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INTRODUCTIONINTRODUCTION

W ’t b th i t t h t t dWe can’t observe the instantaneous short rate and
instantaneous forward rate in the traditional
i d linterest rate models
We adapt LIBOR market model which is basedp
on the forward LIBOR rate that we can observe
from the daily markety
When implementing LMM in lattice method, we
face the explosive tree due to the non-Markovface the explosive tree due to the non Markov
property
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INTRODUCTIONINTRODUCTION

h bi i d k i iThe nonrecombining node make our pricing
procedure inefficient and don’t satisfy the market
requirement
We apply the HSS methodology into LMM thatWe apply the HSS methodology into LMM that
make the nodes combine and make the pricing the
d i i f iblderivatives feasible
The method we proposed make our valuationp p
more efficient and more accurate
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REVIEW OF INTEREST RATE MODELSREVIEW OF INTEREST RATE MODELS

• Equilibrium models
• No arbitrage models• No-arbitrage models

Instantaneous short rate models
Instantaneous forward rate model
Forward rate modelForward rate model
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FORWARD RATE MODELFORWARD RATE MODEL
LIBOR MARKET MODEL (LMM)

h di d b k dThe LMM was discovered by Brace, Gatarek, and
Musiela (1997) and was initially referred to as the
BGM model by practitioners
There are two commonly used versions of theThere are two commonly used versions of the
LMM:

one is the lognormal forward LIBOR model (LFM) 
for pricing caps
the other is the lognormal swap model (LSM) for 
pricing swaptionsp g p
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FORWARD RATE MODELFORWARD RATE MODEL
LIBOR MARKET MODEL (LMM)

h ifi h f dThe LFM specifies the forward rate         
following zero-drift stochastic process under its 

1( ; , )i if t T T +

own forward measure:
( ; )df t T T 1

1

( ; , ) ( ) ( )
( ; , )

i i
i i

i i

df t T T t dW t
f t T T

σ+

+

=

is a Brownian motion under the forward 
measure       defined with respect to the numeraire 

( )idW t
iP% p

asset
measures the volatility of the forward rate( )i tσ measures the volatility of the forward rate 

process
( )i tσ
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MARKET CONVENTIONS OF THE LMM ANDMARKET CONVENTIONS OF THE LMM AND 
THE DISCRETE-TIME VERSION OF THE LMM

h l i hi b h diThe relationship between the discrete LIBOR rate
for the term and the zero1( , )i iL T T + 1i i iT Tδ += −for the term                   and the zero 

coupon bond price                 , given as follows:
1

1( , )i i+ 1i i i+

1( , )i iP T T +

1
1

1( , )
1 ( , )i i

i i i

P T T
L T Tδ+

+

=
+

where                                is the time line and     
is called the tenor for the period to

0 1 2 nt T T T T= < < < <L iδ
T Tis called the tenor for the period      to iT 1iT +

8



METHODOLOGYMETHODOLOGY
HSS HSS 

recombining 
nodes 

methodology

forward rate 
binomial tree

conditional prob.down up p
movementmovement

iu
id 1 1,( | )i i i rq x x x− −=

drift of the 
discrete time 
forward rate

Poon and 
Stapleton 

text (2005)
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INTRODUCING THE HSS RECOMBININGINTRODUCING THE HSS RECOMBINING 
NODE METHODOLOGY 

l d b h ( )Ho, Stapleton and Subrahmanyam (1995) [HSS]
suggest a general methodology for creating a
recombining multi-variate binomial tree to
approximate a multi-variate lognormal processapproximate a multi variate lognormal process
Our assumption about  LMM satisfies the 

di i i h HSS h d l d l iconditions in the HSS methodology and apply it 
into LMM
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HSS METHODOLOGYHSS METHODOLOGY

