Using The LIBOR Market Model to Price The Interest Rate Derivatives: A Recombining Binomial Tree Methodology

研究生:何俊儒

指導教授: 鍾惠民 博士

戴天時 博士

2008/06/26

AGENDA

- Introduction
- **×** Review of interest rate models
- Market conventions of LMM and the discretetime version of LMM
- Introducing the HSS recombining node methodology and applying to the LIBOR market model
- The pricing of the interest rate derivatives in LMM
- **×** Conclusions

INTRODUCTION

- We can't observe the instantaneous short rate and instantaneous forward rate in the traditional interest rate models
- * We adapt LIBOR market model which is based on the forward LIBOR rate that we can observe from the daily market
- * When implementing LMM in lattice method, we face the explosive tree due to the non-Markov property

INTRODUCTION

- * The nonrecombining node make our pricing procedure inefficient and don't satisfy the market requirement
- * We apply the HSS methodology into LMM that make the nodes combine and make the pricing the derivatives feasible
- * The method we proposed make our valuation more efficient and more accurate

REVIEW OF INTEREST RATE MODELS

- Equilibrium models
- No-arbitrage models
 - × Instantaneous short rate models
 - × Instantaneous forward rate model
 - × Forward rate model

FORWARD RATE MODEL LIBOR MARKET MODEL (LMM)

- * The LMM was discovered by Brace, Gatarek, and Musiela (1997) and was initially referred to as the BGM model by practitioners
- * There are two commonly used versions of the LMM:
 - + one is the lognormal forward LIBOR model (LFM) for pricing caps
 - + the other is the lognormal swap model (LSM) for pricing swaptions

FORWARD RATE MODEL LIBOR MARKET MODEL (LMM)

* The LFM specifies the forward rate $f(t;T_i,T_{i+1})$ following zero-drift stochastic process under its own forward measure:

$$\frac{df(t;T_i,T_{i+1})}{f(t;T_i,T_{i+1})} = \sigma_i(t)dW_i(t)$$

- + $dW_i(t)$ is a Brownian motion under the forward measure \tilde{P}^i defined with respect to the numeraire asset
- + $\sigma_i(t)$ measures the volatility of the forward rate process

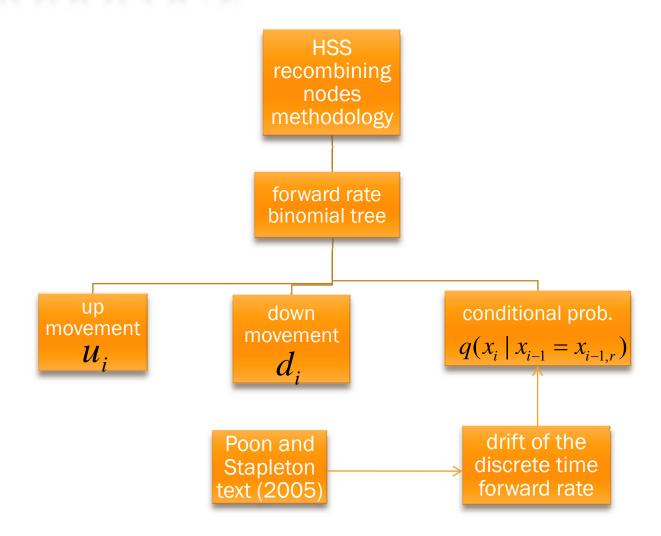
MARKET CONVENTIONS OF THE LMM AND THE DISCRETE-TIME VERSION OF THE LMM

× The relationship between the discrete LIBOR rate $L(T_i, T_{i+1})$ for the term $\delta_i = T_{i+1} - T_i$ and the zero coupon bond price $P(T_i, T_{i+1})$, given as follows:

$$P(T_{i}, T_{i+1}) = \frac{1}{1 + \delta_{i} L(T_{i}, T_{i+1})}$$

where $t = T_0 < T_1 < T_2 < \cdots < T_n$ is the time line and δ_i is called the tenor for the period T_i to T_{i+1}

METHODOLOGY



INTRODUCING THE HSS RECOMBINING NODE METHODOLOGY

- * Ho, Stapleton and Subrahmanyam (1995) [HSS] suggest a general methodology for creating a recombining multi-variate binomial tree to approximate a multi-variate lognormal process
- Our assumption about LMM satisfies the conditions in the HSS methodology and apply it into LMM

