
1

©Brooks/Cole, 
2003

Chapter 10

Software
Engineering

©Brooks/Cole, 
2003

Understand the software life cycle.Understand the software life cycle.

Describe the development process models.Describe the development process models.

Understand the concept of modularity in software engineering.Understand the concept of modularity in software engineering.

Understand the importance of quality in software engineering.Understand the importance of quality in software engineering.

After reading this chapter, the reader should After reading this chapter, the reader should 
be able to:be able to:

OOBJECTIVESBJECTIVES

Understand the role of documentation in software engineering.Understand the role of documentation in software engineering.



2

©Brooks/Cole, 
2003

SOFTWARESOFTWARE
LIFELIFE

CYCLECYCLE

10.110.1

©Brooks/Cole, 
2003

Figure 10-1

System life cycle



3

©Brooks/Cole, 
2003

Figure 10-2

System development phases

©Brooks/Cole, 
2003

System Development: 4 Phases

• Analysis phase:
– Requirements that the packages should accomplish.
– 4 steps:

• Define the user
– Accounting package: For any firm
– Customized banking package: For a specific bank

• Define the needs
– The best answers come from the users.

• Define the requirements 
– Based on the users’ needs. Define system requirements.

• Define the methods.



4

©Brooks/Cole, 
2003

System Development: 4 Phases

• Design Phase:
– How the systems will accomplish what was 

defined in analysis phase.
– OS, files and databases are determined.
– Modularity

– Divide the package into small modules.
– Link through a main program.

– Tools
– Like structure chart.

©Brooks/Cole, 
2003

System Development: 4 Phases

• Implementation Phase: 
– Create actual programs.

– Tools:
• Flowchart, and Pseudocode.

– Coding

• Test Phase
– Specialists: test engineers.

– Two kind of tests
• Black box testing

• White box testing



5

©Brooks/Cole, 
2003

System Development: 4 Phases

• Black box testing:
– Test without knowing how it works.

– Test according to package requirements.

• White box testing:
– Know everything about the program

– Programmer’s responsibility.
• Testing plans in design stages 

• Eye toward tests for flowcharts and pseudocodes.

©Brooks/Cole, 
2003

DEVELOPMENTDEVELOPMENT
PROCESSPROCESS
MODELSMODELS

10.210.2



6

©Brooks/Cole, 
2003

Figure 10-3

Waterfall model

One phase can’t be started until the 
previous phase is finished.

Advantage: Each phase is completed 
before the next phase start. So the next
phase exactly know what to do. 
Disadvantage: When locating a problem, the entire process should
be investigated.

©Brooks/Cole, 
2003

Figure 10-4

Incremental model

A simplified version Add details…
Begin with main module
Each time add a new module
Don’t go to next step until the previous
version works properly.



7

©Brooks/Cole, 
2003

MODULARITYMODULARITY

10.310.3

©Brooks/Cole, 
2003

Modularity

• Definition: Break a large project into small 
parts that can be understood and handled.

• Two tools:
– Structure chart: procedural programming

• An example is given in later slide.

– Class diagram: Object oriented programming

• Two measure for modularity
– Coupling: Data relation
– Cohesion: Process relation



8

©Brooks/Cole, 
2003

A Simple Example for Structure 
Chart and Data Flow

©Brooks/Cole, 
2003

Coupling

• Definition: Measure of how tightly two modules are 
bounded to each other.

• Independent modules are prefer Loosely coupled

• Code reusable

• Less likely to create errors.

• Easy to maintain

– Data coupling
• Only passed min. required data to the called function.

– Stamp coupling
• Send the composite object (like array) to the called function.

• Send extra data might result in errors or side effects.



9

©Brooks/Cole, 
2003

Coupling
– Control coupling

• Pass the flag that direct the logic flow of a function.
• Used to communicate the status.

– Global coupling
• Use global variables to communicate among functions.
• When changing the program, not impossible to isolate the 

impact.
• Functions are not easily reused in other programs.

– Content coupling
• One function refers directly to the data or statements in 

another one.
• Break structure programming

©Brooks/Cole, 
2003

Cohesion
• Def: Measure how closely the processes in a 

program are related.

One program
may have many
processes.



10

©Brooks/Cole, 
2003

An Example to Fork a Process
(Used in UNIX programming) 

• void main()
{

pid_t p=fork();
if(p==0)
{

//child process
Do something that a child process should do

}
else
{

//Parent process
Do something that a parent process should do

}
}

©Brooks/Cole, 
2003

Cohesion
• Functional cohesion

– Only one process

– Each function should only do one thing

– One thing should be done in one place.

• Sequential cohesion
– The output of one process is input to another

– Ex: Calculate the price

– Extend item price Sum item prices Calculate 
the tax Calculate the total.



11

©Brooks/Cole, 
2003

Cohesion

• Communicational cohesion
– Process works on the same data

• The above three level are good structured programming 
principles.

• Procedural cohesion
– Combines unrelated processes that are linked by control flows.

• Temporal cohesion
– Unrelated processes that occurs together.
– Init. and finalized of a job.

• Logical and coincidence cohesion
– Seldom found today.

©Brooks/Cole, 
2003

QUALITYQUALITY

10.410.4



12

©Brooks/Cole, 
2003

Quality Software

• How to measure the quality of a software?

• Definition of Quality software
– Software that satisfies the user’s explicit and 

implicit needs, is well documented, meets the 
operating standards, run efficiently.

– Three broad measure
• See later slide. 

©Brooks/Cole, 
2003

Figure 10-5

Quality factors
How long to get
a program backs 
when it fails.

Sending data to other systems.



13

©Brooks/Cole, 
2003

Figure 10-6

Quality circle

©Brooks/Cole, 
2003

DOCUMENTATIONDOCUMENTATION

10.510.5



14

©Brooks/Cole, 
2003

Documentation

• User documentation: manual

• System documentation
– Analysis phase: information collected, source, methods

– Design phase: Structure chart

– Implementation phase
• General documentation

• Function documentation

– Testing phase

• Documentation is an ongoing process until the package 
become obsolete.


