add two numbers in two's complement representation: $(-35)+(+20) \rightarrow(-15)$

Solution

Carry

$$
\begin{array}{lllllllllll}
& & 1 & 1 & 1 & & & & & \\
1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & + & \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & & \\
& & & & & & & & & \\
\hdashline--------------------------15 & & & \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & \rightarrow & -15
\end{array}
$$

Result

簡要解釋爲何two＇s complement

可以這樣做運算

- 假設是 n bits
- 正數 + 正數（和一般情況一樣）
- 負數 $(-x)+$ 負數 $(-y)$
$-x$ 在two＇s complement表示値爲 $2 n-x$
－y在two＇s complement表示値爲 2n－y

$$
\begin{aligned}
& 2 \mathrm{n}-\mathrm{x}+2 \mathrm{n}-\mathrm{y} \underset{\uparrow}{=2 \mathrm{n}}+\underset{+(2 \mathrm{n}-(\mathrm{x}}{\mathrm{t}} \mathrm{y})) \\
& \text { Carry (進位) } \\
& \text { - (} \mathrm{x}+\mathrm{y} \text {) 的two's } \\
& \text { complement表示法 }
\end{aligned}
$$

簡要解釋爲何two＇s complement可以這樣做運算（續前頁）

- 正數（x）＋負數（－y）
- y在two＇s complement表示値爲 2n－y

得 $2 n+x-y$
（1）$x>=y$
$\mathrm{x}-\mathrm{y}$ 爲正値； 2 n 爲進位
－（2）$x<y$
$2 n+x-y=2 n-(y-x)$

Example 4

Add two numbers in two's complement representation: $(+127)+(+3) \rightarrow(+130)$

```
Solution
```

Carry $\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

0	1	1	1	1	1	1	1	+
0	0	0	0	0	0	1	1	

Result $1 \begin{array}{lllllllllll} & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \boldsymbol{\rightarrow} & \mathbf{1 2 6} & \text { (Error) }\end{array}$ An overflow has occurred.

Q Note:

When you do arithmetic operations on numbers in a computer, remember that each number and the result should be in the range defined by the bit allocation.

Overflow Detection

- Consider $-7+-2$ Overflow when these two bits are not equal

- $-7+(-2)=-9$

Example 5

Subtract 62 from 101 in two's complement:

$$
(+101)-(+62) \longleftrightarrow(+101)+(-62)
$$

Solution

Carry 11

$$
\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & + \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 &
\end{array}
$$

Result $\quad \begin{array}{llllllllll}0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & \boldsymbol{\rightarrow} & 39\end{array}$
The leftmost carry is discarded.

Example 6

Add two floats:
01000010010110000000000000000000
01000001001100000000000000000000

Solutiora

The exponents are 5 and 3. The numbers are:
$+2^{5} x 1.1011$ and $+2^{3} x 1.011$
Make the exponents the same.
$\left(+2^{5} x\right.$ 1.1011 $)+\left(+2^{5} x\right.$ 0.01011) $\rightarrow+2^{5} x 10.00001$
After normalization $+2^{6} x$ 1.000001, which is stored as:
010000101000001000000000000000000

4.2

LOGICAL OPERATIONS

Unary and binary operations

a. Unary operator

b. Binary operator

Figure 4-4

Logical operations

Conventions for Boolean Algebra

- Conventions:
$-1=$ True, $0=$ False
- H=> (High voltage), L=>(Low voltage)
- Logic convention
- Positive logic convention

$$
-\mathrm{H}=1=\mathrm{T}, \mathrm{~L}=0=\mathrm{F}
$$

- Negative logic convention

$$
\text { - } \mathrm{H}=0=\mathrm{F}, \mathrm{~L}=1=\mathrm{T}
$$

Figure 4-5

Truth tables

NOT

\mathbf{x}	NOTx
0	1
1	0

OR

\mathbf{x}	\mathbf{y}	\mathbf{x}
0	0	OR \mathbf{y}
0	1	0
1	0	1
1	1	

AND

\mathbf{x}	\mathbf{y}	\mathbf{x} AND \mathbf{y}
0	0	0
0	1	0
1	0	0
1	1	1

XOR

\mathbf{x}	\mathbf{y}	$\mathbf{x} \mathbf{X O R} \mathbf{y}$
0	0	0
0	1	1
1	0	1
1	1	0

NOT operator

Example 7

Use the NOT operator on the bit pattern 10011000

Target

10011000
NOT

Result
01100111

Figure 4-7

AND operator

Example 8

Use the AND operator on bit patterns 10011000 and 00110101 .

