
Chapter 3

Number
Representation



Convert a number from decimal to binary notation andConvert a number from decimal to binary notation and
vice versa.vice versa.
Understand the different representations of an integer insideUnderstand the different representations of an integer inside
a computer: unsigned, signa computer: unsigned, sign--andand--magnitude, onemagnitude, one’’s complement, s complement, 
and twoand two’’s complement.s complement.

Understand the Excess system that is used to store the Understand the Excess system that is used to store the 
exponential part of a floatingexponential part of a floating--point number.point number.

After reading this chapter, the reader should After reading this chapter, the reader should 
be able to :be able to :

OOBJECTIVESBJECTIVES

Understand how floating numbers are stored inside a computerUnderstand how floating numbers are stored inside a computer
using the exponent and the mantissa.  using the exponent and the mantissa.  



DECIMALDECIMAL
ANDAND

BINARYBINARY

3.13.1



Figure 3-1 Decimal system



Figure 3-2 Binary system
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Figure 3-3 Binary to decimal conversion



Example 1Example 1

Convert the binary number 10011 to decimal.

SolutionSolution

Write out the bits and their weights. Multiply the bit by 
its corresponding weight and record the result. At the end, 
add the results to get the decimal number. 

Binary           1 0 0 1 1
Weights     16      8        4         2        1

-------------------------------------
16  +  0   +   0   +   2    +   1

Decimal 19 



Example 2Example 2

Convert the decimal number 35 to binary.

SolutionSolution

Write out the number at the right corner. Divide the 
number continuously by 2 and write the quotient and the 
remainder. The quotients move to the left, and the 
remainder is recorded under each quotient. Stop when the 
quotient is zero. 

0  1  2  4  8  17  35   Dec.

Binary 1 0 0        0         1           1 



Figure 3-4 Decimal to binary conversion



Figure 3-7 Changing fractions to binary



Example 17Example 17

Transform the fraction 0.875 to binary

SolutionSolution

Write the fraction at the left corner. Multiply the Write the fraction at the left corner. Multiply the 
number continuously by 2 and extract the number continuously by 2 and extract the 
integer part as the binary digit. Stop when the integer part as the binary digit. Stop when the 
number is 0.0.number is 0.0.

0.875  1.750  1.5    1.0   0.0

0     .  1             1              1



Example 18Example 18

Transform the fraction 0.4 to a binary of 6 bits.

SolutionSolution

Write the fraction at the left cornet. Multiply the Write the fraction at the left cornet. Multiply the 
number continuously by 2 and extract the number continuously by 2 and extract the 
integer part as the binary digit. You integer part as the binary digit. You maymay never never 
get the exact binary representation. Stop when get the exact binary representation. Stop when 
you have 6 bits.you have 6 bits.

0.4  0.8  1.6    1.2   0.4  0.8  1.6

0    .  0           1             1             0           0       1
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Figure 3-5 Range of integers



Figure 3-6 Taxonomy of integers



Table 3.1   Range of unsigned integersTable 3.1   Range of unsigned integers

# of Bits # of Bits 
---------

8
16

RangeRange
-------------------------------------
0                                         255
0                                     65,535



Example 3Example 3

Store 7 in an 8-bit memory location.

SolutionSolution

First change the number to binary 111. Add five First change the number to binary 111. Add five 
0s to make a total of N (8) bits, 0s to make a total of N (8) bits, 0000011100000111. The . The 
number is stored in the memory location.number is stored in the memory location.



Example 4Example 4

Store 258 in a 16-bit memory location.

SolutionSolution

First change the number to binary 100000010. First change the number to binary 100000010. 
Add seven 0s to make a total of N (16) bits, Add seven 0s to make a total of N (16) bits, 
00000001000000100000000100000010. The number is stored in the . The number is stored in the 
memory location.memory location.



Table 3.2  Example of storing unsigned integers inTable 3.2  Example of storing unsigned integers in
two different computers two different computers 

((������88--bit; bit; ��������1616--bit)bit)

DecimalDecimal
------------

7
234
258

24,760
1,245,678

88--bit allocationbit allocation
------------
00000111
11101010
overflow
overflow
overflow

1616--bit allocationbit allocation
------------------------------

0000000000000111
0000000011101010
0000000100000010
0110000010111000

overflow



Example 5Example 5

Interpret 00101011 in decimal if the number 
was stored as an unsigned integer. 

