Chapter 3

## Number

Representation

## $O_{\text {BJECTIVES }}$

## After reading this chapter, the reader should be able to :

$\square$ Convert a number from decimal to binary notation and vice versa.
$\square$ Understand the different representations of an integer inside a computer: unsigned, sign-and-magnitude, one's complement, and two's complement.
$\square$ Understand the Excess system that is used to store the exponential part of a floating-point number.
$\square$ Understand how floating numbers are stored inside a computer using the exponent and the mantissa.

## DECIMAL AND BINARY

Figure 3-1

## Decimal system

| $10^{4}$ | $10^{3}$ | $10^{2}$ | $10^{1}$ | $10^{0}$ |
| :---: | :---: | :---: | :---: | :---: |
| 10,000 | 1000 | 100 | 10 | 1 |

Decimal Positions


Two Hundred Forty-Three

## Binary system




## Binary to decimal conversion



## Example 1

Convert the binary number 10011 to decimal.

## Solution

Write out the bits and their weights. Multiply the bit by its corresponding weight and record the result. At the end, add the results to get the decimal number.

| Binary | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Weights | 16 | 8 | 4 | 2 | 1 |

$16+0+0+2+1$
Decimal

## Example 2

Convert the decimal number 35 to binary.

## Solution

Write out the number at the right corner. Divide the number continuously by 2 and write the quotient and the remainder. The quotients move to the left, and the remainder is recorded under each quotient. Stop when the quotient is zero.
$0 \leftarrow 1 \leftarrow 2 \leftarrow 4 \leftarrow 8 \leftarrow 17 \leftarrow 35$ Dec.
Binary
1
00
01
1

Figure 3-4

## Decimal to binary conversion



## Changing fractions to binary



## Example 17

Transform the fraction 0.875 to binary

## Solutiont

Write the fraction at the left corner. Multiply the number continuously by 2 and extract the integer part as the binary digit. Stop when the number is 0.0.

$$
\begin{array}{ccccccc}
0.875 & \rightarrow & 1.750 & \rightarrow & 1.5 & \rightarrow & 1.0 \\
0 & & \rightarrow & 1 & 1 & & 1
\end{array}
$$

## Example 18

Transform the fraction 0.4 to a binary of 6 bits.

## Solution

Write the fraction at the left cornet. Multiply the number continuously by 2 and extract the integer part as the binary digit. You may never get the exact binary representation. Stop when you have 6 bits.

$$
\begin{array}{cccccccccc}
0.4 & \rightarrow & 0.8 & \rightarrow & 1.6 & \rightarrow & 1.2 & \rightarrow & 0.4 & \rightarrow \\
0.8 & \rightarrow & 1.6 \\
0 & . & 0 & 1 & & 1 & 0 & 0 & 1
\end{array}
$$

3.4

## INTEGER REPRESENTATION

## Range of integers



Figure 3-6

## Taxonomy of integers



## Table 3.1 Range of unsigned integers



## Example 3

Store 7 in an 8-bit memory location.

## Solution

First change the number to binary 111. Add five Os to make a total of $N(8)$ bits, 00000111. The number is stored in the memory location.

## Example 4

Store 258 in a 16-bit memory location.

## Solutions

First change the number to binary 100000010. Add seven Os to make a total of $N$ (16) bits, 0000000100000010. The number is stored in the memory location.

## Table 3．2 Example of storing unsigned integers in two different computers （一個爲8－bit；另一個爲16－bit）



| 8－bit allocation | 16－bit allocation |
| :---: | :---: |
| －－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－－11 | 0000000000000111 |
| 00000111 | 0000000011101010 |
| 11101010 | 0000000100000010 |
| overflow | 0110000010111000 |
| overflow | overflow |
| overflow |  |

## Example 5

## Interpret 00101011 in decimal if the number was stored as an unsigned integer.

| Solutiou |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | binary number |
| 64 | 32 | 16 | 8 | 4 | 2 | 1 | position values |
| $0+32+0+8+4+0+1$ |  |  |  |  |  |  | results |
|  |  |  |  |  |  |  |  |

## Signed Number Representation

- Popular signed number representation:
- Sign Magnitude (SM)
- Easiest one
- Diminished Radix Complement (DRC)
- 1's complement
- Radix Complement (RC)
- 2's complement
- The most popular in digital design
- Positive numbers has the same representations in above mentioned system.

Sign Magnitude Number for 6-bit Word Size


Figure 1.5.1 Sign magnitude (SM) numbers for a 6-bit word size.

## Table 3.3 Range of sign-and-magnitude integers



| Range |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| -127 | -0 | +0 |  | +127 |
| -32767 | -0 |  |  | +32767 |
| -2,147,483,647 | -0 | +0 |  | 483,647 |

## Note:

In sign-and-magnitude representation, the leftmost bit defines the sign of the number. If it is 0 , the number is positive.If it is 1 , the number is negative.

## Note:

There are two Os in sign-andmagnitude
representation: positive and negative.

