Chapter 3

Number
Representation

OBJECTIVES

After reading this chapter, the reader should
be ableto

Convert a number from decimal to binary notation and
vice versa.

Understand the different representations of an integer inside
a computer: unsigned, sign-and-magnitude, one’' s complement,
and two’ s complement.

Understand the Excess system that is used to store the
exponential part of afloating-point number.

Understand how floating numbers are stored inside a computer
using the exponent and the mantissa.

DECIIVIAL
ANID

SIINARNYS

Figure 3-1

Decimal system

10% 10° 102 10!
10,000 1000 100 10

100

Decimal Positions

243

1

| 2 %100 + 4%10 + 3l

J,

Two Hundred Forty-Three

Figure 3-2

Binary system

27 26 25 24 23 22 o1 0
128 64 32 16 8 4 2 1

Binary Positions
1 11100 l l

1128 + 1=64 + 1x32 + 1*16 + 0«8 + 0%4 + 1%2 + 11

Two Hundred Forty-Three

Figure 3-3

N\

Binary to decimal conversion

O 1 o0 1 1 0 1

64 32 16 8 4 2 1

0+32+ 0+8+4+0+1

e

v

15

binary number
position values

results

decimal number

Example 1

Convert the binary number 10011 to decimal.

Solution

Write out the bits and their weights. Multiply the bit by
Its corresponding weight and record the result. At the end,
add the results to get the decimal number.

Binary 1 O 0 1 1
Weghts 16 8 4 2 1

16+0 + 0+ 2 + 1
Decimal 19

Example 2

Convert the decimal number 35 to binary.

Solution

Write out the number at the right corner. Divide t
number continuously by 2 and write the quotient and t
remainder. The quotients move to the left, and t

ne
ne
ne

remainder Is recorded under each quotient. Stop when t
guotient Is zero.

O€1€2€¢&4€&8 €17 € 35 Dec
Binary 1 0 0 0 1 1

ne

Figure 3-4

\ quotientis 0

o 4+—— N

~

" Quotient)

(5 {11422 a—

1

l

0

45

l

1

Decimal to binary conversion

;’;Hemaind er

Figure 3-7

Changing fractionsto binary

Stop when the
resultisO

GI25] (0250 —+m (0300) wm(1000) —am 000

Binary

Example 17

Transform the fraction 0.875 to binary

Solution

Write the fraction at the left corner. Multiply the
number continuoudly by 2 and extract the

Integer part asthe binary digit. Stop when the
number 1s0.0.

0875 = 1750 = 15 = 10 = 00
0O . 1 1 1

Example 18

Transform the fraction 0.4 to abinary of 6 bits.

Solution

Write the fraction at the left cornet. Multiply the
number continuoudly by 2 and extract the
Integer part asthe binary digit. You may never
get the exact binary representation. Stop when
you have 6 bits.

04> 08=>16 =12 => 04> 08 =>16
O . O 1 1 0 0 1

Figure3-5

Range of integers

Figure 3-6

Taxonomy of integers

Integer
Representation

| |
‘ Unsigned I ‘ Signed |
Sign-and- One’s Two's
Magnitude Complement Complement

Table 3.1 Range of unsigned integers

AL ot)T,
0 O olls

Example 3 ‘

Store 7 1n an 8-bit memory location.

Solution

First change the number to binary 111. Add five
Os to make a total of N (8) bits, 00000111. The
number is stored in the memory location.

Example 4 ‘

Store 258 1n a 16-bit memory location.

Solution

First change the number to binary 100000010.
Add seven Osto make a total of N (16) bits,
0000000100000010. The number Isstored in the
memory location.

Table 3.2 Example of storing unsigned integersin
two different computers

(—1{FEFs8-bit; 55— 55 16-bit)

Decirriel 8-hit allocation 16-hit allocation
00000111 0000000000000111
11101010 0000000011101010
overflow 0000000100000010
overflow 0110000010111000
overflow overflow

‘ Example 5 ‘

Interpret 00101011 in decimal if the number
was stored as an unsigned integer.

=olution
0 1 0 1 1 0 1 binary number
64 32 16 8 4 2 1 position values
0O+32+ 0+8+4+0+1 results

AN

v

45 decimal number

Signed Number Representation

 Popular signed number representation:

— Sign Magnitude (SM)
e Easiest one

— Diminished Radix Complement (DRC)
e 1’s complement

— Radix Complement (RC)
e 2's complement
* The most popular in digital design

— Positive numbers has the same representations
In above mentioned system.

Sign Magnitude Number for 6-bit Word Size

.:-fﬁ ;.I_I 4'."_: t.l'l :'|I] -|'|II[;.

0
()
]
)

L}

0

» ¥l number

|
I
|
|

0
(b
()
()
()
0

|
|
|
|

]

— e

1
1
]
1

1
1
I
I

I
1
1
1

|
I
()
()

1
0
|
0

0

0
0

0

0
[
0
1

Lyecimal nomber

3l =422 1)

4300

+29

+28

2" possibilities

2 2 for zeros:

0 00000

0 1 00000

- 2" —1 for positive and negative numbers

Figure 1.5.1

Sign magnitude (SM) numbers for a 6-bit word size.

