Chapter 10

Software
Engineering

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

OBJECTIVES

After reading this chapter, the reader should
be able to:

[Understand the software life cycle.

Describe the devel opment process models.
Understand the concept of modularity in software engineering.

Understand the importance of quality in software engineering.

B 8 8 B

Understand the role of documentation in software engineering.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 10-1

System life cycle

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

Figure 10-2

System development phases

System
DHV{-‘.I(]])"](—.‘IH

‘ Analysis I Design I Implementation I Testing I
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

System Development: 4 Phases

» Analysis phase:
— Requirements that the packages should accomplish.
— 4 steps.
* Define the user

— Accounting package: For any firm

— Customized banking package: For a specific bank
* Define the needs

— The best answers come from the users.
* Define the requirements

— Based on the users’ needs. Define system requirements.
* Define the methods.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

System Development: 4 Phases

» Design Phase:
— How the systems will accomplish what was
defined in analysis phase.
— OS, files and databases are determined.
— Modularity

— Divide the package into small modules.
— Link through a main program.

— Tools
—Like structure chart.
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

System Development: 4 Phases

* Implementation Phase:
— Create actual programs.

— Tools:
¢ FHowchart, and Pseudocode.

— Coding

* Test Phase
— Specialists: test engineers.
— Two kind of tests

* Black box testing
* White box testing

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

System Development: 4 Phases

 Black box testing:
— Test without knowing how it works.
— Test according to package reguirements.

» White box testing:
— Know everything about the program
— Programmer’ s responsibility.
 Testing plansin design stages
» Eyetoward tests for flowcharts and pseudocodes.

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

Figure10-3

Waterfall model

One phase can’'t be started until the

Analysis previous phase is finished.

Design

Implementation

Advantage: Each phase is completed
before the next phase start. So the next Testing
phase exactly know what to do.

Disadvantage: When locating a problem, the entire process should
be investigated.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Figure 10-4

I ncremental mode

A simplified verson-> Add details...
Begin with main module
Each time add a new module
Don’'t go to next step until the previous
version works properly.
1

First Increment L o

Last Increment 4|

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

VIODULARI Y

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Modularity

 Definition: Break alarge project into small
parts that can be understood and handled.

e Two tools:

— Structure chart: procedural programming
* Anexampleisgivenin later slide.

— Class diagram: Object oriented programming
» Two measure for modularity

— Coupling: Datarelation

— Cohesion: Process relation

Brooks/Cole ©Brooks/Cole,
2003

omson Learning.

A Simple Example for Structure
Chart and Data Flow

Calculate pay
amounts

Deduction
Hours amount
0 ‘/0 ""O O

Deduction

cQiformaljon

Calculate base Calculate overtime Calculate taxes Calculalsg other
amount amount deductions

FIGURE 10'6

A simple structure chart for
the Calculate pay amounts module,

Coupling

» Definition: Measure of how tightly two modules are
bounded to each other.

* Independent modules are prefer-> Loosely coupled
* Codereusable
e Lesslikely to create errors.
» Easy to maintain

— Datacoupling
* Only passed min. required data to the called function.

— Stamp coupling
 Send the composite object (like array) to the called function.
» Send extra data might result in errors or side effects.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Coupling

— Control coupling
* Passtheflag that direct the logic flow of afunction.
» Used to communicate the status.

— Global coupling
» Use global variables to communicate among functions.
» When changing the program, not impossible to isolate the
impact.
* Functions are not easily reused in other programs.
— Content coupling

» Onefunction refers directly to the data or statementsin
another one.

* Break structure programming

MSICO'E ©Brooks/Cole,
Thomson Learning. 2003
Cohesion
» Def: Measure how closely the processesin a
program are related.

Program

Inactive on the disk

A
Jol Becomes a job Becomes a program
AT o eeeeeveeersesssssesssssenssssersassermassssssssssresssssessssssessassessassesasass o
One program T T
may have many (told @
processes.
Enters Memory Exit
Process
g
Rcady Get access to CPU w
"\\ .-'.l-'lme\ slot [-xlmmlv;i- ///
]-"{J\ali.»['inrf‘\\ ///I;"()n‘qn{-n[f-rl
. xOran interrupt occurred
e :.
(Waiting
Brooks/Cole ©Brooks/Cole,

2003

Thomson Learning.

An Example to Fork a Process
(Used in UNIX programming)

e void main()

pid_t p=fork();
if(p==0)
{

/[child process
Do something that a child process should do
}

else
{
[/[Parent process
Do something that a parent process should do

}
}

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

Cohesion

» Functional cohesion
— Only one process
— Each function should only do one thing
— One thing should be done in one place.
» Sequential cohesion
— The output of one processisinput to another
— Ex: Calculate the price

— Extend item price - Sum item prices - Calculate
the tax—> Calculate the total.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

10

Cohesion

e Communicational cohesion
— Process works on the same data
» The above threelevel are good structured programming
principles.
» Procedura cohesion
— Combines unrelated processes that are linked by control flows.
» Temporal cohesion
— Unrelated processes that occurs together.
— Init. and finalized of ajob.
» Logica and coincidence cohesion
— Seldom found today.

Brooks/Cole

omson Learning.

©Brooks/Cole,
2003

QUALIFIFY

Brooks/Cole

omson Learning.

©Brooks/Cole,
2003

11

Quality Software

* How to measure the quality of a software?

 Definition of Quality software

— Software that satisfies the user’s explicit and
implicit needs, is well documented, meets the
operating standards, run efficiently.

— Three broad measure

* Seelater dide.
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

Figure 10-5 .
Quality factors
How long to get

aprogram backs
Software when it fails.
Quality
Operability I Maintainability /I Transferability I

Accuracy Changeabilit Code reusability

Efficiency Correctability Interoperability

Reliability Flexibility Portability

Security Testability

Timeliness

Usability Sending data to other systems.
Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

12

Figure 10-6

Quality circle

The

Quality

Circle

Brooks/Cole ©Brooks/Cole,
Thomson Learning. 2003

10.5

DOCUMENTATION

Brooks/Cole ©Brooks/Cole,
Thomson Veirming. 2003

13

Documentation

e User documentation: manua

» System documentation
— Analysis phase: information collected, source, methods
— Design phase: Structure chart

— Implementation phase
* Genera documentation
* Function documentation

— Testing phase
» Documentation is an ongoing process until the package
become obsol ete.

Brooks/Cole ©Brooks/Cole,

Thomson Learning. 2003

14

