
Chapter 4

Operations
on

Bits

Apply arithmetic operations on bits when the integer isApply arithmetic operations on bits when the integer is
represented in tworepresented in two’’s complement.s complement.

Apply logical operations on bits.Apply logical operations on bits.

Understand the applications of logical operations using masks.Understand the applications of logical operations using masks.

After reading this chapter, the reader should After reading this chapter, the reader should
be able to:be able to:

OOBJECTIVESBJECTIVES

Understand the shift operations on numbers and how a numberUnderstand the shift operations on numbers and how a number
can be multiplied or divided by powers of two using shiftcan be multiplied or divided by powers of two using shift
operations.operations.

Figure 4-1

Operations on bits

ARITHMETICARITHMETIC
OPERATIONSOPERATIONS

4.14.1

Table 4.1 Adding bitsTable 4.1 Adding bits

Number of 1sNumber of 1s

None
One
Two
Three

ResultResult

0
1
0
1

CarryCarry

1
1

Rule of Adding Integers in Rule of Adding Integers in
TwoTwo’’s Complements Complement

Add 2 bits and propagate the carry Add 2 bits and propagate the carry
to the next column. If there is a final to the next column. If there is a final

carry after the leftmost column carry after the leftmost column
addition, discard it. addition, discard it.

Note:Note:

Example 1Example 1

Add two numbers in two’s complement
representation: (+17) + (+22) (+39)

SolutionSolution

Carry 1

0 0 0 1 0 0 0 1 ++
0 0 0 1 0 1 1 0

Result 0 0 1 0 0 1 1 1 39

Example 2Example 2

Add two numbers in two’s complement
representation: (+24) + (-17) (+7)

SolutionSolution

Carry 1 1 1 1 1

0 0 0 1 1 0 0 0 ++
1 1 1 0 1 1 1 1

Result 0 0 0 0 0 1 1 1 +7

Example 3Example 3

Add two numbers in two’s complement
representation: (-35) + (+20) (-15)

SolutionSolution

Carry 1 1 1

1 1 0 1 1 1 0 1 ++
0 0 0 1 0 1 0 0

Result 1 1 1 1 0 0 0 1 -15

������two’s complement
��	
��

• ���n bits

• �� + �� (���	
��)

• ��(-x) + ��(-y)
-xtwo’s complement���� 2n-x
-ytwo’s complement���� 2n-y

2n - x + 2n - y = 2n + (2n - (x+y))

Carry (��) -(x+y)�two’s
complement���

������two’s complement
��	
�� (���)

• �� (x) + �� (-y)
-ytwo’s complement���� 2n-y
� 2n+x-y
(1) x >= y

x-y���; 2n���

• (2) x <y

• 2n+x-y = 2n-(y-x)

Example 4Example 4

Add two numbers in two’s complement
representation: (+127) + (+3) (+130)

SolutionSolution

Carry 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 ++
0 0 0 0 0 0 1 1

Result 1 0 0 0 0 0 1 0 --126 (Error)126 (Error)

An overflow has occurred. An overflow has occurred.

Range of numbers in twoRange of numbers in two’’s s
complementcomplement

representationrepresentation

-- (2(2NN--11)) -------------------- 0 0 ---------------------- +(2+(2NN--11 ––1)1)

Note:Note:

When you do arithmetic operations onWhen you do arithmetic operations on
numbers in a computer, remember thatnumbers in a computer, remember that
each number and the result should beeach number and the result should be

in the range defined by the bit allocation. in the range defined by the bit allocation.

Note:Note:

Overflow Detection
• Consider -7+ -2

• 1 0 0 0 (Carry bits)

• 1 0 0 1 (-7)

• + 1 1 1 0 (-2)

• 1 0 1 1 1

• -7+(-2)=-9

Overflow when these two bits are not equal

Ignore last carry bit

Example 5Example 5

Subtract 62 from 101 in two’s complement:
(+101) - (+62) (+101) + (-62)

SolutionSolution

Carry 1 1

0 1 1 0 0 1 0 1 ++
1 1 0 0 0 0 1 0

Result 0 0 1 0 0 1 1 1 39
The leftmost carry is discarded.

