Chapter 4

Operations
on
Bits

OBJECTIVES

After reading this chapter, the reader should
be able to:

Apply arithmetic operations on bits when the integer is
represented in two's complement.

Apply logical operations on bits.

Understand the applications of |ogical operations using masks.

Understand the shift operations on numbers and how a number
can be multiplied or divided by powers of two using shift
operations.

Figure4-1

Operations on bits

Bit
Operations

Arithmetic | Logical I

ARITHMETIC
OPERATIONS

Table4.1 Adding bits

=

m Note:

Rule off Adding Integers In
Two’s Complement

Add 2 bits and propagate the carry
to the next column. If there Is a final
carry after the leftmost column
addition, discard It.

Example 1 ‘

Add two numbers In two's complement
representation; (+17) + (+22) = (+39)

Solution

Carry

Result 001 001 1 1 =3

Example 2 ‘

Add two numbers In two's complement
representation: (+24) + (-17) = (+7)

Solution

Result O0O0 OO0 1 1 1 = +7

Example 3 ‘

Add two numbers In two's complement
representation:; (-35) + (+20) = (-15)

Solutlon

Carry 1 1 1
1101 1 1 0 1 +
O00 1 01 O O

S = fntwo’ s compl ement
A DOEBRSCE H

o EE%EnN bits
TR+ RS (RO— e TE i —75%)
285 (-x) + 28 (-y)

-X£AFtwo’' s complementZ= ~fE R 2n-X
-yAFtwo' s complementz R E RS 2n-y

2n-X+2n-y = 2n+ (2n - (X+Y))

! AN

Carry (E(i7) -(X+Y)FtWO' S
complementsE ik

R AR B rftwo’ S compl ement
A DUEFHGERE. (1T H)

o 1REH(X) + EHEL(-y)
-YAFtwOo’' s complementZ= ~ME R 2n-y

- 2n+x-y

(1) x>=y
X-yEs IEfH; 2nEs e

¢« (Ax<y

. 2n+x-y = 2n-(y-X)

Example 4 ‘

Add two numbers In two's complement
representation: (+127) + (+3) = (+130)

Solution

Resut 1 00 O 0 0 1 0O =»-126(Error)
An overflow has occurred.

Range of numbers in two’s

complement
representation

m Note:

\WWhen you do arithmetic operations on
numbers in a computer, remember that

each number and the result should be
In the range defined by the bit allocation.

Overflow Detection

COnSi der - 7+ - 2 Overflow when these two bits are not equal
/

1 000 (Carry bits)
1 001 (-7)
+ 1110 (-2)

1 0111
Ignore Ias{;:arry bit

-7+(-2)=-9 |

‘ Example 5 ‘

Subtract 62 from 101 Iin two's complement:
(+101) - (+62) €&=> (+101) + (-62)

Solution

Cary 1

Result 001 001 1 1 = 39
The leftmost carry Is discarded.

Example 6

Add two floats:
0 10000100 10110000000000000000000
0 10000010 01100000000000000000000

Solution

The exponentsare 5 and 3. The numbers are:

+2° x 1.1011 and +23 x 1.011

Make the exponents the same.

(+2° x 1.1011)+ (+2°> x 0.01011) = +2°x 10.00001
After normalization +2°x 1.000001, which is stored as:
0 10000101 000001000000000000000000

Figure4-3

Unary and binary operations

Input——» Unary Output

a. Unary operator

Input——»
Binary Output

Input——)

b. Binary operator

Figure4-4

L ogical operations

Logical

Operation

‘ Unary | ‘ Binary |
NOT ‘ AND I ‘ OR I XOR |

Conventions for Boolean Algebra

« Conventions:
— 1=True, O=False
— H=> (High voltage), L=>(Low voltage)
— Logic convention

 Positive logic convention
— H=1=T, L=0=F

* Negative logic convention
— H=0=F, L=1=T

Figure4-5

Truth tables
AND
X y x ANDy
NOT 0 0 0
0 1 0
0 1 1 0 0
1 0 1 1 1
OR XOR
X M x ORYy X y x XORy
0 0 0 0 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Figure4-6

NOT operator

NOT

1 NOT >0

Input

Example 7

Use the NOT operator on the bit pattern 10011000

Solution

Target 10011000 NOT

Result 01100111

Figure4-7

AND operator

Input

AND

Example 8

Use the AND operator on bit patterns 10011000
and 00110101.

Solution

Target 10011000 AND
00110101

Result 00010000

Figure4-8

Inherent rule of the AND operator

If abit inoneinput is zero, then the result is zero.

