
1

©Brooks/Cole,
2003

Chapter 11

Data
Structures

©Brooks/Cole,
2003

Understand arrays and their usefulness.Understand arrays and their usefulness.

Understand records and the difference between an array and Understand records and the difference between an array and
a record.a record.

Understand the concept of a linked list and the differenceUnderstand the concept of a linked list and the difference
between an array and a linked list.between an array and a linked list.

After reading this chapter, the reader should After reading this chapter, the reader should
be able to:be able to:

OOBJECTIVESBJECTIVES

Understand when to use an array and when to use a linkedUnderstand when to use an array and when to use a linked--list.list.

2

©Brooks/Cole,
2003

ARRAYSARRAYS
11.111.1

©Brooks/Cole,
2003

Figure 11-1

Twenty individual variables
Declare 20 variables!

3

©Brooks/Cole,
2003

Figure 11-2

Processing individual variables

©Brooks/Cole,
2003

Figure 11-3

Arrays with subscripts and indexes
Declare 20 variables Declare a array with 20 elements

int number0, number1, …
number0=0;
number1=1;
…
change to

int number[20];
for (i=0;i=19; i++)
{

number[i]=i;
}

4

©Brooks/Cole,
2003

Figure 11-4

Processing an array

©Brooks/Cole,
2003

Figure 11-7- Part I

Two-dimensional array

5

©Brooks/Cole,
2003

Figure 11-8

Memory layout

Row-major data allocation scheme.

©Brooks/Cole,
2003

RECORDSRECORDS
11.211.2

6

©Brooks/Cole,
2003

Figure 11-9

Records

©Brooks/Cole,
2003

The elements in a record can be of The elements in a record can be of
thethe

same or different types. But all same or different types. But all
elementselements

in the record must be related. in the record must be related.

Note:Note:

7

©Brooks/Cole,
2003

Record in C and C++

struct fraction

{

int numerator, denominator;

};

fraction V;

V.numerator=1;

V.denominator=2;

©Brooks/Cole,
2003

LINKEDLINKED
LISTSLISTS

11.311.3

8

©Brooks/Cole,
2003

Figure 11-10

Linked lists

©Brooks/Cole,
2003

Figure 11-11

Node

struct Node
{

int Data;
Node* Ptr;

}
Node* Ptr;

9

©Brooks/Cole,
2003

Figure 11-12 Inserting
a node

q.Ptr=p.Ptr;
p.Ptr=q;

q

p

©Brooks/Cole,
2003

Figure 11-13

Deleting a node

p

Node* q=p.Ptr;
p.Ptr=q.Ptr;
delete q;

q

10

©Brooks/Cole,
2003

Figure 11-14

Traversing a list

while(pWalker!=nil)
{

pWalker=pWalker.Ptr;
//Do something meaningful

}

