Chapter 2

Data

Representation

$O_{\text {BJECTIVES }}$

After reading this chapter, the reader should be able to:

\square Define data types.
\square Visualize how data are stored inside a computer.
\square Understand the differences between text, numbers, images, video, and audio.
\square Work with hexadecimal and octal notations.

DATA TYPES

Figure 2-1

Different types of data

Note:

The computer industry uses the term "multimedia" to define information that contains numbers, text, images, audio, and video.

DATA INSIDE THE COMPUTER

Uniform Data Representation inside a Computer: Bit pattern

1000101010111111
 bit (binary digit):

A smallest unit of data. It can be either 0 or 1 . bit pattern: a string of bits
Computer memory doesn't know the type of data.
The data type is interpreted by programs or I/O devices.

Examples of bit patterns

A bit pattern of length 8 is called a byte. 1024 bytes=> 1 KB.
$1024 \mathrm{~KB}=>1 \mathrm{MB}$
$1024 \mathrm{MB}=>1 \mathrm{~GB}$
$1024 \mathrm{~GB}=>1 \mathrm{~TB}$

2.3

REPRESENTING DATA

Representing symbols using bit patterns

26 capital letters, 26 lower case letters, 10 digits, punctuations, etc.
How long should a bit pattern is?

Table 2.1 Number of symbols and bit pattern length

Figure 2-5

Representation of the word "BYTE" in ASCII code

ASCII: American Standard Code for Information Interchange Use 7 bits for each symbol. (128 symbols) See appendix A of the textbook for the ASCII table.

ASCII stands for American Sisudsad Code for Hformation interchange．Computers can only Underitand numbers，so an AsCII code is the
 printing characters．Ascil war actually designed for use with telebjpes and so the descriptions are momewhat obsoure．I somecne mays they wort your CV however in ASCliformb，all this means is they want blair＇test with no for mating such as tabs，bold or undersooving．－the raw
 orestes ASCIItect，oc in MS Hord joupan mpe file as teat olly

Source：www．ascilitable．com

Click here amazon．com Sponsored Links
Debt Convobidation Loens Book Clapplielt Puchuse Discocot Aiffine Cheap Ptoont Cart

Shap how Tops
 amazoncom．

Netotar NP819
200．110 W8． 002.110 Wh Netotar
Newn 554.94

3 不明的医轮（锶合）

In Class Exercise

- Find the ASCII representation for your English name.
- A (65) I (73) D (68) A (65)
- (1000001 100100110001001000001)

Features of ASCII

- 7-bit pattern from 0000000 to 1111111
- 0000000 represents null. (lack of character)
- 1111111 represents delete.
- The first 32 (from 0 to 31) are control characters.
- Difference between capital and lower case letter:
- The sixth bit from the right
- A:1000001
- a: 1100001

Other Representations.

- Extended ASCII
- The leftmost bit of ASCII is 0 .
- Extended ASCII use 8 bits. (256 symbols.)
- EBCDIC (Extended binary coded decimal interchange code)
- Developed by IBM
- 8 bits to represents 256 symbols.

Other Representations.

- Unicode
- Represent symbols other than English.
- Use 16 bits (65536 symbols)
- ISO (International Organization of Standardization)
- 32 bits
- 4294967296 symbols.

http：／／www．cns11643．gov．tw／seeker／chinese／search．jsp


```
    - [0] x]
```



```
断
(3)上一頁 -
x (2) (0)
O拃
```



```
g`"楼
(2) 8.3 回
$3
```


 AI Copprigle Reserver， 2000 ．

After Class Exercise

－使用上述投影片的網址找中文名字的 unicode

Figure 2-6

Image representation methods

Figure 2-7

Bitmap graphic method of a black-and-white image

00011000001111000011110000011000 Linear Representation

Representation of Images

- The baby's picture with smaller pixels - more detail.

- The baby's picture with 4 levels of gray.

Representation of Images

- Photographic quality images have a grayscale.
- Several shades between black and white are used.
- 4 level gray-scale means 4 shades are used.
- Each pixel needs 2 bits:
- 00 - represents white
- 01 - represents light gray
- 10 - represents dark gray
- 11 - represents black
- 256 level gray scale means
- 8 bits per pixel are needed for 256 shades of gray

256 levels of gray

Representation of color pixels

Vector Graphic

- Bit graphic causes problems when rescaling the image.
- Vector graphic decompose a graph into curves and lines. Each of the curves are represented by a formula.
- When rescaling, the computer reevaluating the formulas of the grpah.

Figure 2-9

Audio representation

Video

- Video is a representation of images in time.
- A movie is a series of images shown one after another.
- Each image is changed into a set of bit patterns and stored.
- like MPEG file.

HEXADECIMAL NOTATION

A 4-bit pattern can be represented by a hexadecimal digit, and vice versa.

Table 2.2 Hexadecimal digits

Bit Putitersh	Hex Digit -------- 0 1 2 3 4 5 6 7	Bit Putitersh	Hex Digit $-\cdots------$ 8 9 A B C D E F

Figure 2-10

Binary to hexadecimal and hexadecimal to binary transformation

Example 1

Show the hexadecimal equivalent of the bit pattern 110011100010.

Solution

Each group of 4 bits is translated to one hexadecimal digit. The equivalent is $\boldsymbol{x C E} 2$.

Used to show this number is hexadecimal.

Example 2

Show the hexadecimal equivalent of the bit pattern 0011100010.

Solution

Divide the bit pattern into 4-bit groups (from the right). In this case, add two extra 0s at the left to make the number of bits divisible by 4. So you have 000011100010, which is translated to x0E2.

```
Example 3
```

What is the bit pattern for x 24 C ?

Solutions

Write each hexadecimal digit as its equivalent bit pattern to get 001001001100.

2.5

OCTAL NOTATION

i
 Note:

A 3-bit pattern can be represented
by an octal digit, and vice versa.

Table 2.3 Octal digits

Figure 2-11

Binary to octal and octal to binary transformation

1	111	110	011	100	100
1	7	6	3	4	4

Example 4

Show the octal equivalent of the bit pattern 101110010.

Solution

Each group of 3 bits is translated to one octal digit. The equivalent is 0562, o562, or 562 .

Example 5

Show the octal equivalent of the bit pattern 1100010.

Solution

Divide the bit pattern into 3-bit groups (from the right). In this case, add two extra 0s at the left to make the number of bits divisible by 3. So you have 001100010, which is translated to 142 .

```
Example 6
```

What is the bit pattern for 24_{8} ?

Solution

Write each octal digit as its equivalent bit pattern to get 010100.

