Stochastic Calculus For Finance - volume 2

- *Section 4.5.4 Solution to the Black-Scholes-Merton Equation
- •Section 4.5.5 The Greek
- Section 4.5.6 Put-Call Parity

03/18/2025, 陳宜湄

•
$$c_t(t,x) = rxc_x(t,x) + \frac{1}{2}\sigma^2 x^2 c_{xx}(t,x) = rc(t,x)$$
, $\forall t \in [0,T)$, $x \ge 0$... (4.5.14)

- We want the BSM equation to hold $\forall x \geq 0$ and $t \in [0,T)$ so that (4.5.14) will hold regardless of which of its possible paths the stock follows.
- We do not need (4.5.14) to hold at t = T, although we need the function c(t, x) to be continuous at t = T.
- For such an equation, in addition to the terminal condition (4.5.15), one needs boundary conditions at x = 0 and $x = \infty$ in order to determine the solution.

•
$$c_t(t,x) = rxc_x(t,x) + \frac{1}{2}\sigma^2x^2c_{xx}(t,x) = rc(t,x)$$
, $\forall t \in [0,T)$, $x \ge 0$... (4.5.14)

- The boundary conditions at x = 0 is obtained by substituting x = 0 into (4.5.14), which the becomes $c_t(t,0) = rc(t,0)$ (4.5.16)
- 通解為 $c(t,0) = Ce^{rt}c(t,0)$, 其中 C 為常數項
- 又 $c(T,0) = max\{0 K,0\} = 0 \implies C = 0$ 帶回通解得 c(t,0) = 0 , $\forall t \in [0,T]$
- We see that c(0,0) = 0
- The boundary condition at $x = 0 \implies c(t,0) = 0$, $\forall t \in [0,T] \cdots (4.5.17)$

• The boundary condition at $x \to \infty$ for the European call is

$$\lim_{x \to \infty} \left[c(t, x) - (x - e^{-r(T-t)}K) \right] = 0 , \forall t \in [0, T] \quad \dots \quad (4.5.18)$$

• < pf >

Case I: x > > K (deep in the money)

$$c(t,x) \approx x - Ke^{-r(T-t)}$$

Case II: $x \to \infty$, call 執行的機率 $\to 1$

得
$$c(t,x) \approx x - Ke^{-r(T-t)}$$

:.
$$\lim_{x \to \infty} \left[c(t, x) - (x - e^{-r(T-t)}K) \right] = 0, \forall t \in [0, T]$$

• The solution to the BSM equation (4.5.14) with terminal condition (4.5.15) and boundary conditions (4.5.17) and (4.5.18) is

$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x)), 0 \le < T, x > 0 \quad \cdots \quad (4.5.19)$$

where
$$d_{\pm}(\tau, x) = \frac{1}{\sigma\sqrt{\tau}} \left[log \frac{x}{K} + \left(r \pm \frac{\sigma^2}{2} \right) \tau \right] \quad \cdots \quad (4.5.20)$$

and N is the cdf of normal distribution

$$N(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{z^2}{2}} dz = \frac{1}{\sqrt{2\pi}} \int_{y}^{\infty} e^{-\frac{z^2}{2}} dz \quad \cdots \quad (4.5.21)$$

• We shall sometimes use the notation

$$BSM(\tau, x; K, r, \sigma) = xN(d_{+}(\tau, x)) - Ke^{-r\tau}N(d_{-}(\tau, x)) \cdots (4.5.22)$$

- In this formula, τ and x denote the time to expiration and the current stock price, respectively. The parameters K, r, and σ are strike price, the interest rate, and the stock volatility, respectively.
- $\lim_{t\to T} c(t,x) = (x-K)^+ (:: \tau = T t = 0)$
- $\lim_{x\to 0} c(t,x) = 0$ (: $\log 0$ is not a real number)

- $Delta: c_x(t,x) = N(d_+(T-t,x)) \cdots (4.5.23)$
- < pf >

$$d_{+}(\tau, x) = \frac{ln(\frac{x}{K}) + (r + \frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}$$

$$d_{-}(\tau,x) = \frac{\ln\left(\frac{x}{K}\right) + \left(r - \frac{1}{2}\sigma^{2}\right)\tau}{\sigma\sqrt{\tau}} = \frac{\ln\left(\frac{x}{K}\right) + \left(r + \frac{1}{2}\sigma^{2}\right)\tau}{\sigma\sqrt{\tau}} - \sigma\sqrt{\tau} = d_{+}(\tau,x) - \sigma\sqrt{\tau}$$