SS h i f d l i f llHSS assume the price of underlying asset  follows a 
lognormal diffusion process:

where and are the instantaneous drift and
ln ( ) ( ( ), ) ( ) ( )d X t X t t dt t dW tμ σ= +
μ σwhere       and       are the instantaneous drift and 

volatility of          , and             is a standard 
Brownian motion

μ σ
ln X ( )dW t

Brownian motion
They denote the unconditional mean of the logarithmic 

t t t ti i μasset return at time i as 
The conditional volatility over the period i -1 to i is 
d t d

iμ

denoted as
The unconditional volatility is

1,i iσ −

0,iσ 11
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0 2

n nX u +

1
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nX u
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0X
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1 2 2 2
0 2 2

n n r rX u d+ −

, 1,20

1
0 1

nX d

2 0,2ˆ ˆ,μ σ

n 2n
1 2

0 2
n nX d +
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HSS METHODOLOGYHSS METHODOLOGY

HSS method involves the construction of m 
separate binomial distribution, where the time sepa a e b o a d s bu o , w e e e e
periods are denoted
A d h th t f di t t h ti f

1, , , ,i mt t tL L

XAnd have the set of a discrete stochastic for     , 
where       is only defined at time

iX
iX it

The general form of      at node riX
iN r rX X u d−=

where
, 0i r i iX X u d=

1

i
i ll

N n
=

= ∑
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HSS METHODOLOGYHSS METHODOLOGY

h d d h b bili iThey denote                       and the probabilities to 
reach     given a node at      as 

0ln( / )i ix X X=

ix 1it −1,i rx −

L 1 S th t th d d

i 1i

1 1,( | )  ( )i i i r iq x x x or q x− −=
,i

Lemma 1 Suppose that the up and down 
movements        and      are chosen so thatiu id

1

02( ( ) / ) , 1, 2, , ,
iN

i
i

E X Xd i m= = L
1, 1

1

,     1, 2, , ,
1 exp(2 ( ) / )i

i i i i i

d i m
t t nσ − −+ −

02( ( ) / ) ,     1, 2, , ,iN
i i iu E X X d i m= − = L
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HSS METHODOLOGYHSS METHODOLOGY
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APPLYING HSS METHODOLOGY INTO LMMAPPLYING HSS METHODOLOGY INTO LMM

l hi h d l i h dWe  apply this methodology into the LMM and 
make some change to satisfy our conventions
We have the following propositions
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PROPOSITION 1PROPOSITION 1

For the forward LIBOR rate which follows the 
lognormal distribution, we can choose the g
proper up and down movements to determine 
the i-th period of the -maturity forwardTthe i th period of the    maturity forward 
LIBOR rate and have the form

nT

( ) ( ) N r rf f d

where
1 1 1 2( ; , ) (0; , ) ,  , , ,iN r r

n n r n n i i nf i T T f T T u d i T T T−
+ += = L

1

2[ ( ( ; )) / (0; )] iNE f i T T f T T1 1

1, 1

1 1

2[ ( ( ; , )) / (0; , )]
1 exp(2 ( ) / )

2[ ( ( ; , )) / (0; , )]

n n n n
i

i i i i i

i i

E f i T T f T Td
T T n

u E f i T T f T T d
σ

+ +

− −

+ +

=
+ −

= −1 1

1

2[ ( ( ; , )) / (0; , )]                                      

: node's number from top to bottom at time 

i n n n n i

i i i

i

u E f i T T f T T d
N N n
r T

+ +

−= +
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THE BINOMIAL TREES IN DISCRETE TIMETHE BINOMIAL TREES IN DISCRETE TIME 
FORWARD RATE 

f(1;1,2)

f(0;1,2)

( ; , )

f(2;2,3)
( ; , )

f(1;2,3)

f(0;2,3)( ; , )

. . .
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THE STRUCTURE OF THE BINOMIAL TREETHE STRUCTURE OF THE BINOMIAL TREE
1 2

2(0; 2 ) n nf u +

With          nodes at  
numbered                

2( ; )f

1 1n + 1T

There are               nodes 
at      numbered               

1
1(0; 2 ) nf u1 2 1n n+ +

2T 1 20,1, ,r n n= +K

Here we write the 
forward rate  (0; 2 )f 1 1 1

1 1(0; 2 ) n r rf u d− 1 2 2 2
2 2(0; 2 ) n n r rf u d+ −(0;2,3)f

in abbreviated form  
and take n1 = n2 = 2,

(0;2)f
and take n1  n2  2,

1
1(0; 2 ) nf d

1 1 2 1 20 ,  0r n r n n≤ ≤ ≤ ≤ +
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PROPOSITION 2PROPOSITION 2

h h f dSuppose that the forward LIBOR rate                
are joint lognormally distributed. If the                  