Example 6Example 6

Add two floats:
0 10000100 10110000000000000000000
0 10000010 01100000000000000000000

SolutionSolution

The exponents are 5 and 3.The exponents are 5 and 3. The numbers are:The numbers are:
+2+25 5 x 1.1011 and +2x 1.1011 and +233 x 1.011x 1.011
Make the exponents the same.Make the exponents the same.
(+2(+25 5 x 1.1011)+ (+2x 1.1011)+ (+255 x 0.01011) x 0.01011) +2+255 x 10.00001x 10.00001
After normalization After normalization +2+266 x 1.000001x 1.000001, which is stored as:, which is stored as:
0 10000101 0000010000000000000000000 10000101 000001000000000000000000

LOGICALLOGICAL
OPERATIONSOPERATIONS

4.24.2

Figure 4-3

Unary and binary operations

Figure 4-4

Logical operations

Conventions for Boolean Algebra

• Conventions:
– 1=True, 0=False

– H=> (High voltage), L=>(Low voltage)

– Logic convention
• Positive logic convention

– H=1=T, L=0=F

• Negative logic convention
– H=0=F, L=1=T

Figure 4-5

Truth tables

Figure 4-6

NOT operator

Example 7Example 7

Use the NOT operator on the bit pattern 10011000

SolutionSolution

Target Target 1 0 0 1 1 0 0 01 0 0 1 1 0 0 0 NOTNOT

Result Result 0 1 1 0 0 1 1 10 1 1 0 0 1 1 1

Figure 4-7

AND operator

Example 8Example 8

Use the AND operator on bit patterns 10011000
and 00110101.

SolutionSolution

Target Target 1 0 0 1 1 0 0 01 0 0 1 1 0 0 0 ANDAND
0 0 1 1 0 1 0 10 0 1 1 0 1 0 1

Result Result 0 0 0 1 0 0 0 00 0 0 1 0 0 0 0

Figure 4-8

Inherent rule of the AND operator

If a bit in one input is zero, then the result is zero.

Figure 4-9

OR operator

Example 9Example 9

Use the OR operator on bit patterns 10011000 and
00110101

SolutionSolution

Target Target 1 0 0 1 1 0 0 01 0 0 1 1 0 0 0 OROR
0 0 1 1 0 1 0 10 0 1 1 0 1 0 1

Result Result 1 0 1 1 1 1 0 11 0 1 1 1 1 0 1

Figure 4-10

Inherent rule of the OR operator

If a bit in one input is 1, then the result is 1.

Figure 4-11

XOR operator

Example 10Example 10

Use the XOR operator on bit patterns 10011000
and 00110101.

SolutionSolution

Target Target 1 0 0 1 1 0 0 01 0 0 1 1 0 0 0 XORXOR
0 0 1 1 0 1 0 10 0 1 1 0 1 0 1

Result Result 1 0 1 0 1 1 0 11 0 1 0 1 1 0 1

Figure 4-12

Inherent rule of the XOR operator

More about XOR

• ����bits� XOR, ���	1,
��1;
���	1
��0

1

1

0

1

0

1

XOR

Figure 4-13

Mask

Use Mask to unset, set, or reverse the bit
by ANDed, ORed, and XORed.

Figure 4-14

Example of unsetting specific bits

Example 11Example 11

Use a mask to unset (clear) the 5 leftmost bits of a
pattern. Test the mask with the pattern 10100110.

SolutionSolution

The mask is The mask is 0000011100000111..