Table 3.3 Range of sign-and-magnitude integers

of Bits Range
~127 -0 +0 +127
-32767 -0 +0 +32767

-2,147,483,647 6 +0 +2,147,483,647

m Note:

I'n sign-and-magnitude representation,
the leftmost bit defines the sign of the

number. I it 1s 0, the number Is
positive.lf it 1s 1, the number Is negative.

m Note:

There are two 0s in sign-and-
magnitude

representation: positive and

negative.

In an 8-bit allocation:

+0 = 00000000
-0 = 10000000

‘ Example 6 ‘

Store +7 In an 8-bit memory location using
sign-and-magnitude representation.

Solution

First change the number to binary 111. Add four
Os to make a total of N-1 (7) bits, 0000111. Add

an extra zero because the number Is positive.
Theresult Is:

00000111

‘ Examplie 7 ‘

Store —258 1n a 16-bit memory location
using sign-and-magnitude representation.

Solution

First change the number to binary 100000010.
Add six Osto make a total of N-1 (15) bits,
000000100000010. Add an extra 1 because the
number isnegative. Theresult is:

1000000100000010

Table 3.4 Example of storing sign-and-magnitude integers
In two computers

Decirriel 8-hit allocation 16-hit allocation
00000111 0000000000000111
11111100 1000000001111100
overflow 0000000100000010

overflow 1110000010111000

‘ Example 8 ‘

Interpret 10111011 in decimal If the number
was stored as a sign-and-magnitude integer.

Solution

| gnoring the leftmost bit, the remaining bits are
0111011. Thisnumber in decimal 1s59. The
leftmost bit 1s 1, so the number 1s-59.

One' s complement Number for 6-bit Word Size

DR

number

t.ll:: 4'||l,| tlr_:I t.II: rJ'| £|'I||
1 1 1

|
I
1
|

]
]
]

]
|
il
0

| 1]
[
I 1

LY
0 0
0 0

0 0
0 0
0 0
0 0

I
il

1]

Dvecimal numiber

=+ -1
+30
+29

+18

+2

+1

-28
29
=30

-3 ==2"-1)

2" possibilities
2 for zeros:
O 00000
1 11111
2" —1 for positive and negative numbers

Figure 1.5.2 Diminished radix complement (DRC) numbers for a 6-bit word size.

m Note:

There are two 0s In one’s
complement

representation: positive and

negative.
In an 8-bit allocation:

+0 = 00000000
-0 211111111

One’' s complement

(éf_ﬂ‘ ‘ zrﬁ/l\)

 If thesignispositive (0), no more action is
needed,;

 If thesignisnegative, every bitis
complemented.

Table 3.5 Range of one' s complement integers

of Bits Range
~127 -0 +0 +127
-32767 -0 +0 +32767

-2,147,483,647 G +0 +2,147,483,647

m Note:

N ene’'s complement representation,
the leftmost bit defines the sign of the

number. I it 1s 0, the number Is
positive.lf it 1s 1, the number Is negative.

Example 9 ‘

Store +7 In an 8-bit memory location using
one’s complement representation.

Solution

First change the number to binary 111. Add five
Os to make a total of N (8) bits, 00000111. The
sign IS positive, So N0 more action is needed. The

result Is;

00000111

‘ Example 10 ‘

Store —258 1n a 16-bit memory location
using one’ s complement representation.

Solution

First change the number to binary 100000010.
Add seven Osto make a total of N (16) bits,

0000000100000010.

he sign Is negative, so

each bit Iscomplemented. Theresult is.
1111111011111101

Table 3.6 Example of storing one’' s complement integersin
two different computers

Decirriel 8-hit allocation 16-hit allocation
00000111 0000000000000111
11111000 1111111111111000
01111100 0000000001111100
10000011 1111111110000011
overflow 0110000010111000

overflow 1001111101000111

‘ Example 11 ‘

Interpret 11110110 in decimal if the number
was stored as a one' s complement integer.

Solution

Theleftmost bit Is 1, so the number Is negative.
First complement it . Theresult is 00001001.
The complement in decimal 1s9. So the original
number was —9. Note that complement of a
complement isthe original number.

i Note:

One's complement means reversing all
pits. It you one's complement a positive
number, you get the corresponding
negative number. I f you one’s

complement a negative number, you get
the corresponding positive number. I f
you on€' s complement a number twice,
you get the original number.

m Note:

Twao's complement I's the moest common,

the most Important, and the most widely
used representation of integers today.

Two’' s complement

o If thesignispositive, no further action is
needed,;

 If thesignisnegative, leave all the rightmost
Os and the first 1 unchanged. Complement the
rest of the bits

eg. 0000000000101000
| ERE
1111111111011000

Two's complementi) S4B G 1E

0000000000101000
1111111111011000

1. 0000000000101000 2.25-0000000000101000

One's complement l

1111111111010111 10000000000000000

+1 | -) 0000000000101000
1111111111011000 1111111111011000

Table 3.7 Range of two's complement integers

I) Y
0T O DTS

+32,767
+2,147,483,647

m Note:

I'n two' s complement representation,
the leftmost bit defines the sign of the

number. If 1t IS0, the number Is positive.
If it 1s 1, the number is negative.