× HSS assume the price of underlying asset follows a lognormal diffusion process:

$$d \ln X(t) = \mu(X(t), t)dt + \sigma(t)dW(t)$$

where μ and σ are the instantaneous drift and volatility of $\ln X$, and dW(t) is a standard Brownian motion

- + They denote the unconditional mean of the logarithmic asset return at time i as μ_i
- + The conditional volatility over the period i -1 to i is denoted as $\sigma_{i-1,i}$
- + The unconditional volatility is $\sigma_{0,i}$

TIME \mathbf{x}_{o} $\hat{\mu}_{\scriptscriptstyle 2},\hat{\sigma}_{\scriptscriptstyle 0,2}$ n_2 n_1

- ***** HSS method involves the construction of m separate binomial distribution, where the time periods are denoted $t_1, \dots, t_i, \dots, t_m$
- \times And have the set of a discrete stochastic for X_i , where X_i is only defined at time t_i
- * The general form of X_i at node r $X_{i,r} = X_0 u_i^{N_i r} d_i^r$

where
$$N_i = \sum_{l=1}^i n_l$$

* They denote $x_i = \ln(X_i / X_0)$ and the probabilities to reach x_i given a node $x_{i-1,r}$ at t_{i-1} as

$$q(x_i | x_{i-1} = x_{i-1,r}) \text{ or } q(x_i)$$

Example 2.1 Lemma 1 Suppose that the up and down movements u_i and d_i are chosen so that

$$d_{i} = \frac{2(E(X_{i})/X_{0})^{\frac{1}{N_{i}}}}{1 + \exp(2\sigma_{i-1,i}\sqrt{(t_{i} - t_{i-1})/n_{i}})}, \quad i = 1, 2, \dots, m,$$

$$u_i = 2(E(X_i)/X_0)^{\frac{1}{N_i}} - d_i, \quad i = 1, 2, \dots, m,$$

Theorem

Suppose that the X_i are joint lognormally distributed. If the X_i are approximated with binomial distributions with $N_i = N_{i-1} + n_i$ stages and u_i and d_i given by the above, and if the conditional probability of an up movement at node r at time i-1 is

$$q(x_i \mid x_{i-1} = x_{i-1,r}) = \frac{a_i + b_i x_{i-1,r} - (N_{i-1} - r) \ln u_i - r \ln d_i}{n_i (\ln u_i - \ln d_i)} - \frac{\ln d_i}{\ln u_i - \ln d_i}, \quad \forall i, r$$

then $\hat{\mu}_i \to \mu_i$ and $\hat{\sigma}_{0,i} \to \sigma_{0,i}$ and $\hat{\sigma}_{i-1,i} \to \sigma_{i-1,i}$ as $n_i \to \infty$, $\forall i$

APPLYING HSS METHODOLOGY INTO LMM

- * We apply this methodology into the LMM and make some change to satisfy our conventions
- **×** We have the following propositions

PROPOSITION 1

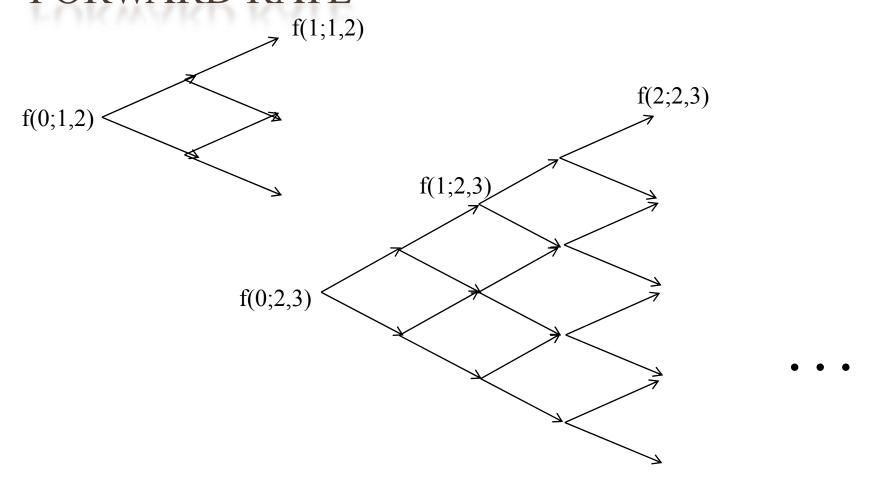
 \star For the forward LIBOR rate which follows the lognormal distribution, we can choose the proper up and down movements to determine the i-th period of the T_n -maturity forward LIBOR rate and have the form