1( ; , )n nf i T T +

,         are approximated with 
binomial distributions with stages

1 1 2( ; , ),  , , ,n n nf i T T i T T T+ = L

N N n= +binomial distributions with                      stages 
and      and      given by proposition 1, and if the 

di i l b bili f

1i i iN N n−= +

iu id
conditional probability of an up movement at 
node r at time       is iTi

1 1
1 1,

( ) ( ) ln ln ln( | )   ,  
(ln ln ) ln ln

i i i i i i
i i i r

i i i i i

E x N r u r d dq x x x i r
n u d u d

− −
− −

− − −
= = − ∀

− −(ln ln ) ln lni i i i in u d u d
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PROPOSITION 2PROPOSITION 2

hwhere
1

1

( ; , )ln
(0; , )

n n
i

f i T Tx
f T T

+=
1

1 1 1,

(0; , )
( ) ( ) ( )

n n

i i i i i i i r

f T T
E x E x b E x b x

+

− − −= − +

To determining the conditional probability it has

2 2 2
0, 1 1, 1 0, 1[ ( ) ] /i i i i i i i i ib t t t tσ σ σ− − − −= − −

To determining the conditional probability, it has 
some skills to use for the term
W fi d i Si f d i

1( )i iE x−

We first derive  term          . Since forward rate is 
lognormally distributed, we have

( )iE x

( ( )) 1E f i T T 21
0,

1

( ( ; , )) 1( ) ln[ ]
(0; , ) 2

n n
i i

n n

E f i T TE x
f T T

σ+

+

= −
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THE DERIVATION OF EXPECTATIONTHE DERIVATION OF EXPECTATION

h i l i d lThe most important result in Poon and Stapleton 
text is the drift of the discrete time forward rate 
and we rewrite as

1 1 2 2 31 1 2[ ( ; , )] ( ; , )( ; , )tE f T T T f t T Tf t T T δδ1 1 2 2 31 1 2
1, 2,

1 1 1 2 2 2 3

[ ( ; , )] ( ; , )( ; , )1
( ; , ) 1 ( ; , ) 1 ( ; , )

( ; )

t n n
n n

n n

E f T T T f t T Tf t T T
f t T T f t T T f t T T

f t T T

δδ σ σ
δ δ

δ

+

+

= + ⋅ + ⋅
+ +

% %

Then multiple the term on both side to1( ; , )n nf t T T +

1
,

1

( ; , )                                                             
1 ( ; , )

n n n
n n

n n n

f t T T
f t T T

δ σ
δ

+

+

+ + ⋅
+

%L

Then multiple the                  term on both side to 
get the general form of 1(0; , )n nf T T +

1 1 1( ( ; , )) / (0; , )t n n n nE f T T T f T T+ +
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THE DERIVATION OF EXPECTATIONTHE DERIVATION OF EXPECTATION

h l f f i i iThe general form of expectation is given as  
1 1 1( ; , ) [ ( ; , )]n n t n nf t T T E f T T T+ +× =
1 1

1 2 2 3 11 1 2
1, 2, ,

1 1 1 2 2 2 3 1

(0; , ) ( ; , )
( ; , ) ( ; , ) ( ; , )( ; , )(1 )
(0; , ) 1 ( ; , ) 1 ( ; , ) 1 ( ; , )

n n n n

n n n n n
n n n n

f T T f t T T
f t T T f t T T f t T Tf t T T
f T T f t T T f t T T f t T T

δ δδ σ σ σ
δ δ δ

+ +

+ +

+ +

×

× + ⋅ + ⋅ + + ⋅
+ + +

% % %L
1 1 1 2 2 2 3 1(0; , ) 1 ( ; , ) 1 ( ; , ) 1 ( ; , )n n n n nf T T f t T T f t T T f t T Tδ δ δ+ ++ + +
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SPECIAL CASESPECIAL CASE

