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Data
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OBJECTIVES

After reading this chapter, the reader should
be able to:

[ Understand arrays and their usefulness.

[ Understand records and the difference between an array and
arecord.

[ Understand the concept of alinked list and the difference
between an array and alinked list.

@ Understand when to use an array and when to use a linked-list.
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Figure11-1

Twenty individual variables
Declare 20 variables!
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Figure11-2

Processing individual variables
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Figure11-3

Arrayswith subscriptsand indexes
Declare 20 variables> Declarea array with 20 elements

. number [0]
int numberO, numberl, ...
number0=0: number [1]
numberl=1; number [2]
changeto
number [18]
int number[20]; number [19]
for (i=0;i=19; i++)
! ! Numbers
{ n mber[] . b. Index Form
u i]=i;
}
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Figure11-4

Processing an array
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Figure 11-7- Part |

Two-dimensional array
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Figure11-8

Memory layout
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Memory View
Row-major data allocation scheme.
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Figure11-9

Records
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The elements In a record can be of
the
same or different types. But all
elements
In the record must be related.
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Record in C and C++

struct fraction

{

Int numerator, denominator;
1
fraction V;
V.numerator=1,
V.denominator=2;
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Figure11-10

Linked lists
— — > — >
pList data  link data  link data  link data  link
\ A linked list with a head pointer pList I
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Node
Data —
struct Node
{ -
int Data;
Node* Ptr;
}
Node* Ptr;
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Figure11-12 H
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Deleting a node
P q
’
- —® 75 —» 96 124 —
Original List
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After Delete
Node* g=p.Ptr;
p.Ptr=q.Ptr;
delete q;
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Figure 11-14

Traversing alist
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ke \{Nhi le(pWalker!=nil)
pWalker=pWalker.Ptr;
//Do something meaningful
}
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