$$f(i;T_{n},T_{n+1})_{r} = f(0;T_{n},T_{n+1})u_{i}^{N_{i}-r}d_{i}^{r}, i = T_{1},T_{2},\cdots,T_{n}$$
where
$$d_{i} = \frac{2[E(f(i;T_{n},T_{n+1}))/f(0;T_{n},T_{n+1})]^{\frac{1}{N_{i}}}}{1+\exp(2\sigma_{i-1,i}\sqrt{(T_{i}-T_{i-1})/n_{i}})}$$

$$u_{i} = 2[E(f(i;T_{n},T_{n+1}))/f(0;T_{n},T_{n+1})]-d_{i}$$

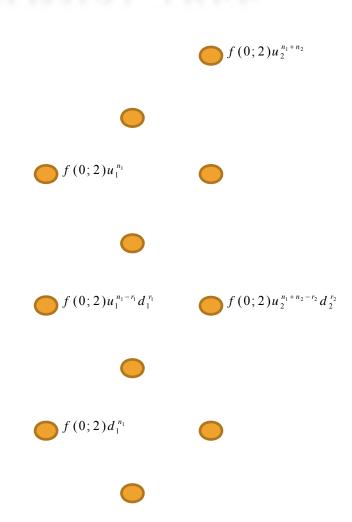
$$N_{i} = N_{i-1} + n_{i}$$
 r : node's number from top to bottom at time T_{i}

THE BINOMIAL TREES IN DISCRETE TIME FORWARD RATE



THE STRUCTURE OF THE BINOMIAL TREE

 \times With $n_1 + 1$ nodes at T_1 numbered $r = 0,1,...,n_1$. There are $n_1 + n_2 + 1$ nodes at T_2 numbered $r = 0, 1, ..., n_1 + n_2$ Here we write the forward rate f(0;2,3) f(0;2)in abbreviated form f(0,2)and take $n_1 = n_2 = 2$, $0 \le r_1 \le n_1, \ 0 \le r_2 \le n_1 + n_2$



PROPOSITION 2

× Suppose that the forward LIBOR rate $f(i;T_n,T_{n+1})$ are joint lognormally distributed. If the $f(i;T_n,T_{n+1})$, $i=T_1,T_2,\cdots,T_n$ are approximated with binomial distributions with $N_i=N_{i-1}+n_i$ stages and u_i and d_i given by proposition 1, and if the conditional probability of an up movement at node r at time T_i is

$$q(x_i \mid x_{i-1} = x_{i-1,r}) = \frac{E_{i-1}(x_i) - (N_{i-1} - r) \ln u_i - r \ln d_i}{n_i (\ln u_i - \ln d_i)} - \frac{\ln d_i}{\ln u_i - \ln d_i} \quad \forall i, r$$

PROPOSITION 2

where

$$x_{i} = \ln \frac{f(i; T_{n}, T_{n+1})}{f(0; T_{n}, T_{n+1})}$$

$$E_{i-1}(x_{i}) = E(x_{i}) - b_{i}E(x_{i-1}) + b_{i}x_{i-1,r}$$

$$b_{i} = \sqrt{\left[t_{i}\sigma_{0,i}^{2} - (t_{i} - t_{i-1})\sigma_{i-1,i}^{2}\right]/t_{i-1}\sigma_{0,i-1}^{2}}$$

- × To determining the conditional probability, it has some skills to use for the term $E_{i-1}(x_i)$
- * We first derive term $E(x_i)$. Since forward rate is lognormally distributed, we have

$$E(x_i) = \ln\left[\frac{E(f(i;T_n,T_{n+1}))}{f(0;T_n,T_{n+1})}\right] - \frac{1}{2}\sigma_{0,i}^2$$