When nl stages approach infinite                , the 
sum of nl stages also approach infinite, that is 

1, ,l i= L

l g pp

W d th d d t t
1

i
i ll

N n
=

= →∞∑
We can reduce the up and down movements to 
the briefer form which is easier to calculate and 
show as follows

2
id =

1, 11 exp(2 ( ) / )
2

i
i i i i i

i i

T T n
u d

σ − −+ −

= −
The conditional probability                 as 
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THE VALUATION OF EMBEDDED OPTION ONTHE VALUATION OF EMBEDDED OPTION ON 
ZERO COUPON BOND IN LMM

h b dd d i i b d hThe embedded option on ZCB is a bond that can
be callable before maturity date with a callable
price K

option maturity

Ti 0 1 2 3

bond maturityC0

We have a three years maturity zero coupon bond

Time 0           1y                        2y                            3y
one year

We have a three years maturity zero coupon bond
with a callable price K equal to 0.952381 dollar at
year two
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THE VALUATION OF EMBEDDED OPTION ONTHE VALUATION OF EMBEDDED OPTION ON 
ZERO COUPON BOND IN LMM

i i h i l f hi ll bl b dPricing the option value C0 of this callable bond 
at time 0
Here, we take the flat forward rate 5% and 
constant volatility 10%constant volatility 10%

0 (0,2) [max( (2,3) ,0)]C P E P K= × −0 (0,2) [max( (2,3) ,0)]
     0.90702948 0.00258128
C P E P K×

= ×
     0.00234130=
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SENSITIVE ANALYSIS STRIKE PRICESENSITIVE ANALYSIS – STRIKE PRICE

h ik i fWe change strike price from 0.952381 to 0.96 
which vary 0.001 to see the relationship between 
strike price and embedded option value 
We find that when the strike price increases theWe find that when the strike price increases, the 
embedded option value decreases 
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Embedded Option Value
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SENSITIVE ANALYSIS VOLATILITYSENSITIVE ANALYSIS – VOLATILITY

i f h l ili f ilWe increase 1% of the volatility from 10% until
reach 30% to see the impact of volatility on the
embedded option value
We find that when the volatility increases theWe find that when the volatility increases, the
embedded option value increases
It is consistent with the inference for the Greek
letter vega when the underlying asset’s volatilityg y g y
increases the option value increases, too.
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THE VALUATION OF CAPLETS IN LMMTHE VALUATION OF CAPLETS IN LMM

h ff f i f l i iThe payoff function of a caplet at time       is1iT +

max( ( ; ) 0)A f T T T Kδ× × −
It is a caplet on the spot rate observed at time     

ith ff i t ti

1max( ( ; , ) ,0)i i iA f T T T Kδ +× ×
iT

Twith payoff occurring at time
The cap is a portfolio consisted of n such call

1iT +

p p
options which the underlying is known as caplet
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THE THEROETICAL VALUE OF CAPLETTHE THEROETICAL VALUE OF CAPLET

h l k f l f h lWe use the Black’s formula for the caplet to get 
the theoretical value of caplet and rewrite as

h
1 1 1 2( ) ( , )[ ( ; , ) ( ) ( )]i i i i icaplet t A P t T f t T T N d KN dδ + += × × −

where
2

1ln( ( ; ) / ) ( ) / 2f t T T K T tσ+ −1
1

ln( ( ; , ) / ) ( ) / 2 ,i i i i

i i

f t T T K T td
T t

σ
σ
+ +

=
−

2
1

2
ln( ( ; , ) / ) ( ) / 2 ,i i i if t T T K T td

T t
σ

σ
+ − −

=
−

32
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NUMERICAL METHOD OF CAPLETNUMERICAL METHOD OF CAPLET

h ff f i h iWe use the payoff function to compute the price 
in lattice method
To get the payoff function at time      , we have to 
know the evolution of the forward rate

1iT +

(0; )f T Tknow the evolution of the forward rate                
at time  

1(0; , )i if T T +

iT
We construct the binomial tree of                   and 
known the                             , r = 0, 1, …, i.

