Chapter 12

Abstract
Data Type

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

OBJECTIVES

After reading this chapter, the reader should

be able to:
[Understand the concept of an abstract datatype (ADT).

Understand the concept of alinear list as well asits operations
and applications.

Understand the concept of a stack as well as its operations

and applications.

Understand the concept of a queue as well asits operations
and applications.

Understand the concept of atree aswell asits operations
and applications.

Understand the concept of a graph as well as its operations
and applications.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

B 8 8B @8 O

Brooks/Cole

omson Learning.

©Brooks/Cole,
2003

ept Of rlOJFfE

;t]or I means:

2. How it is done is hidden.

Brooks/Cole

omson Learning.

©Brooks/Cole,
2003

8 e |

Abstract Data Type

1. Declaration of data
2. Declaration of operations
3. Encapsulation of data and

oper ations
@Brooksmole ©Brooks/Cole,
Thomson Learning. 2003
Figure12-1
Model for ADT
Internal
| Data Flow
r/ - _
| -
| Public \-?
Data Functions /
A \ P
External \ —
Interface |i ,>\ =
I‘__ = (
P — — s -. >Data
Internal I
Call \
\ \\
\ o 'y
\\n_,_ 7 = J
@'Br00k5fc0|e ©Brooks/Cole,
Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
omson Learning. 2003
Figure 12-2 . .
Linear list
Element 1 Element 2 -] Element 3 Element 4
Brooks/Cole ©Brooks/Cole,
omson Learning. 2003

Figure12-3

Categoriesof linear lists

Linear
Lists

General Restricted

| |

Unorderedl OrderedI FIFO I LIFO I

(queue) (stack)

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003
Figure 12-5

Deletion from alinear list

Delete element
identified by search

list

blue e green [red e yellow

Deletion red

data
list

blue green yellow

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Figure 12-6

Retrieval from alinear list

dog

---------- ‘ gold fish

Retrieved element
identified by search

list

Retrieval

=Y

[

groolstCole
OMmson LATTINE -

dog

©Brooks/Cole,
2003

Figure 12-7

Traversal of alinear list

list

goldfish

zebra

Walker

groolstCole
NOmson SCATTINNE .

) .-y SR e

©Brooks/Cole,
2003

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 12-8

Threerepresentations of a stack

Top -
; (T 1]
12}
D T 1]
Stack of Coins Stack of Books Computer Stack
Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Figure12-9

Push operation in a stack

]
Data
Top | I
] Operation]
Stack Stack
Brooks/Cole ©Brooks/Cole,
Thomson Learning.. 2003

Figure 12-10 . .
Pop operation in a stack
Top | [TH
L1 [1| Top
] Operation
Stack Stack
Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Example 1

Show the result of the following operations

on astack S.

push (S, 10)

push (S, 12)

push (S, 8)

iIf not empty (S), then pop (S
push (S, 2)

Solution

See Figure 12.11 (next dlide).

@Brooksmole ©Brooks/Cole,

Figure12-11

Example 1

L L] L]) 2]

S S S S S S

@BFOOKSICO|E ©Brooks/Cole,
Thomson Learning.

2003

Brooks/Cole ©Brooks/Cole,
omson Learning. 2003
Figure 12-12 .
Queue repr esentation
Banks'R'Us
a. A queue (line) of people
Remove Insert
(dequeue) (enqueue)
frUIll rear
b. A computer queue
Brooks/Cole ©Brooks/Cole,
omson Learning. 2003

10

Figure 12-13

front

Enqueue operation

Queue

Cplum | [kiwi |

v

Enqueue Operation

data

front

)

| plum | | kiwi | [grape |

Queue

;..‘_1 Brooks/Cole ©Brooks/Cole,
/| Thomson Learning. 2003
Figure12-14 .
Dequeue oper ation
Queue
front | [plum | | kiwi | [grape |
Dequeue [Operation
front kiwi grape
Queue
;“' Brooks/Cole ©Brooks/Cole,
/) Thomson Learning. 2003

11

Example 2

Show the result of the following operations
on a queue Q.

enqueue (Q, 23)

If not empty (Q), dequeue (Q)

enqueue (Q, 20)

enqueue (Q, 19)

iIf not empty (Q), dequeue (Q)