THE DERIVATION OF EXPECTATION

* The most important result in Poon and Stapleton text is the drift of the discrete time forward rate and we rewrite as

$$\frac{E_{t}[f(T_{1};T_{n},T_{n+1})]}{f(t;T_{n},T_{n+1})} = 1 + \frac{\delta_{1}f(t;T_{1},T_{2})}{1+\delta_{1}f(t;T_{1},T_{2})} \cdot \tilde{\sigma}_{1,n} + \frac{\delta_{2}f(t;T_{2},T_{3})}{1+\delta_{2}f(t;T_{2},T_{3})} \cdot \tilde{\sigma}_{2,n}$$

$$+ \dots + \frac{\delta_{n}f(t;T_{n},T_{n+1})}{1+\delta_{n}f(t;T_{n},T_{n+1})} \cdot \tilde{\sigma}_{n,n}$$

* Then multiple the $\frac{f(t;T_n,T_{n+1})}{f(0;T_n,T_{n+1})}$ term on both side to get the general form of $E_t(f(T_1;T_n,T_{n+1}))/f(0;T_n,T_{n+1})$

THE DERIVATION OF EXPECTATION

× The general form of expectation is given as

$$\begin{split} &\frac{f(t;T_{n},T_{n+1})}{f(0;T_{n},T_{n+1})} \times \frac{E_{t}[f(T_{1};T_{n},T_{n+1})]}{f(t;T_{n},T_{n+1})} = \\ &\frac{f(t;T_{n},T_{n+1})}{f(0;T_{n},T_{n+1})} \times (1 + \frac{\delta_{1}f(t;T_{1},T_{2})}{1 + \delta_{1}f(t;T_{1},T_{2})} \cdot \tilde{\sigma}_{1,n} + \frac{\delta_{2}f(t;T_{2},T_{3})}{1 + \delta_{2}f(t;T_{2},T_{3})} \cdot \tilde{\sigma}_{2,n} + \dots + \frac{\delta_{n}f(t;T_{n},T_{n+1})}{1 + \delta_{n}f(t;T_{n},T_{n+1})} \cdot \tilde{\sigma}_{n,n}) \end{split}$$

SPECIAL CASE

* When n_l stages approach infinite $l = 1, \dots, i$, the sum of n_l stages also approach infinite, that is

$$N_i = \sum_{l=1}^i n_l \to \infty$$

* We can reduce the up and down movements to the briefer form which is easier to calculate and show as follows

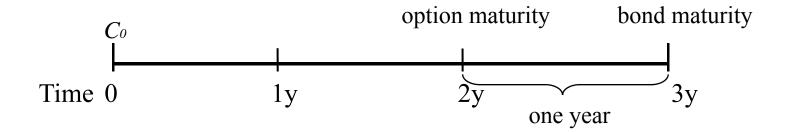
$$d_{i} = \frac{2}{1 + \exp(2\sigma_{i-1,i}\sqrt{(T_{i} - T_{i-1})/n_{i}})}$$

$$u_{i} = 2 - d_{i}$$

× The conditional probability $q(x_l) \rightarrow 0.5$ as $n_l \rightarrow \infty$

THE VALUATION OF EMBEDDED OPTION ON ZERO COUPON BOND IN LMM

* The embedded option on ZCB is a bond that can be callable before maturity date with a callable price *K*



 \times We have a three years maturity zero coupon bond with a callable price K equal to 0.952381 dollar at year two

THE VALUATION OF EMBEDDED OPTION ON ZERO COUPON BOND IN LMM

- \times Pricing the option value C_0 of this callable bond at time 0
- ★ Here, we take the flat forward rate 5% and constant volatility 10%