1(0; , )i if T T +

1( ( ; , ) )i i i rf T T T K +
+ − , , , ,

Calculating the expectation of the payoff at time  
and then m ltiple the ZCB of to get the

1( ( ; , ) )i i i rf +

1iT +

( )P t Tand then multiple the ZCB of                to get the 
caplet value at time t. 33

1( , )iP t T +



EXAMPLEEXAMPLE

f dAssume              ,                            , forward 
curve is flat equal to 5% and

1Aδ = = 10%,  5%Kσ = =
25,  1,...,10in i= =

W h th i d l t t ti 0 l t (0)

i

We have the one period caplet at time 0 caplet1(0)

1(0) (0,2) [max( (1;1, 2) ,0)]caplet A P E f Kδ= × × × −1( ) ( ) [ ( ( ) )]
                 1 1 (0,2) 0.0020112666

0 90702948 0 0020112666

p f
P= ⋅ ⋅ ⋅

                 0.90702948 0.0020112666
                 0.0018242781

= ⋅
=

34



NUMERICAL RESULTNUMERICAL RESULT

id h l i diff hBesides the relative difference, we use the RMSE 
to see the difference between the lattice value and 
Black’s model for the whole maturity

Table 2 is the results for different maturity caplets

We find that when we increase the stage betweenWe find that when we increase the stage between 
periods, the difference between lattice method 
and Black’s model is close
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TABLE 2 VOLATILITY IS 10% AND STAGETABLE 2 VOLATILITY IS 10% AND STAGE 
FOR EVERY PERIOD IS 25

RelativeMaturity Black Lattice Difference Relative 
Difference (%)

1 0.0018085085 0.0018242781 0.0000157696 0.8719669656 
2 0 0024348117 0 0024407546 0 0000059429 0 24407869192 0.0024348117 0.0024407546 0.0000059429 0.2440786919 
3 0.0028388399 0.0028374958 -0.0000013441 0.0473484800 
4 0.0031206153 0.0031282191 0.0000076038 0.2436631792 
5 0.0033214311 0.0033204098 -0.0000010214 0.0307505629 
6 0.0034637453 0.0034664184 0.0000026731 0.0771737036 
7 0 0035616356 0 0035658574 0 0000042219 0 11853691377 0.0035616356 0.0035658574 0.0000042219 0.1185369137 
8 0.0036247299 0.0036200240 -0.0000047059 0.1298286011 
9 0.0036600091 0.0036633313 0.0000033221 0.0907678678 
10 0.0036727489 0.0036743568 0.0000016079 0.0437804213 

RMSE 0.0000063671 
1. Caplet assume δ = 1 and stage 25

36

1. Caplet assume δ  1 and stage 25
2. Assume volatility is 10%, the forward curve is flat 5%



TABLE 2 VOLATILITY IS 10% AND STAGETABLE 2 VOLATILITY IS 10% AND STAGE 
FOR EVERY PERIOD IS 50
Maturity Black Lattice Difference Relative Difference (%)

1 0.0018085085 0.0018099405 0.0000014320 0.0791823392 
2 0.0024348117 0.0024397802 0.0000049685 0.20406086522 0.0024348117 0.0024397802 0.0000049685 0.2040608652 
3 0.0028388399 0.0028434461 0.0000046061 0.1622542164 
4 0.0031206153 0.0031230795 0.0000024643 0.0789673074 
5 0.0033214311 0.0033207434 -0.0000006878 0.0207066243 
6 0.0034637453 0.0034620815 -0.0000016638 0.0480341136 
7 0.0035616356 0.0035626664 0.0000010308 0.0289416315 
8 0.0036247299 0.0036267433 0.0000020134 0.0555455781 
9 0.0036600091 0.0036617883 0.0000017792 0.0486107386 
10 0 0036727489 0 0036734197 0 0000006708 0 018264987610 0.0036727489 0.0036734197 0.0000006708 0.0182649876 

