Chapter 11

Data
Structures

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

OBJECTIVES

After reading this chapter, the reader should
be able to:

[Understand arrays and their usefulness.

[Understand records and the difference between an array and
arecord.

[Understand the concept of alinked list and the difference
between an array and alinked list.

@ Understand when to use an array and when to use a linked-list.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure11-1

Twenty individual variables
Declare 20 variables!

number 0

number

number

number

number

Numbers

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

Figure11-2

Processing individual variables

(START)

b

Read
number 0

Read
number 19

Process
20 numbers

WL

Print
number 0

/" Print
/ number 19

(stop)

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Figure11-3

Arrayswith subscriptsand indexes
Declare 20 variables> Declarea array with 20 elements

. number [0]
int numberO, numberl, ...
number0=0: number [1]
numberl=1; number [2]
changeto
number [18]
int number[20]; number [19]
for (i=0;i=19; i++)
! ! Numbers
{ n mber[] . b. Index Form
u i]=i;
}
Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Figure11-4

Processing an array

(START)
{fori=0t019

/" READ
/" number [i]

PROCESS
20 numbers

—b{':'l'()ri =0to 19

/" PRINT

/ number [i]

STOP)
;..‘_1 Bl‘OOkSICOle ©Brooks/Cole,
/| Thomson Learning. 2003

Figure 11-7- Part |

Two-dimensional array

¢~ First Dimension) 1
\,

~ (rows) .

2
3
4
0 1 2 3
N
s .,
/" Second Dimension
' (columns)
;.._" Brooks/Cole ©Brooks/Cole,
/| Thomson Learning. 2003

Figure11-8

Memory layout

00 01 02|03 04
10 11 12 | 13 | 14

User’'s View

row 0 row 1
00 01 02 03 04 10 11 12 13 14
[0][O] [O][1] [O][2] [O1(3] [O][4] [11{O] [1][1] [1][2] [1](3] [1][4]
Memory View
Row-major data allocation scheme.
Brooks/Cole ©Brooks/Cole,
omson Learning. 2003

Brooks/Cole

omson Learning.

©Brooks/Cole,
2003

Figure11-9

Records

(’ First Field | C/Sccond Field
Y,

numerator denominator

] .
R ,--/1 fraction

'i record ;)
C First Field) w ' Third Field ™
id |

name gradePoint
— ”'/l"% student
(/ record h)
@Brooksmole ©Brooks/Cole,
Thomson Learning. 2003

8o |

The elements In a record can be of
the
same or different types. But all
elements
In the record must be related.

@'Br00k5lc0|e ©Brooks/Cole,
Thomson Learning.

2003

Record in C and C++

struct fraction

{

Int numerator, denominator;
1
fraction V;
V.numerator=1,
V.denominator=2;

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

Figure11-10

Linked lists
— — > — >
pList data link data link data link data link
\ A linked list with a head pointer pList I
pList
An empty linked list '
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003
Figure11-11
Node
Data —
struct Node
{ -
int Data;
Node* Ptr;
}
Node* Ptr;
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure11-12 H
? |nserting
anode
q.Ptr=p.Ptr; e [H—st 18 [-
p'Ptr:q; Original List
After Step 1
[B
After Step 2
l;azugj > 178
" B
After Step 3
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003
Figure 11-13 .
Deleting a node
P q
’
- —® 75 —» 96 124 —
Original List
-—® 75 124 — -
After Delete
Node* g=p.Ptr;
p.Ptr=q.Ptr;
delete q;
M ©Brooks/Cole,
Thomson Learning. 2003

Figure 11-14

Traversing alist

.—»18 —— 24 | ——8 39 ——»-v-—u57g

ke \{Nhi le(pWalker!=nil)
pWalker=pWalker.Ptr;
//Do something meaningful
}
;.; _Bl'OOkSI'_COlE ©Brooks/Cole,
Thomson Learning. 2003