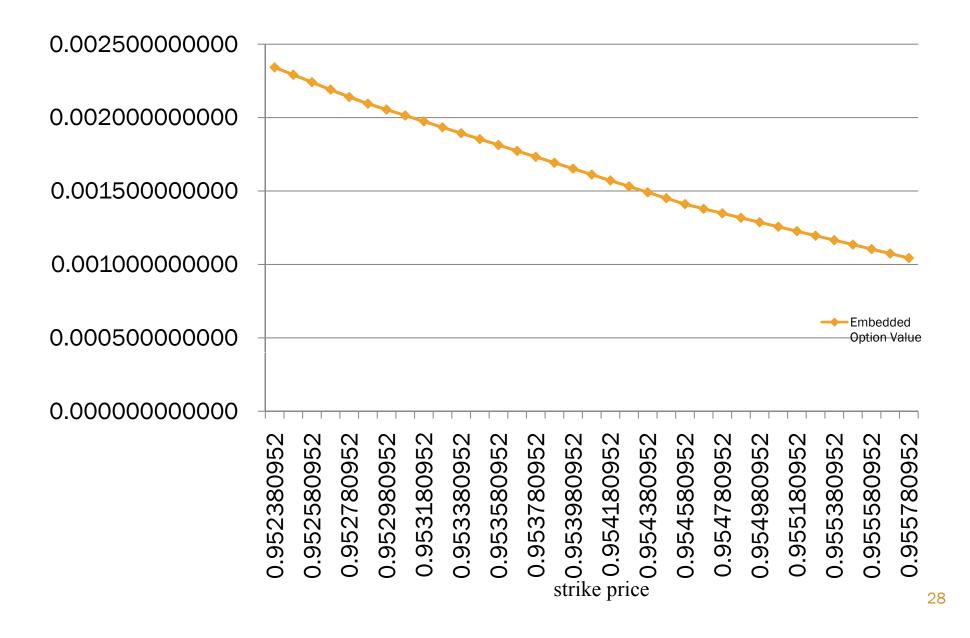
$$C_0 = P(0,2) \times E[\max(P(2,3) - K,0)]$$

= 0.90702948 \times 0.00258128
= 0.00234130

SENSITIVE ANALYSIS – STRIKE PRICE

- * We change strike price from 0.952381 to 0.96 which vary 0.001 to see the relationship between strike price and embedded option value
- * We find that when the strike price increases, the embedded option value decreases

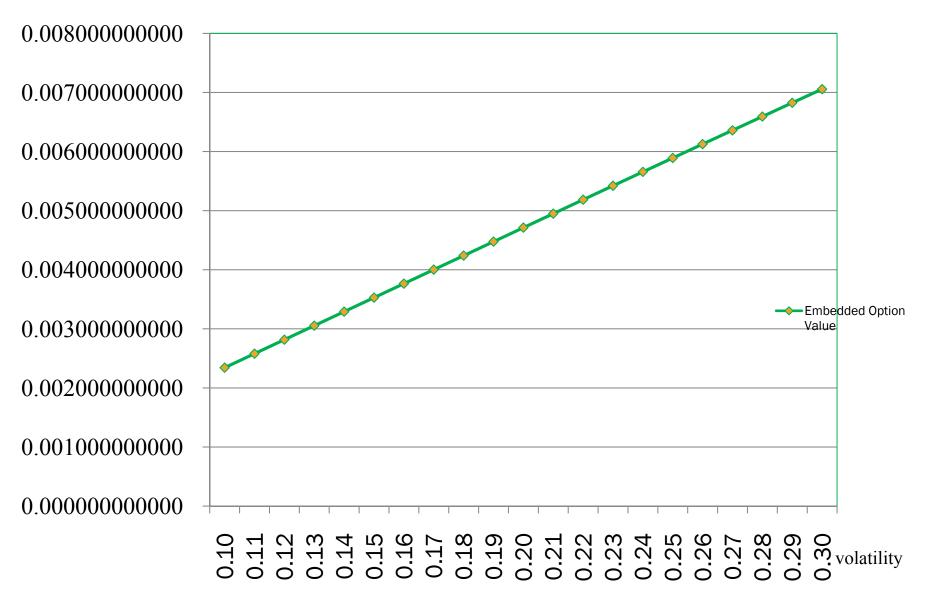
Embedded Option Value



SENSITIVE ANALYSIS – VOLATILITY

- * We increase 1% of the volatility from 10% until reach 30% to see the impact of volatility on the embedded option value
- * We find that when the volatility increases, the embedded option value increases
- * It is consistent with the inference for the Greek letter *vega* when the underlying asset's volatility increases the option value increases, too.