Example 12 ‘

Store +7 In an 8-bit memory location using
two'’ s complement representation.

Solution

First change the number to binary 111. Add five
Os to make a total of N (8) bits, 00000111.The
sign IS positive, So N0 more action is needed. The

result Is;

00000111

Example 13

Store —40 In a 16-bit memory location using two’s
complement representation.

Solution

First change the number to binary 101000. Add
ten Osto make a total of N (16) bits,
0000000000101000. The sign is hegative, so
leave the rightmost Os up to thefirst 1 (including
the 1) unchanged and complement therest. The
result Is;

1111111111011000

Table 3.8 Example of storing two's complement integersin
two different computers

Decirriel 8-hit allocation 16-hit allocation
00000111 0000000000000111
11111001 1111111111111001
01111100 0000000001111100
10000100 1111111110000100
overflow 0110000010111000

overflow 1001111101001000

m Note:

There is only one 0 In two's
complement:

In an 8-bit allocation:
0 = 00000000

‘ Example 14‘

Interpret 11110110 in decimal if the number
was stored as atwo’ s complement integer.

Solution

Theleftmost bit is 1. The number Is negative.
Leave 10 at the right alone and complement the
rest. Theresult iIs00001010. Thetwo’s
complement number is 10. So the original
number was —10.

m Note:

Two''s complement can be achieved by
reversing alll bits except the rightmost bits up to
thefirst 1 (inclusive). If you two's complement

a positive number, you get the corresponding

negative number. |If you two’s complement a
negative number, you get the corresponding
positive number. | f you two’s complement a

number twice, you get the original number.

Table 3.9 Summary of integer representation

Corlterits of Unsigned Sign-and- On€e's Two's
Mernory Magnitude J Complement | Complement
0 +0 +0 +0
1 +1 +1 +1
2 +2 +2 +2
3 +3 +3 +3
4 +4 +4 +4
S) +5 +5 +5
6 +6 +6 +6
7 +7 +7 +7
8 -0 ~7 -8
9 -1 —6 —7
10 -2 -5 -6
11 -3 —4 -5
12 -4 -3 -4
13 -5 -2 -3
14 —6 -1 —2
15 —7 -0 -1

SIFEIVI

N
>
N

Usage

|t I1sused to store the exponential value of a
fraction.

— See |ater section: Floating number representation.

e Usuallyuse 2"or 2"-1

‘ Example 15 ‘

Represent —25 in Excess 127 using an 8-hit
allocation.

Solution

First add 127 to get 102. This number in
binary 1s 1100110. Add one bit to make it 8
bitsin length. Therepresentation is
01100110.

‘ Example 16 ‘

Interpret 11111110 if the representation Is
Excess 127.

Solution

First change the number to decimal. It
1S 254. Then subtract 127 from the
number. Theresult isdecimal 127.

JJ POIINF

NAFANR©IN

Table 3.10 Example of normalization

Original Nurnper

Figure 3-8

| EEE standardsfor floating-point representation

|
Excess 127
|'— -

I 23

Sign Exponent Mantissa

a. Single Precision

|| Excess 1023 I

| 11 52

Sign Exponent Mantissa

b. Double Precision

‘ Example 19 ‘

Show the representation of the normalized
number + 2° X %.01000111001

<ol Ltion the leftmost one Is not stored.

Thesign is positive. The Excess 127 representation of
the exponent is 133. You add extra Os on theright to
make it 23 bits. The number in memory Is stored as:

0 10000101 01000111001000000000000

Table 3.11 Example of floating-point representation

Exponent
10000001
01111001
01111100

‘ Example 20 ‘

Interpret the following 32-bit floating-point
number

101111100 11001100000000000000000

Solution

Thesign is negative. The exponent is—3 (124 —
127). The number after normalization is

-23 x 1.110011

H EXADECIHIVIAILL
NOTATION

Hexadecimal

* Hexadecimal=> 16 number system (0~9,A~F)
e Conversion between binary and hexadecimal

e Hexadecimal:
— Digit set:{ 0~9,A~F}

0 1 2 3 4 S} 6 7
0000 0001 0010 |0011 |0O100 |0101 | 0110 |0O111
8 9 A B C D E F
1000 | 1001 | 1010 | 1011 |1100 |1101 | 1110 |1111

Binary to Hexadecimal

 Anexample:

1111 1110|0011 0001|1010 1011 OOOO | 0001

F E 3 1 A B 0 1

» (11111110001100011010101100000001),=
(FE31ABOL)s

Hexadecimal to Binary

 Anexample:

D

2

C

B

0

1101

0010

1100

1011

0000

« (D2CB0):=(11010010110010110000)-