Target Target 1 0 1 0 0 1 1 01 0 1 0 0 1 1 0 ANDAND
MaskMask 0 0 0 0 0 1 1 10 0 0 0 0 1 1 1

Result Result 0 0 0 0 0 1 1 00 0 0 0 0 1 1 0

Example 12Example 12

Imagine a power plant that pumps water to a city
using eight pumps. The state of the pumps (on or
off) can be represented by an 8-bit pattern. For
example, the pattern 11000111 shows that pumps
1 to 3 (from the right), 7 and 8 are on while pumps
4, 5, and 6 are off. Now assume pump 7 shuts
down. How can a mask show this situation?

Solution on the next slide.Solution on the next slide.

Use the mask 1Use the mask 100111111 to AND with the target 111111 to AND with the target
pattern. The only 0 bit (bit 7) in the mask turns pattern. The only 0 bit (bit 7) in the mask turns
off the seventh bit in the target.off the seventh bit in the target.

Target Target 1 1 0 0 0 1 1 11 1 0 0 0 1 1 1 ANDAND
MaskMask 1 1 00 1 1 1 1 1 11 1 1 1 1 1

Result Result 1 1 00 0 0 0 1 1 10 0 0 1 1 1

SolutionSolution

Figure 4-15

Example of setting specific bits

Example 13Example 13

Use a mask to set the 5 leftmost bits of a pattern.
Test the mask with the pattern 10100110.

SolutionSolution

The mask is The mask is 1111111111000.000.

Target Target 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 OROR
MaskMask 1 1 1 1 11 1 1 1 1 0 0 00 0 0

Result Result 1 1 1 1 1 1 1 1 1 1 1 1 01 1 0

Example 14Example 14

Using the power plant example, how can you use
a mask to to show that pump 6 is now turned on?

SolutionSolution

Use the mask Use the mask 0000110000000000..

Target Target 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 OROR
MaskMask 0 00 0 11 0 0 0 0 00 0 0 0 0

Result Result 1 0 1 0 11 0 0 1 1 10 0 1 1 1

Figure 4-16

Example of flipping specific bits

Example 15Example 15

Use a mask to flip the 5 leftmost bits of a pattern.
Test the mask with the pattern 10100110.

SolutionSolution

Target Target 1 0 1 0 0 1 1 01 0 1 0 0 1 1 0 XORXOR
MaskMask 1 1 1 1 11 1 1 1 1 0 0 00 0 0

Result Result 0 1 0 1 10 1 0 1 1 1 1 01 1 0

SHIFTSHIFT
OPERATIONSOPERATIONS

4.34.3

Figure 4-17

Shift operations

SolutionSolution

If a bit pattern represents an unsigned number, If a bit pattern represents an unsigned number,
a righta right--shift operation divides the number by shift operation divides the number by
two. The pattern 00111011 represents 59. two. The pattern 00111011 represents 59.
When you shift the number to the right, you When you shift the number to the right, you
get 00011101, which is 29. If you shift the get 00011101, which is 29. If you shift the
original number to the left, you get 01110110, original number to the left, you get 01110110,
which is 118.which is 118.

Example 16Example 16

Show how you can divide or multiply a number by
2 using shift operations.

Example 17Example 17

Use the mask 00001000 to AND with the target to
keep the fourth bit and clear the rest of the bits.

SolutionSolution

Use a combination of logical and shift operations
to find the value (0 or 1) of the fourth bit (from the
right).

Continued on the next slideContinued on the next slide

Solution (continued)Solution (continued)

Target Target a b c d e f g ha b c d e f g h ANDAND
MaskMask 0 0 0 0 10 0 0 0 1 0 0 00 0 0

Result Result 0 0 0 00 0 0 0 ee 0 0 00 0 0

Shift the new pattern three times to the rightShift the new pattern three times to the right

00000000ee000 000 0000000000ee00 00 000000000000ee0 0 00000000000000ee

Now it is easy to test the value of the new pattern as Now it is easy to test the value of the new pattern as
an unsigned integer. If the value is 1, the original bit an unsigned integer. If the value is 1, the original bit
was 1; otherwise the original bit was 0.was 1; otherwise the original bit was 0.