Embedded Option Value



THE VALUATION OF CAPLETS IN LMM

 \times The payoff function of a caplet at time T_{i+1} is

$$A \times \delta \times \max(f(T_i; T_i, T_{i+1}) - K, 0)$$

- × It is a caplet on the spot rate observed at time T_i with payoff occurring at time T_{i+1}
- * The cap is a portfolio consisted of n such call options which the underlying is known as caplet

THE THEROETICAL VALUE OF CAPLET

* We use the Black's formula for the caplet to get the theoretical value of caplet and rewrite as

$$caplet_i(t) = A \times \delta_i \times P(t, T_{i+1})[f(t; T_i, T_{i+1})N(d_1) - KN(d_2)]$$
 where

$$d_{1} = \frac{\ln(f(t;T_{i},T_{i+1})/K) + \sigma_{i}^{2}(T_{i}-t)/2}{\sigma_{i}\sqrt{T_{i}-t}},$$

$$d_{2} = \frac{\ln(f(t;T_{i},T_{i+1})/K) - \sigma_{i}^{2}(T_{i}-t)/2}{\sigma_{i}\sqrt{T_{i}-t}},$$

NUMERICAL METHOD OF CAPLET

- * We use the payoff function to compute the price in lattice method
- × To get the payoff function at time T_{i+1} , we have to know the evolution of the forward rate $f(0;T_i,T_{i+1})$ at time T_i
- * We construct the binomial tree of $f(0;T_i,T_{i+1})$ and known the $(f(T_i;T_i,T_{i+1})_r K)^+$, r = 0, 1, ..., i.
- × Calculating the expectation of the payoff at time T_{i+1} and then multiple the ZCB of $P(t,T_{i+1})$ to get the caplet value at time t.

EXAMPLE

- * Assume $\delta = A = 1$, $\sigma = 10\%$, K = 5%, forward curve is flat equal to 5% and $n_i = 25$, i = 1,...,10
- * We have the one period caplet at time 0 caplet₁(0) $caplet_1(0) = A \times \delta \times P(0,2) \times E[\max(f(1;1,2) - K,0)]$ $= 1 \cdot 1 \cdot P(0,2) \cdot 0.0020112666$ $= 0.90702948 \cdot 0.0020112666$ = 0.0018242781

NUMERICAL RESULT

* Besides the relative difference, we use the RMSE to see the difference between the lattice value and Black's model for the whole maturity

× Table 2 is the results for different maturity caplets

* We find that when we increase the stage between periods, the difference between lattice method and Black's model is close

TABLE 2 VOLATILITY IS 10% AND STAGE FOR EVERY PERIOD IS 25

Maturity	Black	Lattice	Difference	Relative Difference (%)
1	0.0018085085	0.0018242781	0.0000157696	0.8719669656
2	0.0024348117	0.0024407546	0.0000059429	0.2440786919
3	0.0028388399	0.0028374958	-0.0000013441	0.0473484800
4	0.0031206153	0.0031282191	0.0000076038	0.2436631792
5	0.0033214311	0.0033204098	-0.0000010214	0.0307505629
6	0.0034637453	0.0034664184	0.0000026731	0.0771737036
7	0.0035616356	0.0035658574	0.0000042219	0.1185369137
8	0.0036247299	0.0036200240	-0.0000047059	0.1298286011
9	0.0036600091	0.0036633313	0.0000033221	0.0907678678
10	0.0036727489	0.0036743568	0.0000016079	0.0437804213
		RMSE	0.0000063671	

^{1.} Caplet assume $\delta = 1$ and stage 25

^{2.} Assume volatility is 10%, the forward curve is flat 5%

TABLE 2 VOLATILITY IS 10% AND STAGE FOR EVERY PERIOD IS 50

Maturity	Black	Lattice	Difference	Relative Difference (%)
1	0.0018085085	0.0018099405	0.0000014320	0.0791823392
2	0.0024348117	0.0024397802	0.0000049685	0.2040608652
3	0.0028388399	0.0028434461	0.0000046061	0.1622542164
4	0.0031206153	0.0031230795	0.0000024643	0.0789673074
5	0.0033214311	0.0033207434	-0.0000006878	0.0207066243
6	0.0034637453	0.0034620815	-0.0000016638	0.0480341136
7	0.0035616356	0.0035626664	0.0000010308	0.0289416315
8	0.0036247299	0.0036267433	0.0000020134	0.0555455781
9	0.0036600091	0.0036617883	0.0000017792	0.0486107386
10	0.0036727489	0.0036734197	0.0000006708	0.0182649876
		RMSE	0.0000025690	