(0) AND (X) » (0)

(X) AND (0) » (0)

Figure4-9

OR operator

Input
1 --- 0 0

Example 9

Use the OR operator on bit patterns 10011000 and
00110101

Solution

Target 10011000 OR
00110101

Result 10111101

Figure4-10

|nherent rule of the OR operator

If abitinoneinput isl, thentheresultis 1.

(1) OR (X) » (1)

(X) OR (1) » (1)

Figure4-11

XOR operator
Input

XOR Output

Example 10

Use the XOR operator on bit patterns 10011000
and 00110101.

Solution

Target 10011000 XOR
00110101

Result 10101101

Figure4-12

Inherent rule of the XOR operator

(1) XOR (X) » NOT (X)

(X) XOR (1) » NOT (X)

XOR

o |
I8
%*EHH

H‘OHOHH

]

More about XOR

LI5S

N

S HYbitsfiit XOR

%O

e 4R

1, AllfES

Figure4-13

M ask

Binary

Operator Output

Use Mask to unset, set, or reverse the bit
by ANDed, ORed, and XORed.

Figure4-14

Example of unsetting specific bits

AND 0 00 0 0 X XX
Output

Example 11 ‘

Use a mask to unset (clear) the 5 leftmost bits of a
pattern. Test the mask with the pattern 10100110.

Solution

The mask 1s 00000111.

Target 10100110 AND
Mask 00000111

Result 00000110

‘ Example 12 ‘

lmagine a power plant that pumps water to a city
using eight pumps. The state of the pumps (on or
off) can be represented by an 8-bit pattern. For
example, the pattern 11000111 shows that pumps
1 to 3 (from the right), 7 and 8 are on while pumps
4, 5, and 6 are off. Now assume pump 7 shuts
down. How can a mask show this situation?

Solution on the next dide.

Solution

Usethemask 10111111 to AND with the target

pattern. Theonly 0 bit (bit 7) in the mask turns
off the seventh bit in the target.

Target 11000111 AND
Mask 10111111

Result 10000111

Figure4-15

Example of setting specific bits

Example 13

Use amask to set the 5 leftmost bits of a pattern.
Test the mask with the pattern 10100110.

Solution

Themask 1s11111000.

Target 10100110 OR
Mask 11111000

Result 11111110

Example 14

Using the power plant example, how can you use
amask to to show that pump 6 is now turned on?

Solutiorn

Use the mask 00100000.

Target 10000111 OR
Mask 00100000

Result 10100111

Figure4-16

Example of flipping specific bits

Target
X X X X X X X X
HEENNN

XOR X X X X X X XX
Output

Note: X is the complement of X.

11 1 1 1 0 0 0
Mask

Example 15

Use amask to flip the 5 leftmost bits of a pattern.
Test the mask with the pattern 10100110.

Solutiorn
Target 10100110 XOR
Mask 11111000

Result 01011110

Figure 4-17

Shift operations

" . = L ' = ' 1 - & R a .
- 1 L ' N > y c . 5 : : .
. F 1 - £l e .- . w . = 4 5 .
' £ e ' 1 L] = . L - % . 3
- £} e 1 - = 1 ' 0} “ 4 . b 3
' = 3 2 - r - = ' ~ % e 3 3
[r 5 - r 5 1 T . 3 3 i . .) i
Y E ' 2 - a 3 = J . = . . 3
. r 2 £ v ' - = . - . L .
g 1 - ' . 5 .] ' i m I l

Example 16

Show how you can divide or multiply a number by
2 using shift operations.

Solution

|f a bit pattern represents an unsigned number,
a right-snift operation dividesthe number by
two. The pattern 00111011 r epresents 59.
When you shift the number to theright, you
get 00011101, which is 29. If you shift the
original number to theleft, you get 01110110,
which is 118.

‘ Example 17 ‘

Use acombination of logical and shift operations
to find the value (0 or 1) of the fourth bit (from the
right).

Solution

Use the mask 00001000 to AND with the target to
keep the fourth bit and clear the rest of the bits.

Continued on the next dide

=olution (coninued)

Target abcd efgh AND
Mask 00001000
Result 0000e 000

Shift the new pattern threetimesto theright
0000e000 =» 00000e00 =» 000000e0 =» 0000000e

Now it Iseasy to test the value of the new pattern as
an unsigned integer. |If thevalueis 1, theoriginal bit
was 1, otherwisethe original bit wasO.