Solutions

Target
10011000 AND
00110101

Result
00010000

Inherent rule of the AND operator

If a bit in one input is zero, then the result is zero.
(0) AND (X)

(0)
(X) AND
(0)

(0)

Figure 4-9

OR operator


```
Example 9
```

Use the OR operator on bit patterns 10011000 and 00110101

Target
10011000 OR
00110101

Result
10111101

Inherent rule of the OR operator

If a bit in one input is 1 , then the result is 1 .
(1) OR
(X)

(1)
(X) OR
(1)

(1)

Figure 4-11

XOR operator

Example 10

Use the XOR operator on bit patterns 10011000 and 00110101 .

Solution

Target
10011000 XOR
00110101

Result
10101101

Figure 4-12

Inherent rule of the XOR operator

(1) XOR (X) $\longrightarrow \operatorname{NOT}(X)$
$(\mathrm{X}) \mathrm{XOR}(1) \longrightarrow \operatorname{NOT}(\mathrm{X})$

More about XOR

－一連串的bits做 XOR，若奇數個1，則結果爲1；若偶數個1則結果爲0

1	
1	
	0
XOR	1
	0
1	

Mask

Use Mask to unset, set, or reverse the bit by ANDed, ORed, and XORed.

Figure 4-14

Example of unsetting specific bits

Example 11

Use a mask to unset (clear) the 5 leftmost bits of a pattern. Test the mask with the pattern 10100110.

Solution

The mask is 00000111.

Target
 10100110 AND
 Mask
 00000111

Result
00000110

Example 12

Imagine a power plant that pumps water to a city using eight pumps. The state of the pumps (on or off) can be represented by an 8 -bit pattern. For example, the pattern 11000111 shows that pumps 1 to 3 (from the right), 7 and 8 are on while pumps 4,5 , and 6 are off. Now assume pump 7 shuts down. How can a mask show this situation?

Solution on the next slide.

Solutiont

Use the mask 10111111 to AND with the target

 pattern. The only 0 bit (bit 7) in the mask turns off the seventh bit in the target.Target Mask
Result 11000111 AND
10111111
10000111

Figure 4-15

Example of setting specific bits

Example 13

Use a mask to set the 5 leftmost bits of a pattern.
Test the mask with the pattern 10100110.

Solution

The mask is 11111000.
Target Mask 10100110
11111000
OR

Result 11111110

Example 14

Using the power plant example, how can you use a mask to to show that pump 6 is now turned on?

Solutions

Use the mask 00100000.
Target
10000111
OR
Mask
00100000

Result
10100111

Example of flipping specific bits

Example 15

Use a mask to flip the 5 leftmost bits of a pattern. Test the mask with the pattern 10100110.

Solutiond

Target Mask

10100110 XOR
11111000

Result
01011110

SHIFT OPERATIONS

Shift operations

Show how you can divide or multiply a number by 2 using shift operations.

Solusiosk

If a bit pattern represents an unsigned number, a right-shift operation divides the number by two. The pattern 00111011 represents 59. When you shift the number to the right, you get 00011101 , which is 29 . If you shift the original number to the left, you get $\mathbf{0 1 1 1 0 1 1 0}$, which is 118 .

Example 17

Use a combination of logical and shift operations to find the value (0 or 1) of the fourth bit (from the right).

Solution

Use the mask 00001000 to AND with the target to keep the fourth bit and clear the rest of the bits.

Continued on the next slide

Target	abcdefgh	AND
Mask	00001000	

Result 0000 e 000
Shift the new pattern three times to the right

$0000 \mathrm{e} 000 \rightarrow 00000 \mathrm{e} 00 \rightarrow 000000 \mathrm{e} 0 \rightarrow 0000000 \mathrm{e}$

Now it is easy to test the value of the new pattern as an unsigned integer. If the value is 1 , the original bit was 1 ; otherwise the original bit was 0 .