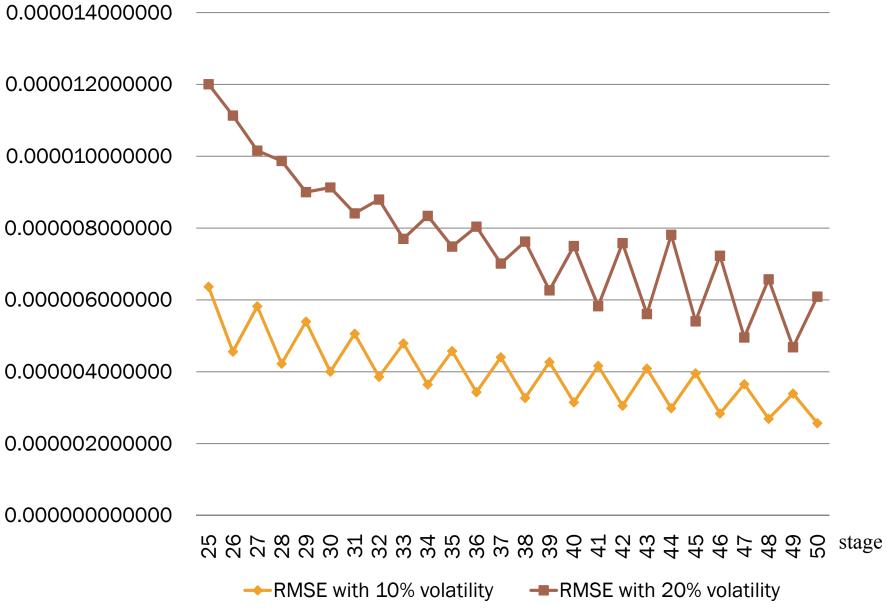
^{1.} Caplet assume $\delta = 1$ and stage 50

^{2.} Assume volatility is 10%, the forward curve is flat 5%

CONVERGENCE BEHAVIOR VS. VOLATLITY

- * We change the volatility from 10% to 20% to see the convergence behavior of RMSE at different volatility level
- * We find that when the volatility at low level, the convergent rate is fast to zero. However, the volatility at high level the convergence behavior is slow

RMSE vs. Volatility



CONCLUSIONS

- * Constructing the recombining binomial tree, the payoff of the interest rate derivatives on each node can be obtained
- * Comparing to the theoretical value, we find the theoretical value and lattice method is close when we increase the stages.
- **×** The sensitive analysis results of embedded option are consistent with inference of Greek letters

FUTURE WORKS

- * Deriving the joint probability between the states of different binomial forward rate trees.
- * Adjusting the stages between period by period to fit the strike price to reduce the nonlinearity error
- * Trying to change the constant volatility to stochastic volatility to fit the volatility term structure.

The End

THANK YOU FOR YOUR LISTENING

THE RELATIONSHIP BETWEEN DISCRETE TIME FORWARD RATE

Time 0	Time 1	Time 2	Time 3	•••				
$f(0;0,1)_{(1),drift}$								
f(0;1,2)	f(1;1,2)							
f(0;2,3)	f(1;2,3)	f(2;2,3)	(2) agyarianga					
f(0;3,4)	f(1;3,4)	f(2;2,3) f(2;3,4)	(3) covariance f(3;3,4)					
•	. (2) v	volatility .	•	•				
•	•	•	•	•				
•	•	•	•	•				

THE DISCRETE TIME VERSION OF LMM

- * The most important results which are under the "risk neutral" measure in the Poon and Stapleton text (2005)
- For a zero-coupon bond price is given by

$$P(t,T_n) = P(t,T_1)E_t(P(T_1,T_n))$$

The drift of the forward bond price is given by

$$E_t[For(T_1,T_i,T_n)] - For(t,T_i,T_n)$$

$$= -\frac{P(t, T_1)}{P(t, T_n)} cov_t [For(T_1, T_i, T_n), P(T_1, T_n)]$$

THE MOST IMPORTANT RESULTS IN TEXT

• The drift of *T*-period forward rate is given by

$$E_{t}[f(T_{1};T_{n},T_{n+1})] - f(t;T_{n},T_{n+1}) =$$

$$-cov_{t}[f(T_{1};T_{n},T_{n+1}), \frac{1}{1+y_{T_{1}}} \times \frac{1}{1+f(T_{1};T_{2},T_{3})} \times \cdots \times \frac{1}{1+f(T_{1};T_{n},T_{n+1})}]$$

$$\times (1+f(t;T_{1},T_{2})) \cdot (1+f(t;T_{2},T_{3})) \cdot \cdots \cdot (1+f(t;T_{n},T_{n+1}))$$