RMSE 0.0000025690 
1. Caplet assume δ = 1 and stage 50
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CONVERGENCE BEHAVIOR VS VOLATLITYCONVERGENCE BEHAVIOR VS. VOLATLITY

h h l ili fWe change the volatility from 10% to 20% to see 
the convergence behavior of RMSE  at different 
volatility level
We find that when the volatility at low level theWe find that when the volatility at low level, the 
convergent rate is fast to zero. However, the 

l ili hi h l l h b h ivolatility at high level the convergence behavior 
is slow
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CONCLUSIONSCONCLUSIONS

C i h bi i bi i l hConstructing the recombining binomial tree, the
payoff of the interest rate derivatives on each node
can be obtained
Comparing to the theoretical value, we find theComparing to the theoretical value, we find the
theoretical value and lattice method is close when we
increase the stagesincrease the stages.
The sensitive analysis results of embedded option are 
consistent with inference of Greek lettersconsistent with inference of Greek letters
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FUTURE WORKSFUTURE WORKS

i i h j i b bili b hDeriving the joint probability between the states
of different binomial forward rate trees.
Adjusting the stages between period by period to
fit the strike price to reduce the nonlinearity errorfit the strike price to reduce the nonlinearity error
Trying to change the constant volatility to
stochastic volatility to fit the volatility term
structure.
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The EndThe End 

THANK YOU FOR YOUR LISTENING
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THE RELATIONSHIP BETWEEN DISCRETETHE RELATIONSHIP BETWEEN DISCRETE 
TIME  FORWARD RATE

Time 0 Time 1 Time 2 Time 3 …

f(0;0,1)(1) drift

f(0;1,2) f(1;1,2)
(1) drift

f(0;2,3) f(1;2,3) f(2;2,3)

f(0;3 4) f(1;3 4) f(2;3 4) f(3;3 4)
(3) covariance

f(0;3,4) f(1;3,4) f(2;3,4) f(3;3,4)

. . . . .(2) volatility

. . . . .
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THE DISCRETE TIME VERSION OF LMMTHE DISCRETE TIME VERSION OF LMM

h i l hi h d hThe most important results which are under the 
“risk neutral” measure in the Poon and Stapleton 
text (2005)

• For a zero coupon bond price is given by• For a zero-coupon bond price is given by
1 1( , ) ( , ) ( ( , ))n t nP t T P t T E P T T=

• The drift of the forward bond price is given by
[ ( )] ( )E For T T T For t T T−1

1
1 1

[ ( , , )] ( , , )
( , )                                     cov [ ( , , ), ( , )]
( )

t i n i n

t i n n

E For T T T For t T T
P t T For T T T P T T
P t T

−

= −
( , )nP t T
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THE MOST IMPORTANT RESULTS IN TEXTTHE MOST IMPORTANT RESULTS IN TEXT

h d if f i d f d i i b• The drift of T-period forward rate is given by
[ ( ; )] ( ; )E f T T T f t T T− =1 1 1

1 1

[ ( ; , )] ( ; , )
1 1 1cov [ ( ; , ), ]

1 1 ( ; ) 1 ( ; )

t n n n n

t n n

E f T T T f t T T

f T T T
y f T T T f T T T

+ +

+

=

− × × ×
+ + +

L
1 1 2 3 1 1

1 2 2 3 1

1 1 ( ; , ) 1 ( ; , )

  (1 ( ; , )) (1 ( ; , )) (1 ( ; , ))
T n n

n n

y f T T T f T T T

f t T T f t T T f t T T
+

+

+ + +

× + ⋅ + ⋅ ⋅ +L
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DISCRETE TIME VERSION OF LMMDISCRETE-TIME VERSION OF LMM

l h l h b i fWe now apply the results to the LIBOR basis for 
the FRA and rewrite as follows

1( ( ; , ) )( ) n n n n
n

A f T T T KFRA T δ+ − ⋅
=

where                     and we assume all the tenors 
1

( )
1+ ( ; , )n

n n n nf T T Tδ +

1n n nT Tδ += −
are same to make the equation brief, that is 

1n n n+

δ δ δ δ1 2 nδ δ δ δ= = = =L
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DISCRETE TIME VERSION OF LMMDISCRETE-TIME VERSION OF LMM

h b l d i ilWe use the above results and similar steps to 
derive the FRA value at time t to generalize the nT
maturity forward rate