Solution
See Figure 12.15 (next dlide).
@MSICO'E ©Brooks/Cole,
Thomson Learning. 2003
Figure12-15
Example 2
front [front front [
23
Q Q Q
front front front
20 20 19 19
Q Q Q
@MSICO'E ©Brooks/Cole,
Thomson Learning. 2003

12

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 12-16

Representation of atree

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

13

Figure 12-17

Treeterminology

LevelO
Branch
Levell FI
Level2
Parents: A, B, F Leaves C,D,E.G,H,1
Internal nodes B,F

Children: B,E,F,C, D, G, H, T
Siblings: {B,E,F}, {C.D},{GH,I}

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003
Figure 12-18

Subtrees

Subtree
B

Root of
Subtree |

Bl UURD/WUIT woiuunaruule,
Thomson Learning. 2003

14

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 12-19

Binary tree

Left Subtree Right Subtree
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

15

Figure 12-20

Examplesof binary trees

Ve e

a. b. = d.
(A n
5D] 5D
o) €]
e f

5 o
=,

g h.
;-‘-‘. Brooks/Cole ©Brooks/Cole,
/| Thomson Learning. 2003

Figure 12-21

Depth-first traversal of abinary tree

Left Right Left Right Left Right
Subtree Subtree Subtree Subtree Subtree Subtree
a. Preorder Traversal b. Inorder Traversal c. Postorder Traversal
;...“' Brooks/Cole ©Brooks/Cole,
‘ Thomson Learning. 2003

16

Figure 12-22

Preorder traversal of abinary tree

;..‘_1 Bl‘OOkSICOle ©Brooks/Cole,
/| Thomson Learning. 2003
Figure 12-23

Inorder traversal of abinary tree

;.._" Brooks/Cole ©Brooks/Cole,
/' | Thomson Learning. 2003

17

Figure 12-24

Postorder traversal of abinary tree

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 12-25

Breadth-first traver sal
& of abinary tree
Depth-first traversal

Brooks/Cole ©Brooks/Cole,
Thomson Learnings 2003

18

Figure 12-26

EXxpression tree

‘a*(b+c)+d|

Leaf node: operand +
Internal: operators
Subtree: subexpression

Useinorder traversal * d
a +
b C
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

19

Figure 12-27

Directed and undirected graphs

Graph: G={V,E} V: vertices, E: edges

a. Directed Graph b. Undirected Graph
;.._" Brooks/Cole ©Brooks/Cole,
/| Thomson Learning. 2003
Figure 12-33

Depth-first traversal of agraph

1] Depth-First Traversal
AXHPEYM JG

;..." Brooks/Cole ©Brooks/Cole,
/' | Thomson Learning. 2003

20

Figure 12-34

Breadth-first traversal of agraph

Breadth-First Traversal

AXGHPEMY]

;..‘_1 Bl‘OOkSICOle ©Brooks/Cole,
/| Thomson Learning. 2003

Figure 12-35: Part |

Graph implementations
Usearray (#edgesislarge)
523 /@> = P D ~ 320/'\NEight ofaedge

345 ““@I/ 555
467

A B C D E F

A Alo [s2373a5 0 [0 [o

[B | B 523 | 0 (200 548 | 0 | 0

C C [345 (200 | 0 360 467 | 0
' D D | o |s48 360 | o |245 [320 |
E E o0 | o |467 245 | 0 |555 |
F Flo | o | o [3200s55 0 |

Vertex Array . - A(lj-a(‘.&-n(-:y Maltrix
-
;‘ W ©Brooks/(23(c))1)e:Jl

21

Figure 12-35: Part 2
Graph implementations
Link list (#edgesislarge)

Al >l > cks B

B > A [W—>{C oo W >0 [

&+ >(als W5 w l—>0lw B>]
B >Ea W >l >k
E] T—>{cC e D 25 |

f +>{0hn W->Els N

Vertex List Adjacency List
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Minimum Spanning Tree

0y [0
*(B__/ I\E_)/ . 320
G) 200 '__,.-"'.;60 245 @u
A B
© (&)

Spanning tree: A tree that contains all the vertices in the graph.
Min. spanning tree: A spanning tree with min. weight.
Applications:

Example: The shortest length of cable to connect all computers.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

22