$$\implies d_{+}(\tau, x) = d_{-}(\tau, x) + \sigma\sqrt{\tau}$$

$$N'(d_{-}(\tau,x)) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(d_{-}(\tau,x))^{2}}$$

$$N'(d_{+}(\tau, x)) = N'(d_{-}(\tau, x) + \sigma\sqrt{\tau}) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}(d_{-}(\tau, x) + \sigma\sqrt{\tau})^{2}}$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(d_{-}^{2}+2d_{-}\sigma\sqrt{\tau}+\sigma^{2}\tau)} = N'(d_{-}(\tau,x))e^{-\frac{1}{2}(2d_{-}\sigma\sqrt{\tau}+\sigma^{2}\tau)}$$

$$\Longrightarrow N'(d_{+}(\tau,x)) = N'(d_{-}(\tau,x)) \times \frac{Ke^{-r\tau}}{x} \qquad \therefore xN'(d_{+}(\tau,x)) = Ke^{-r\tau}N'(d_{-}(\tau,x))$$

其中
$$d_{+}(\tau, x) = \frac{ln(\frac{x}{K}) + (r + \frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}$$

$$\Longrightarrow \ln\left(\frac{x}{K}\right) + \left(r + \frac{1}{2}\sigma^2\right)\tau = d_+(\tau, x)\sigma\sqrt{\tau}$$

$$\Longrightarrow \frac{x}{K} + e^{(r + \frac{1}{2}\sigma^2)\tau} = e^{d_+(\tau, x)\sigma\sqrt{\tau}}$$

$$\implies x = Ke^{d_{+}(\tau,x)\sigma\sqrt{\tau} - (r + \frac{1}{2}\sigma^{2})\tau} = Ke^{-r\tau}e^{d_{+}(\tau,x)\sigma\sqrt{\tau} - \frac{1}{2}\sigma^{2}\tau} = Ke^{-r\tau}e^{(d_{-}(\tau,x) + \sigma\sqrt{\tau})\sigma\sqrt{\tau} - \frac{1}{2}\sigma^{2}\tau}$$
$$= Ke^{-r\tau}e^{d_{-}(\tau,x)\sigma\sqrt{\tau} + \frac{1}{2}\sigma^{2}\tau}$$

$$\implies e^{-(d_{-}(\tau,x)\sigma\sqrt{\tau} + \frac{1}{2}\sigma^{2}\tau)} = \frac{Ke^{-r\tau}}{x} \quad \therefore \quad e^{-\frac{1}{2}(2d_{-}(\tau,x)\sigma\sqrt{\tau} + \sigma^{2}\tau)} = \frac{Ke^{-r\tau}}{x}$$

$$\frac{\partial d_{+}(\tau, x)}{\partial x} = \frac{1}{x\sigma\sqrt{\tau}}$$

$$\frac{\partial d_{-}(\tau, x)}{\partial x} = \frac{1}{x\sigma\sqrt{\tau}}$$

$$\Longrightarrow \frac{\partial d_{+}(\tau, x)}{\partial x} = \frac{\partial d_{-}(\tau, x)}{\partial x}$$

•
$$Delta: c_x(t, x) = \frac{\partial C(t, x)}{\partial x}$$

$$= N(d_{+}(T-t,x)) + xN'(d_{+}(T-t,x)) \frac{\partial d_{+}(T-t,x)}{\partial x} - Ke^{-r(T-t)}N'(d_{-}(T-t,x)) \frac{\partial d_{-}(T-t,x)}{\partial x}$$

$$= N(d_{+}(T-t,x)) + xN'(d_{+}(T-t,x)) \frac{\partial d_{+}(T-t,x)}{\partial x} - xN'(d_{+}(T-t,x)) \frac{\partial d_{+}(T-t,x)}{\partial x}$$

$$\implies c_x(t,x) = N(d_+(T-t,x)) \quad \cdots \quad (4.5.23)$$

•
$$Delta: c_x(t,x) = \frac{\partial C(t,x)}{\partial x} = N(d_+(T-t,x)) > 0$$

• Theta:
$$c_t(t,x) = -rKe^{-r(T-t)}N(d_-(T-t,x)) - \frac{\sigma x}{2\sqrt{T-t}}N'(d_+(T-t,x)) \cdots (4.5.24)$$