In an 8-bit allocation:
$+0 \rightarrow 00000000$
$-0 \rightarrow 10000000$

## Example 6

Store +7 in an 8-bit memory location using sign-and-magnitude representation.

## S'olstions

First change the number to binary 111. Add four Os to make a total of N-1 (7) bits, 0000111. Add an extra zero because the number is positive. The result is:

00000111

## Example 7

Store - 258 in a 16-bit memory location using sign-and-magnitude representation.

## Solution

First change the number to binary 100000010. Add six 0s to make a total of N-1 (15) bits, 000000100000010. Add an extra 1 because the number is negative. The result is: 1000000100000010

## Table 3.4 Example of storing sign-and-magnitude integers in two computers

| Decirnal | 8-bit allocation | 16-bit allocation |
| :---: | :---: | :---: |
|  | 00000111 | 0000000000000111 |
|  | 11111100 | 1000000001111100 |
|  | overflow | 0000000100000010 |
|  | overflow | 1110000010111000 |

## Example 8

# Interpret 10111011 in decimal if the number was stored as a sign-and-magnitude integer. 

## S'olutions

Ignoring the leftmost bit, the remaining bits are 0111011. This number in decimal is 59. The leftmost bit is $\mathbf{1}$, so the number is $\mathbf{- 5 9}$.

## One's complement Number for 6-bit Word Size

| DRC number | Decimal number |  |
| :---: | :---: | :---: |
| $d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}$ |  |  |
|  | $+31=+\left(2^{5}-1\right)$ |  |
| $\begin{array}{lllllll}0 & 1 & 1 & 1 & 0\end{array}$ | +30 |  |
| $\begin{array}{lllllll}0 & 1 & 1 & 1 & 0 & 1\end{array}$ | +29 |  |
| $\begin{array}{lllllll}0 & 1 & 1 & 0\end{array}$ | +28 |  |
| - |  | $2^{n}$ possibilities |
| 000010 | +2 | $2^{\prime \prime}$ possibilities |
| $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}$ | +1 | 2 for zeros: |
| $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0\end{array}$ | +0 | 000000 |
| $1 \begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$ | -0 | 111111 |
| $\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 0\end{array}$ | -1 | $2^{n-1}-1$ for positive and negative numbers |
| 1111101 | -2 |  |
| ! |  |  |
| $\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 1\end{array}$ | -28 |  |
| $\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & 0\end{array}$ | -29 |  |
| 1000001 | -30 |  |
| 100000 | $-31=-\left(2^{5}-1\right)$ |  |

Figure 1.5.2 Diminished radix complement (DRC) numbers for a 6 -bit word size.

## Note:

There are two Os in one's complement
representation: positive and negative.
In an 8-bit allocation:

$$
\begin{aligned}
& +0 \rightarrow 000000000 \\
& -0 \rightarrow 11111111
\end{aligned}
$$

## One＇s complement （一位補數法）

－If the sign is positive（0），no more action is needed；
－If the sign is negative，every bit is complemented．

## Table 3.5 Range of one's complement integers



| Range |  |  |
| :---: | :---: | :---: |
| -127 | $-0+0$ | +127 |
| -32767 | $-0+0$ | +32767 |
| -2,147,483,647 | $-0+0$ | +2,147,483,647 |

## Note:

In one's complement representation, the leftmost bit defines the sign of the number. If it is 0 , the number is positive.If it is 1 , the number is negative.

## Example 9

Store +7 in an 8-bit memory location using one's complement representation.

## Solstions

First change the number to binary 111. Add five Os to make a total of $N(8)$ bits, 00000111 . The sign is positive, so no more action is needed. The result is:

00000111

## Example 10

Store - 258 in a 16-bit memory location using one's complement representation.

## Solution

First change the number to binary 100000010. Add seven 0s to make a total of $N$ (16) bits, 0000000100000010 . The sign is negative, so each bit is complemented. The result is:

1111111011111101

Table 3.6 Example of storing one's complement integers in two different computers


| 8-bit allocation | 16-bit allocation |
| :---: | :---: |
| --------------------------------- | --00000000000111 |
| 1111111000 | 1111111111111000 |
| 01111100 | 000000000111100 |
| 1000011 | 1111111110000011 |
| overflow | 0110000010111000 |
| overflow | 1001111101000111 |

## Example 11

Interpret 11110110 in decimal if the number was stored as a one's complement integer.

## Solutions

The leftmost bit is 1, so the number is negative. First complement it. The result is 00001001. The complement in decimal is 9 . So the original number was -9. Note that complement of a complement is the original number.

## Note:

One's complement means reversing all bits. If you one's complement a positive number, you get the corresponding negative number. If you one's
complement a negative number, you get the corresponding positive number. If you one's complement a number twice, you get the original number.

## Note:

Two's complement is the most common, the most important, and the most widely used representation of integers today.