SolutionSolution



Signed Number Representation

• Popular signed number representation:
– Sign Magnitude  (SM)

• Easiest one
– Diminished Radix Complement  (DRC)

• 1’s complement
– Radix Complement (RC)

• 2’s complement
• The most popular in digital design 

– Positive numbers has the same representations 
in above mentioned system.



Sign Magnitude Number for 6-bit Word Size

possibilities
2 for zeros:

0  00000
1  00000

for positive and negative numbers

n2

12 1 −−n



Table 3.3   Range of signTable 3.3   Range of sign--andand--magnitude integersmagnitude integers

# of Bits # of Bits 
----------

8
16
32

−127                      −0
−32767                  −0
−2,147,483,647 −0

+0                         +127
+0                     +32767
+0        +2,147,483,647     

RangeRange
--------------------------------------------------------------------------------------------------------------



In signIn sign--andand--magnitude representation, magnitude representation, 
the leftmost bit defines the sign of the the leftmost bit defines the sign of the 

number. If it is 0, the number is number. If it is 0, the number is 
positive.If it is 1, the number is negative. positive.If it is 1, the number is negative. 

Note:Note:



There are two 0s in signThere are two 0s in sign--andand--
magnitude magnitude 

representation: positive and representation: positive and 
negative.negative.

In an 8In an 8--bit allocation:bit allocation:

+0 +0 0000000000000000
--0 0 1000000010000000

Note:Note:



Example 6Example 6

Store +7 in an 8-bit memory location using 
sign-and-magnitude representation.

SolutionSolution

First change the number to binary 111. Add four First change the number to binary 111. Add four 
0s to make a total of N0s to make a total of N--1 (7) bits, 1 (7) bits, 00001110000111. Add . Add 
an extra zero because the number is positive. an extra zero because the number is positive. 
The result is: The result is: 

0000001110000111



Example 7Example 7

Store –258 in a 16-bit memory location 
using sign-and-magnitude representation.

SolutionSolution

First change the number to binary First change the number to binary 100000010.100000010.
Add six 0s to make a total of NAdd six 0s to make a total of N--1 (15) bits, 1 (15) bits, 
000000100000010000000100000010. Add an extra 1 because the . Add an extra 1 because the 
number is negative. The result is: number is negative. The result is: 

11000000100000010000000100000010



Table 3.4  Example of storing signTable 3.4  Example of storing sign--andand--magnitude integers magnitude integers 
in two computersin two computers

DecimalDecimal
------------

+7
-124
+258

-24,760

88--bit allocationbit allocation
------------
00000111
11111100
overflow
overflow

1616--bit allocationbit allocation
------------------------------

0000000000000111
1000000001111100
0000000100000010
1110000010111000



Example 8Example 8

Interpret 10111011 in decimal if the number 
was stored as a sign-and-magnitude integer. 

SolutionSolution

Ignoring the leftmost bit, the remaining bits are Ignoring the leftmost bit, the remaining bits are 
0111011. This number in decimal is 59. The 0111011. This number in decimal is 59. The 
leftmost bit is 1, so the number is leftmost bit is 1, so the number is ––5959..



One’s complement Number for 6-bit Word Size

n2

12 1 −−n

possibilities
2 for zeros:

0  00000
1  11111

for positive and negative numbers



There are two 0s in oneThere are two 0s in one’’s s 
complementcomplement

representation: positive and representation: positive and 
negative.negative.

In an 8In an 8--bit allocation:bit allocation:

+0 +0 0000000000000000
--0 0 1111111111111111

Note:Note:



One’s complement
(�����)

• If the sign is positive (0), no more action is 
needed;

• If the sign is negative, every bit is 
complemented.