• < pf >

$$d_{\pm}(T-t,x) = \frac{\ln(\frac{x}{K}) + (r \pm \frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{\tau}} = \frac{1}{\sigma}\ln(\frac{x}{K})(T-t)^{-\frac{1}{2}} + \frac{1}{\sigma}(r \pm \frac{1}{2}\sigma^2)(T-t)^{\frac{1}{2}}$$

$$\frac{\partial d_{\pm}(T-t,x)}{\partial t} = \frac{1}{2\sigma} ln(\frac{x}{K}) (T-t)^{-\frac{3}{2}} - \frac{1}{2\sigma} (r \pm \frac{1}{2}\sigma^2) (T-t)^{-\frac{1}{2}}$$
$$= \frac{1}{2\sigma} (T-t)^{-\frac{3}{2}} \left[ln(\frac{x}{K}) - (r \pm \frac{1}{2}\sigma^2) (T-t) \right]$$

•
$$c_t(t, x) = \frac{\partial c(t, x)}{\partial t}$$

$$= xN'(d_{+}(T-t,x))\frac{\partial d_{+}(T-t,x)}{\partial t} - \left[rKe^{-r(T-t)}N(d_{-}(T-t,x)) + Ke^{-r(T-t)}N'(d_{-}(T-t,x))\frac{\partial d_{-}(T-t,x)}{\partial t}\right]$$

$$= xN'(d_{+}(T-t,x))\frac{\partial d_{+}(T-t,x)}{\partial t} - rKe^{-r(T-t)}N(d_{-}(T-t,x)) - xN'(d_{+}(T-t,x))\frac{\partial d_{-}(T-t,x)}{\partial t}$$

$$= xN'(d_{+}(T-t,x)) \left[\frac{\partial d_{+}(T-t,x)}{\partial t} - \frac{\partial d_{-}(T-t,x)}{\partial t} \right] - rKe^{-r(T-t)}N(d_{-}(T-t,x))$$

$$X d_{+}(T-t,x) - d_{-}(T-t,x) = \sigma \sqrt{T-t}$$

$$\implies \frac{\partial}{\partial t} (\sigma \sqrt{T - t}) = \frac{-\sigma}{2\sqrt{T - t}}$$

$$\therefore c_t(t,x) = -rKe^{-r(T-t)}N(d_-(T-t,x)) - \frac{\sigma x}{2\sqrt{T-t}}N'(d_+(T-t,x)) \quad \cdots \quad (4.5.24)$$

• Theta:
$$c_t(t,x) = \frac{\partial c(t,x)}{\partial t} = -rKe^{-r(T-t)}N(d_-(T-t,x)) - \frac{\sigma x}{2\sqrt{T-t}}N'(d_+(T-t,x)) < 0$$

•
$$Gamma: c_{xx}(t,x) = \frac{\partial^2 c(t,x)}{\partial x^2}$$

$$= \frac{\partial c_{x}(t,x)}{\partial x} = \frac{\partial}{\partial x} (N(d_{+}(T-t,x)))$$

$$= N'(d_{+}(T-t,x)) \frac{\partial d_{+}(T-t,x)}{\partial x} = \frac{1}{\sigma x \sqrt{T-t}} N'(d_{+}(T-t,x))$$

$$\therefore c_{xx}(t,x) = \frac{1}{\sigma x \sqrt{T-t}} N'(d_{+}(T-t,x)) \quad \cdots \quad (4.5.25)$$

•
$$Gamma: c_{xx}(t,x) = \frac{\partial^2 c(t,x)}{\partial x^2} = \frac{1}{\sigma x \sqrt{T-t}} N'(d_+(T-t,x)) > 0$$

- The hedging portfolio value is $c(t, x) = xN(d_+) Ke^{-r(T-t)}N(d_-)$
- $xN(d_{+}) = xc_{x}(t,x)$ of this value is invested in stock
- $c(t,x) xc_x(t,x) = -Ke^{-r(T-t)}N(d_{-})$ of the amount invested in the money market
- Hedge a long call should hold $-c_x$ shares of stock and invested $Ke^{-r(T-t)}N(d_-)$ in the money market account.

Fig. 4.5.1. Delta-neutral position.

- c(t,x) is increasing and convex in the variable x (: $c_x > 0$ and $c_x > 0$)
- Take a long position in the option and hedge it
- Buy the option for $c(t, x_1)$, shorting $c_x(t, x_1)$ shares of stock
- Invested the amount $M = x_1 c_x(t, x_1) c(t, x_1)$ in the money market

- The initial portfolio value $c(t, x_1) x_1 c_x(t, x_1) + M = 0$
- If the stock price fall to x_0 , the value of the option we hold would fall to $c(t, x_0)$ and the liability due to our short position in stock would decrease to $x_0c_x(t, x_1)$.
- Total portfolio value

$$c(t, x_0) - x_0 c_x(t, x_1) + M$$

$$= c(t, x_0) - x_0 c_x(t, x_1) + [x_1 c_x(t, x_1) - c(t, x_1)]$$

= $c(t, x_0) - c_x(t, x_1)(x_0 - x_1) - c(t, x_1)$ is the difference at x_0 between the curve y and the straight line y in Figure 4.5.1