## Two＇s complement

－If the sign is positive，no further action is needed；
－If the sign is negative，leave all the rightmost 0 s and the first 1 unchanged．Complement the rest of the bits
e．g． 0000000000101000
，變成負數
1111111111011000

## Two＇s complement的另類看法

## 0000000000101000 1111111111011000

1． 0000000000101000
One＇s complement
1111111111010111

1111111111011000

2． $2^{16}-0000000000101000$

10000000000000000
－） 0000000000101000
1111111111011000

## Table 3.7 Range of two's complement integers



## Note:

In two's complement representation, the leftmost bit defines the sign of the number. If it is 0 , the number is positive. If it is 1 , the number is negative.

## Example 12

Store +7 in an 8-bit memory location using two's complement representation.

## Solutiont

First change the number to binary 111. Add five Os to make a total of $N(8)$ bits, 00000111.The sign is positive, so no more action is needed. The result is:

00000111

## Example 13

Store -40 in a 16-bit memory location using two's complement representation.

## Solution

First change the number to binary 101000. Add ten 0s to make a total of $N$ (16) bits, 0000000000101000. The sign is negative, so leave the rightmost 0s up to the first 1 (including the 1) unchanged and complement the rest. The result is:

1111111111011000

Table 3.8 Example of storing two's complement integers in two different computers


| 8-bit allocation | 16-bit allocation |
| :---: | :---: |
| --------------------------------- | --0000000000111 |
| 1111111001 | 1111111111111001 |
| 01111100 | 0000000001111100 |
| 1000100 | 1111111110000100 |
| overflow | 0110000010111000 |
| overflow | 1001111101001000 |

## 율 <br> Note:

## There is only one 0 in two's complement:

## In an 8-bit allocation:

$0 \rightarrow 00000000$

## Example 14

Interpret 11110110 in decimal if the number was stored as a two's complement integer.

## Solution

The leftmost bit is 1. The number is negative. Leave 10 at the right alone and complement the rest. The result is 00001010. The two's complement number is 10. So the original number was -10.

## Note:

Two's complement can be achieved by reversing all bits except the rightmost bits up to the first 1 (inclusive). If you two's complement a positive number, you get the corresponding negative number. If you two's complement a negative number, you get the corresponding positive number. If you two's complement a number twice, you get the original number.

Table 3.9 Summary of integer representation

| C'ontersts of IYSernory | Unsigned | Sign-and- <br> Magnitude <br> +0 <br> +1 <br> +2 <br> +3 <br> +4 <br> +5 <br> +6 <br> +7 <br> -0 <br> -1 <br> -2 <br> -3 <br> -4 <br> -5 <br> -6 <br> -7 | One's <br> Complement <br> +0 <br> +1 <br> +2 <br> +3 <br> +4 <br> +5 <br> +6 <br> +7 <br> -7 <br> -6 <br> -5 <br> -4 <br> -3 <br> -2 <br> -1 <br> -0 | Two's Complement |
| :---: | :---: | :---: | :---: | :---: |

## EXCESS SYSTEM

## Usage

- It is used to store the exponential value of a fraction.
- See later section: Floating number representation.
- Usually use $2^{n}$ or $2^{n}-1$


## Example 15

Represent -25 in Excess_127 using an 8-bit allocation.

## Solutions

First add 127 to get 102. This number in binary is 1100110. Add one bit to make it 8 bits in length. The representation is 01100110.

```
Example 16
```

Interpret 11111110 if the representation is Excess_127.

## Solution

First change the number to decimal. It is 254. Then subtract 127 from the number. The result is decimal 127.
3.5

## FLOATING-POINT REPRESENTATION

Table 3.10 Example of normalization


## IEEE standards for floating-point representation



## Example 19

## Show the representation of the normalized number $+2^{6} \times 1.01000111001$ <br> Solution <br> the leftmost one is not stored.

The sign is positive. The Excess_127 representation of the exponent is 133. You add extra 0s on the right to make it 23 bits. The number in memory is stored as:

01000010101000111001000000000000

## Table 3.11 Example of floating-point representation



## Example 20

## Interpret the following 32-bit floating-point number

## 10111110011001100000000000000000

## Solution

The sign is negative. The exponent is $\mathbf{- 3}$ (124127). The number after normalization is

$$
-2^{-3} x \quad 1.110011
$$

## HEXADECIMAL NOTATION

## Hexadecimal

- Hexadecimal=> 16 number system (0~9,A~F)
- Conversion between binary and hexadecimal
- Hexadecimal:
- Digit set: $\{0 \sim 9, \mathrm{~A} \sim \mathrm{~F}\}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
| 8 | 9 | A | B | C | D | E | F |
| 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

## Binary to Hexadecimal

- An example:

| 1111 | 1110 | 0011 | 0001 | 1010 | 1011 | 0000 | 0001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F | E | 3 | 1 | A | B | 0 | 1 |

- $(11111110001100011010101100000001)_{2}=$ (FE31AB01) ${ }_{16}$


## Hexadecimal to Binary

- An example:

| D | 2 | $C$ | $B$ | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 1101 | 0010 | 1100 | 1011 | 0000 |

- (D2CB0 $)_{16}=(11010010110010110000)_{2}$