Table 3.5   Range of oneTable 3.5   Range of one’’s complement integerss complement integers

# of Bits # of Bits 
---------

8
16
32

−127                     −0
−32767                  −0
−2,147,483,647 −0

+0           +127
+0                       +32767
+0          +2,147,483,647 

RangeRange
--------------------------------------------------------------------------------------------------------------



In oneIn one’’s complement representation, s complement representation, 
the leftmost bit defines the sign of the the leftmost bit defines the sign of the 

number. If it is 0, the number is number. If it is 0, the number is 
positive.If it is 1, the number is negative. positive.If it is 1, the number is negative. 

Note:Note:



Example 9Example 9

Store +7 in an 8-bit memory location using 
one’s complement representation.

SolutionSolution

First change the number to binary 111. Add five  First change the number to binary 111. Add five  
0s to make a total of N (8) bits, 0s to make a total of N (8) bits, 0000011100000111. The . The 
sign is positive, so no more action is needed. The sign is positive, so no more action is needed. The 
result is: result is: 

0000011100000111



Example 10Example 10

Store –258 in a 16-bit memory location 
using one’s complement representation.

SolutionSolution

First change the number to binary First change the number to binary 100000010.100000010.
Add seven 0s to make a total of N (16) bits, Add seven 0s to make a total of N (16) bits, 
00000001000000100000000100000010. The sign is negative, so . The sign is negative, so 
each bit is complemented. The result is: each bit is complemented. The result is: 

11111110111111011111111011111101



Table 3.6  Example of storing oneTable 3.6  Example of storing one’’s complement integers in s complement integers in 
two different computerstwo different computers

DecimalDecimal
------------

+7
−7

+124
−124

+24,760
−24,760

88--bit allocationbit allocation
------------
00000111
11111000
01111100
10000011
overflow
overflow

1616--bit allocationbit allocation
------------------------------

0000000000000111
1111111111111000
0000000001111100
1111111110000011
0110000010111000
1001111101000111



Example 11Example 11

Interpret 11110110 in decimal if the number 
was stored as a one’s complement integer. 

SolutionSolution

The leftmost bit is 1, so the number is negative. The leftmost bit is 1, so the number is negative. 
First complement it . The result is  00001001. First complement it . The result is  00001001. 
The complement in decimal is 9. So the original The complement in decimal is 9. So the original 
number was number was ––99. Note that complement of a . Note that complement of a 
complement is the original number.complement is the original number.



OneOne’’s complement means reversing all s complement means reversing all 
bits. If you onebits. If you one’’s complement a positive s complement a positive 

number, you get the corresponding number, you get the corresponding 
negative number. If you onenegative number. If you one’’s s 

complement a negative number, you get complement a negative number, you get 
the corresponding positive number. If the corresponding positive number. If 

you oneyou one’’s complement a number twice, s complement a number twice, 
you get the original number.  you get the original number.  

Note:Note:



TwoTwo’’s complement is the most common, s complement is the most common, 
the most important, and the most widely the most important, and the most widely 
used representation of integers today.used representation of integers today.

Note:Note:



Two’s complement

• If the sign is positive, no further action is 
needed;

• If the sign is negative, leave all the rightmost 
0s and the first 1 unchanged. Complement the 
rest of the bits

e.g.     00000000001010000000000000101000

11111111110111111111110110001000

����



Two’s complement�����

00000000001010000000000000101000

11111111110111111111110110001000

1.1. 00000000001010000000000000101000

11111111110101111111111111010111

11111111110111111111110110001000

One’s complement

+1

2. 216-00000000001010000000000000101000

1000000000000000010000000000000000

--)  0000000000101000)  0000000000101000

11111111110110001111111111011000



Table 3.7  Range of twoTable 3.7  Range of two’’s complement integerss complement integers

# of Bits # of Bits 
---------

8
16
32

−128                     
−32,768                  
−2,147,483,648

0                           +127
0                       +32,767
0           +2,147,483,647 

RangeRange
--------------------------------------------------------------------------------------------------------------



In twoIn two’’s complement representation, s complement representation, 
the leftmost bit defines the sign of the the leftmost bit defines the sign of the 

number. If it is 0, the number is positive.number. If it is 0, the number is positive.
If it is 1, the number is negative. If it is 1, the number is negative. 

