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OBJECTIVES

After reading this chapter, the reader should

be able to:
[ Understand the concept of an abstract datatype (ADT).

Understand the concept of alinear list as well asits operations
and applications.

Understand the concept of a stack as well as its operations

and applications.

Understand the concept of a queue as well asits operations
and applications.

Understand the concept of atree aswell asits operations
and applications.

Understand the concept of a graph as well as its operations
and applications.
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2. How it is done is hidden.
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Abstract Data Type

1. Declaration of data
2. Declaration of operations
3. Encapsulation of data and

oper ations
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Linear list
Element 1 Element 2 -] Element 3 Element 4
Brooks/Cole ©Brooks/Cole,
omson Learning. 2003




Figure12-3

Categoriesof linear lists
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Figure 12-5

Deletion from alinear list
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Figure 12-6

Retrieval from alinear list
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Figure 12-7

Traversal of alinear list
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Figure 12-8

Threerepresentations of a stack
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Figure12-9

Push operation in a stack
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Pop operation in a stack
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Example 1

Show the result of the following operations

on astack S.

push (S, 10)

push (S, 12)

push (S, 8)

iIf not empty (S), then pop (S
push (S, 2)

Solution

See Figure 12.11 (next dlide).

@Brooksmole ©Brooks/Cole,

Figure12-11

Example 1

L L] L] ) 2]

S S S S S S

@BFOOKSICO|E ©Brooks/Cole,
Thomson Learning.

2003




Brooks/Cole ©Brooks/Cole,
omson Learning. 2003
Figure 12-12 .
Queue repr esentation
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Figure 12-13
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Dequeue oper ation
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Example 2

Show the result of the following operations
on a queue Q.

enqueue (Q, 23)

If not empty (Q), dequeue (Q)

enqueue (Q, 20)

enqueue (Q, 19)

iIf not empty (Q), dequeue (Q)

Solution
See Figure 12.15 (next dlide).
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Figure 12-16

Representation of atree
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Figure 12-17

Treeterminology
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Figure 12-19

Binary tree
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Figure 12-20

Examplesof binary trees
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Figure 12-21

Depth-first traversal of abinary tree
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a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal
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Figure 12-22

Preorder traversal of abinary tree
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Inorder traversal of abinary tree
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Figure 12-24

Postorder traversal of abinary tree
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Figure 12-25

Breadth-first traver sal
& of abinary tree
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Figure 12-26

EXxpression tree
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Figure 12-27

Directed and undirected graphs

Graph: G={V,E} V: vertices, E: edges

a. Directed Graph b. Undirected Graph
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Depth-first traversal of agraph
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Figure 12-34

Breadth-first traversal of agraph
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Figure 12-35: Part |

Graph implementations
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Figure 12-35: Part 2
Graph implementations
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Spanning tree: A tree that contains all the vertices in the graph.
Min. spanning tree: A spanning tree with min. weight.
Applications:

Example: The shortest length of cable to connect all computers.
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