- The initial portfolio value $c(t, x_1) x_1 c_x(t, x_1) + M = 0$
- If the stock price rise to x_2 , the value of the option we hold would rise to $c(t, x_2)$ and the liability due to our short position in stock would increase to $x_2c_x(t, x_1)$.
- Total portfolio value

$$c(t, x_2) - x_2 c_x(t, x_1) + M$$

$$= c(t, x_2) - x_2 c_x(t, x_1) + [x_1 c_x(t, x_1) - c(t, x_1)]$$

$$= c(t, x_2) - c_x(t, x_1)(x_2 - x_1) - c(t, x_1) \text{ is the difference at } x_0 \text{ between the curve y and the straight line y in Figure 4.5.1}$$

- The portfolio we have set up is said to be delta-neutral and long gamma.
- A long gamma portfolio is profitable in times of high stock volatility.
- Delta-neutral means that small changes in the stock price result in nearly equal changes in the option price and the value of the short stock position, offsetting each other.
- If the straight line were steeper than the option price curve at the starting point x_1 , then we would be short delta

- From the point of view of no-arbitrage pricing, it is irrelevant how likely the stock is to go up or down because a delta-neutral position is a hedge against both possibilities.
- What matters is how much volatility the stock has, for we need to know the amount of profit that can be made from the long gamma position.

•
$$Vega: \frac{\partial c(t,x)}{\partial \sigma} > 0$$

• The more volatile stocks offer more opportunity for profit from the portfolio that hedges a long call position with a short stock position.

- Let f(t, x) denote the value of the forward contract at earlier times $t \in [0, T]$ if the stock price at time t is S(t) = x.
- Forward contract: $f(t,x) = x e^{-r(T-t)}K$... (4.5.26)
- If t = 0, 代入 $f(t, S(0)) = S(0) e^{-rT}K$
- Replicate the value of the forward contract with a portfolio at each time t is $S(t) e^{-r(T-t)}K$
- Let $S(t) e^{-r(T-t)}K = 0 \implies S(t) = e^{-r(T-t)}K \implies K = e^{r(T-t)}S(t)$
- $For(t) = e^{r(T-t)}S(t)$... (4.5.27)

• The forward price is not the price (or value) of a forward contract.

• Let
$$t = 0 \implies For(0) = e^{rT}S(0) \implies K = e^{rT}S(0)$$

• Value at time t is $f(t, S(t)) = S(t) - e^{rt}S(0)$

- European put = $(K S(T))^+$ at time T
- For any number x, the equation $x K = (x K)^+ (K x)^+ \cdots (4.5.28)$
- If $x \ge K$, then $(x K)^+ (K x)^+ = (x K) 0 = x K$.
- If $x \le K$, then $(x K)^+ (K x)^+ = -(K x) = x K$.
- Equation (4.5.28) implies f(T, S(T)) = c(T, S(T)) p(T, S(T))
- A portfolio that is long a call and short a put.

•
$$p(t,x) = x(N(d_{+}(T-t,x)) - 1) - Ke^{-r(T-t)}(N(d_{-}(T-t,x)) - 1)$$

$$= Ke^{-r(T-t)}N(-d_{-}(T-t,x)) - xN(-d_{+}(T-t,x)) \quad \cdots \quad (4.5.30)$$

 \bullet < pf >

At all previous times: f(t,x) = c(t,x) - p(t,x), $x \ge 0$, $0 \le t \le T$

由
$$(4.5.26)$$
 $f(t,x) = x - e^{-r(T-t)}K$ 代入得 $c(t,x) - p(t,x) = x - e^{-r(T-t)}K$

$$\Longrightarrow p(t,x) = c(t,x) - x + e^{-r(T-t)}K \quad \cdots \quad (1)$$

又知 (4.5.19)
$$c(t,x) = xN(d_+(T-t,x)) - Ke^{-r(T-t)}N(d_-(T-t,x))$$
 , $0 \le < T$, $x > 0$

代入 (1) 得
$$p(t,x) = \left[xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x))\right] - x + e^{-r(T-t)}K$$

$$= Ke^{-r(T-t)}\left[1 - N(d_{-}(T-t,x))\right] - x\left[1 - N(d_{+}(T-t,x))\right]$$

$$= Ke^{-r(T-t)}N(-d_{-}(T-t,x)) - xN(-d_{+}(T-t,x))$$

$$\therefore p(t,x) = Ke^{-r(T-t)}N(-d_{-}(T-t,x)) - xN(-d_{+}(T-t,x))$$