Note:Note:



Example 12Example 12

Store +7 in an 8-bit memory location using 
two’s complement representation.

SolutionSolution

First change the number to binary 111. Add five  First change the number to binary 111. Add five  
0s to make a total of N (8) bits, 0s to make a total of N (8) bits, 0000011100000111.The .The 
sign is positive, so no more action is needed. The sign is positive, so no more action is needed. The 
result is: result is: 

0000011100000111



Example 13Example 13

Store –40 in a 16-bit memory location using two’s 
complement representation.

SolutionSolution

First change the number to binary First change the number to binary 101000.101000. Add Add 
ten 0s to make a total of N (16) bits, ten 0s to make a total of N (16) bits, 
00000000001010000000000000101000. The sign is negative, so . The sign is negative, so 
leave the rightmost 0s up to the first 1 (including leave the rightmost 0s up to the first 1 (including 
the 1) unchanged and complement the rest. The the 1) unchanged and complement the rest. The 
result is: result is: 

11111111110111111111110110001000



Table 3.8  Example of storing twoTable 3.8  Example of storing two’’s complement integers in s complement integers in 
two different computerstwo different computers

DecimalDecimal
------------

+7
−7

+124
−124

+24,760
−24,760

88--bit allocationbit allocation
------------
00000111
11111001
01111100
10000100
overflow
overflow

1616--bit allocationbit allocation
------------------------------

0000000000000111
1111111111111001
0000000001111100
1111111110000100
0110000010111000
1001111101001000



There is only one 0 in twoThere is only one 0 in two’’s s 
complement: complement: 

In an 8In an 8--bit allocation:bit allocation:

0 0 0000000000000000

Note:Note:



Example 14Example 14

Interpret 11110110 in decimal if the number 
was stored as a two’s complement integer. 

SolutionSolution

The leftmost bit is 1. The number is negative. The leftmost bit is 1. The number is negative. 
Leave 10 at the right alone and complement the Leave 10 at the right alone and complement the 
rest. The result is 00001010. The tworest. The result is 00001010. The two’’s s 
complement number is 10. So the original complement number is 10. So the original 
number was number was ––1010..



TwoTwo’’s complement can be achieved by s complement can be achieved by 
reversing all bits except the rightmost bits up to reversing all bits except the rightmost bits up to 
the first 1 (inclusive). If you twothe first 1 (inclusive). If you two’’s complement s complement 
a positive number, you get the corresponding a positive number, you get the corresponding 
negative number. If you twonegative number. If you two’’s complement a s complement a 
negative number, you get the corresponding negative number, you get the corresponding 
positive number. If you twopositive number. If you two’’s complement a s complement a 
number twice, you get the original number.number twice, you get the original number.

Note:Note:



Table 3.9   Summary of integer representationTable 3.9   Summary of integer representation

Contents of Contents of 
MemoryMemory

------------
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

UnsignedUnsigned

------------------------
00
11
22
33
44
55
66
77
88
99

1010
1111
1212
1313
1414
1515

SignSign--andand--
MagnitudeMagnitude
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+0+0+0+0+0+0+0+0
+1+1+1+1+1+1+1+1
+2+2+2+2+2+2+2+2
+3+3+3+3+3+3+3+3
+4+4+4+4+4+4+4+4
+5+5+5+5+5+5+5+5
+6+6+6+6+6+6+6+6
+7+7+7+7+7+7+7+7
−−−−−−−−00000000
−−−−−−−−11111111
−−−−−−−−22222222
−−−−−−−−33333333
−−−−−−−−44444444
−−−−−−−−55555555
−−−−−−−−66666666
−−−−−−−−77777777

OneOne’’ss
ComplementComplement
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+0+0+0+0+0+0+0+0
+1+1+1+1+1+1+1+1
+2+2+2+2+2+2+2+2
+3+3+3+3+3+3+3+3
+4+4+4+4+4+4+4+4
+5+5+5+5+5+5+5+5
+6+6+6+6+6+6+6+6
+7+7+7+7+7+7+7+7
−−−−−−−−77777777
−−−−−−−−66666666
−−−−−−−−55555555
−−−−−−−−44444444
−−−−−−−−33333333
−−−−−−−−22222222
−−−−−−−−11111111
−−−−−−−−00000000