[ ( ; )] ( ; )E f T T T f t T T1 1 1

1 1

[ ( ; , )] ( ; , )
1 1 1cov [ ( ; , ), ]

t n n n n

t n n

E f T T T f t T T

f T T Tδ

+ +

+

− =
−

⋅ ⋅L1 1
1 1 2 1 1

1 2 2 3 1

cov [ ( ; , ), ]
1 ( ; , ) 1 ( ; , )

(1+ ( ; , )) (1+ ( ; , )) (1 ( ; , ))

t n n
n n

n n

f
f T T T f T T T

f t T T f t T T f t T T

δ
δ δ δ

δ δ δ

+
+

+

+ +
× ⋅ ⋅ ⋅ +L1 2 2 3 1n n+
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DISCRETE TIME VERSION OF LMMDISCRETE-TIME VERSION OF LMM

h h f d i hWe assume that the forward rate                  is the 
lognormal for all forward maturities

1 1( ; , )n nf T T T +

nT

We use the approximate result for the covariance 
term i e for the small change around the valueterm, i.e. for the small change around the value 

, we have,  X a Y b= = cov( , ) cov(ln , ln )X Y ab X Y≈

Here, we take                  and                            to 
evaluate then we have

1 2( ; , )a f t T T= 1 21/(1 ( ; , ))b f t T T= +
1cov ( ( ; ) )f T T Tevaluate                                         , then we have      1 1 2
1 1 2

cov ( ( ; , ), )
1 ( ; , )t f T T T

f T T T+
1 1 2

1 1 2

1cov ( ( ; , ), )
1 ( ; , )t f T T T

f T T T
=

+
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1 2 1 2

( ; , )
1 1( ; , )( ) cov (ln ( , ), ln )

1 ( ; , ) 1 ( , )t

f

f t T T y T T
f t T T y T T+ +



DISCRETE TIME VERSION OF LMMDISCRETE-TIME VERSION OF LMM

i h f l i h hUsing the property of logarithms  to express the 
drift of    -maturity forward rate as the sum of a nT
series of covariance term
Using Stein’s lemma to make covariance terms inUsing Stein s lemma to make covariance terms in 
a recognizable form and can be express as

[ ( )] ( )E f T T T f t T T1 1 1

1 2
1 1 1 1 1 2

[ ( ; , )] ( ; , )
( ; , )     ( ; , ) cov [ln ( ; , ), ln ( ; , )]

1 ( )

t n n n n

n n t n n

E f T T T f t T T
f t T Tf t T T f T T T f T T T

f t T T
δ
δ

+ +

+ +

− =

× ⋅
1 21 ( ; , )

   
( )

f t T T

f T T

δ

δ

+
+L

1
1 1 1 1 1

1

( ; , )   ( ; , ) cov [ln ( ; , ), ln ( ; , )]
1 ( ; , )

n n
n n t n n n n

n n

f t T Tf t T T f T T T f T T T
f t T T

δ
δ

+
+ + +

+

+ × ⋅
+ 49



DISCRETE TIME VERSION OF LMMDISCRETE-TIME VERSION OF LMM

fiDefine

1 1 1 1cov [ln ( ; , ), ln ( ; , )] 1, 2, ,t i i if T T T f T T T i nσ+ + ≡ =% L

Then, we can rewrite the drift of the forward 
LIBOR t

1 1 1 1 ,cov [ln ( ; , ), ln ( ; , )]     1,  2, ,t i i n n i nf T T T f T T T i nσ+ +

LIBOR rate as 
1 1 1 2 31 2

1 2
[ ( ; , )] ( ; , ) ( ; , )( ; , )t n n n nE f T T T f t T T f t T Tf t T T δδ σ σ+ +−

= ⋅ + ⋅% %1, 2,
1 1 2 2 3

1

( ; , ) 1 ( ; , ) 1 ( ; , )
( ; , )                                                                              

1

n n
n n

n n

f t T T f t T T f t T T
f t T T

σ σ
δ δ

δ
+

+

+
+ +

+ +L
( ) n nf

σ
δ

⋅ %
1 ,

1( ; , ) n n
n nf t T Tδ ++
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