* We now apply the results to the LIBOR basis for the FRA and rewrite as follows

$$FRA(T_n) = \frac{A(f(T_n; T_n, T_{n+1}) - K) \cdot \delta_n}{1 + \delta_n f(T_n; T_n, T_{n+1})}$$

where $\delta_n = T_{n+1} - T_n$ and we assume all the tenors are same to make the equation brief, that is

$$\delta_1 = \delta_2 = \dots = \delta_n = \delta$$

* We use the above results and similar steps to derive the FRA value at time t to generalize the T_n maturity forward rate

$$\begin{split} E_{t}[f(T_{1};T_{n},T_{n+1})] - f(t;T_{n},T_{n+1}) &= \\ \frac{-1}{\delta} \text{cov}_{t}[\delta f(T_{1};T_{n},T_{n+1}), \frac{1}{1 + \delta f(T_{1};T_{1},T_{2})} \cdots \frac{1}{1 + \delta f(T_{1};T_{n},T_{n+1})}] \\ \times (1 + \delta f(t;T_{1},T_{2})) \cdot (1 + \delta f(t;T_{2},T_{3})) \cdot \cdots \cdot (1 + \delta f(t;T_{n},T_{n+1})) \end{split}$$

- * We assume that the forward rate $f(T_1; T_n, T_{n+1})$ is the lognormal for all forward maturities T_n
- * We use the approximate result for the covariance term, i.e. for the small change around the value X = a, Y = b, we have $cov(X, Y) \approx ab cov(\ln X, \ln Y)$
- * Here, we take $a = f(t; T_1, T_2)$ and $b = 1/(1 + f(t; T_1, T_2))$ to evaluate $\operatorname{cov}_t(f(T_1; T_1, T_2), \frac{1}{1 + f(T_1; T_1, T_2)})$, then we have $\operatorname{cov}_t(f(T_1; T_1, T_2), \frac{1}{1 + f(T_1; T_1, T_2)}) = f(t; T_1, T_2)(\frac{1}{1 + f(t; T_1, T_2)})\operatorname{cov}_t(\ln y(T_1, T_2), \ln \frac{1}{1 + y(T_1, T_2)})$

- \times Using the property of logarithms to express the drift of T_n -maturity forward rate as the sum of a series of covariance term
- Using Stein's lemma to make covariance terms in a recognizable form and can be express as

$$E_{t}[f(T_{1};T_{n},T_{n+1})] - f(t;T_{n},T_{n+1}) =$$

$$f(t;T_{n},T_{n+1}) \times \frac{\delta f(t;T_{1},T_{2})}{1 + \delta f(t;T_{1},T_{2})} \cdot \operatorname{cov}_{t}[\ln f(T_{1};T_{n},T_{n+1}), \ln f(T_{1};T_{1},T_{2})]$$

$$+ \cdots$$

$$+ f(t;T_{n},T_{n+1}) \times \frac{\delta f(t;T_{n},T_{n+1})}{1 + \delta f(t;T_{n},T_{n+1})} \cdot \text{cov}_{t} [\ln f(T_{1};T_{n},T_{n+1}), \ln f(T_{1};T_{n},T_{n+1})]$$
49

× Define

$$\operatorname{cov}_{t}[\ln f(T_{1}; T_{i}, T_{i+1}), \ln f(T_{1}; T_{n}, T_{n+1})] \equiv \tilde{\sigma}_{i,n} \quad i = 1, 2, \dots, n$$

★ Then, we can rewrite the drift of the forward LIBOR rate as

$$\frac{E_{t}[f(T_{1};T_{n},T_{n+1})] - f(t;T_{n},T_{n+1})}{f(t;T_{n},T_{n+1})} = \frac{\delta f(t;T_{1},T_{2})}{1 + \delta f(t;T_{1},T_{2})} \cdot \tilde{\sigma}_{1,n} + \frac{\delta f(t;T_{2},T_{3})}{1 + \delta f(t;T_{2},T_{3})} \cdot \tilde{\sigma}_{2,n}$$

$$+ \dots + \frac{\delta f(t;T_{n},T_{n+1})}{1 + \delta f(t;T_{n},T_{n+1})} \cdot \tilde{\sigma}_{n,n}$$