TwoTwo’’ss
ComplementComplement

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
+0+0+0+0+0+0+0+0
+1+1+1+1+1+1+1+1
+2+2+2+2+2+2+2+2
+3+3+3+3+3+3+3+3
+4+4+4+4+4+4+4+4
+5+5+5+5+5+5+5+5
+6+6+6+6+6+6+6+6
+7+7+7+7+7+7+7+7
−−−−−−−−88888888
−−−−−−−−77777777
−−−−−−−−66666666
−−−−−−−−55555555
−−−−−−−−44444444
−−−−−−−−33333333
−−−−−−−−22222222
−−−−−−−−11111111



EXCESSEXCESS
SYSTEMSYSTEM

3.53.5



Usage

• It is used to store the exponential value of a 
fraction.
– See later section: Floating number representation.

• Usually use       or  n2 12 −n



Example 15Example 15

Represent –25 in Excess_127 using an 8-bit 
allocation.

SolutionSolution

First add 127 to get 102. This number in First add 127 to get 102. This number in 
binary is 1100110. Add one bit to make it 8 binary is 1100110. Add one bit to make it 8 
bits in length. The representation is bits in length. The representation is 
0110011001100110..



Example 16Example 16

Interpret 11111110 if the representation is 
Excess_127.

SolutionSolution

First change the number to decimal. It First change the number to decimal. It 
is 254. Then subtract 127 from the is 254. Then subtract 127 from the 
number. The result is decimal number. The result is decimal 127127..



FLOATINGFLOATING--POINTPOINT
REPRESENTATIONREPRESENTATION

3.53.5



Table 3.10   Example of normalizationTable 3.10   Example of normalization

Original NumberOriginal Number
------------

+1010001.1101
-111.000011

+0.00000111001
-001110011

MoveMove
------------

6
2

6 
3 

Original NumberOriginal Number
------------

+1010001.1101
−111.000011

+0.00000111001
−0.001110011

Normalized
------------

+26 x 1.01000111001
−22 x 1.11000011
+2−6   x 1.11001
−2−3 x 1.110011



Figure 3-8

IEEE standards for floating-point representation



Example 19Example 19

Show the representation of the normalized 
number  + 26 x  1.01000111001

SolutionSolution

The sign is positive. The Excess_127 representation of The sign is positive. The Excess_127 representation of 
the exponent is 133. You add extra 0s on the right to the exponent is 133. You add extra 0s on the right to 
make it 23 bits. The number in memory is stored as:make it 23 bits. The number in memory is stored as:

00 10000101  0100011100100000000000010000101  01000111001000000000000

the leftmost one is not stored.



Table 3.11   Example of floatingTable 3.11   Example of floating--point representationpoint representation

SignSign
----
1
0
1

Mantissa
-------------------------------

11000011000000000000000
11001000000000000000000
11001100000000000000000

Number 
------------

-22 x  1.11000011
+2-6 x  1.11001
-2-3 x  1.110011

ExponentExponent
-----------
10000001
01111001
01111100



Example 20Example 20

Interpret the following 32-bit floating-point 
number

1 01111100 11001100000000000000000

SolutionSolution

The sign is negative. The exponent is The sign is negative. The exponent is ––3 (124 3 (124 ––

127). The number after normalization is127). The number after normalization is

--22--33 x   x   1.1.110011110011



HEXADECIMALHEXADECIMAL
NOTATIONNOTATION

3.63.6



Hexadecimal

• Hexadecimal=> 16 number system (0~9,A~F)

• Conversion between binary and hexadecimal

• Hexadecimal:
– Digit set:{0~9,A~F}

11111110110111001011101010011000

FEDCBA98

01110110010101000011001000010000

76543210



Binary to Hexadecimal

• An example:

• (11111110001100011010101100000001)2=

(FE31AB01)16

10BA 13EF

00010000101110100001001111101111



Hexadecimal to Binary

• An example:

• (D2CB0)16=(11010010110010110000)2

00001011110000101101

0BC2D


