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Section 4.3 Ito’s Integral for General Integrands

Define the Ito integral fOTA(t) dW (t) for integrands A(t) that are
allowed to vary continuously with time and also to jump.

We do assume that A(t), t > 0, is adapted to the filtration F(t), t > 0. We
also assume the square-integrability condition EJ fOT A%(t)dt] < oo .



Constructed by choosing a partition0 =t <t; <t, <
t3 < t,, Setting the approximating simple process
equal to A(¢;) at each t; , and then holding the simple
process constant over the subinterval [t; , t;;4).

As the maximal step size of the partition approaches
zero , the approximating integrand will become a
better and better approximation of the continuously
varying one.

Fig. 4.3.1. Approximating a continuously varying integrand.

In general, then, it is possible to choose a sequence A,, (t) of simple processes such
thatasn — oo these processes converge to the continuously varying A(t).

T
lim EU A, (£) — A(®)|?> dt] =0
0

n—>0o

Define the Ito integral for the continuously varying integrand A(t) by the formula

fy A@dwW(w) = lim [i8, ©dWw),0<¢<T  (43.3)



Theorem 4.3.1. Let T" be a positive constant and let ,ﬂ.( ) <t <T, be an adapted
stochastic process that satisfies (4.3. I) Then 1(t fﬂ 1) defined by (4.3.3)

has the following properties. [j A2(t)dt] < oo
0

(i) (Continuity) As a function of the upper limit of integration t, the paths of 1(t)
are continuous.

(ii) (Adaptivity) For each t, I(t) is F(t)-measurable.

(1i1) (LmEﬂl’lty) IfI(t) = [y A(w)dW(u) and J(t) = [;T(u)dW (u), then I(t) £
fn (&(H ['(u )dH (u); furthermore, for every C‘ﬂnsmnr ¢, cl(t) =

f;j ,a( w)dW (u).
(iv) (Martingale) /(t) is a martingale,
(v) (Itd isometry) EI2(t) = E j; A2 (u)du.

(vi) (Quadratic variation) [/, I]( fﬂ A% (u)du.



Example 4.3.2 Compute [* W (£)dw (t)

To do that, we choose a large integer n and approximate the integrand A(t) = W (t) by the simple process

VI — » T
W(0) =0 it0 <t <,

VL T 2T
w (L) if £ <1< 2T,

W ([n—l}l’") if (n=1T <t<T

I

Then lim E [ [A,(t) — W (t)|2dt = 0. By definition,

n—oo

Fig. 4.3.2. Simple process approximating Brownian motion.
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/ W (t)dW (t) = lim / A (£)dW (t)
0 0
(4.3.4)




To simplify notation, we denote W; = W( ) w(0) = 0.
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0
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We contrast (4.3.6) with ordinary calculus. If g is a differentiable function with g(0)=0, then

g g ! 1 2 N 1 2
/ g(t)dg(t) = / g(t)g'(t)dt = Sg*(t)| = 5g°(T).
0 Jo 2 o 2

The extra term —%T in (4.3.6) comes from the nonzero quadratic variation of Brownian motion and the way we

constructed the Ito integral, always evaluating the integrand at the left-hand endpoint of the subinterval (see the
right-hand side of (4.3.4)). If we were instead to evaluate at the midpoint, replacing the right-hand side of (4.3.4)

by
n—I1 y 1 g
lim Z W (U * Q)T) !H ( U+ UT) - W (E)] : (4.3.7)
11— 00 =0 n n n

then we would not have gotten this term (see Exercise 4.4). The integral obtained by making this replacement is
called the Stratonovich integral, and the ordinary rules of calculus apply to it. However, it is inappropriate for
finance.




The upper limit of integration 7" in (4.3.6) 1s arbitrary and can be replaced by any
t > 0. In other words,

t
f W (w)dW (u) = %wﬂ(gj - %r L > 0. (4.3.8)
0

Theorem 4.3.1(1v) guarantees that f[: W (u)dW (u) 1s a martingale and hence has con-
stant expectation. At ¢ = 0, this martingale is 0, and hence its expectation must
always be zero. This is indeed the case because EW?(t) = t. If the term —%i were
not present, we would not have a martingale.



Section 4.4.1 1to-Doeblin Formula for Brownian Motion

We want a rule to “differentiate” expressions of the form f (W (t)), where f(x) is a

differentiate function and W (t) is a Brownian motion. If W (t) were also differentiate, then
the chain rule from ordinary calculus would give

w fW®) = (W@)W'@) or
df(W(®)) = f/(W@®))W'(t)dt = f'(W(t))dW (¢)

W has nonzero quadratic variation, the correct formula has an extra term, it is the Ito-
Doeblin formula in differential form

1
df(W(@)) = f'(W())dw () + > (W ())de

Integrating this, we obtain the Ito-Doeblin formula in integral form:

t 1 t
FW®) = F(W(O)) = fo F(WQ))dw ) + fo F1(W W) du

Ito integral ordinary (Lebesgue) integral with
respect to the time variable




Theorem 4.4.1 (It6-Doeblin formula for Brownian motion). Let f(t,x) be a func-
tion for which the partial derivatives fi(t,x), f.(t,x), and f..(t,x) are defined and

continuous, and let W (t) be a Brownian motion. Then, for every T > 0,

T
f(T,W(T)) = f(0,W(0)) + /ﬂ fe(t, W(t))dt i
(4.4.3)
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Remark 4.4.2. The fact that the sum (4.4.10) of terms containing the product (¢4 —
t;)(W(tj41)—W(t;)) has limit zero can be informally recorded by the formula dtdW (t) =
0. Similarly, the sum (4.4.11) of terms containing (¢;+1 — ¢;)? also has limit zero, and
this can be recorded by the formula dtdt = 0. We can write these terms if we like in
the It6-Doeblin formula, so that in differential form it becomes

df (£, W(t)) = fi(t,W(t))dt + fo (t, W(t))dW (t) + % fua (E. W () dW (£)dW (2)

: 1
+ fro (£, W(t))dtdW (t) + 5 fue (t, W (t))dtdt,
but
dW (£)dW (t) = dt, dtdW (1) = dW (t)dt = 0, dtdt = 0, (4.4.12)

and the Itd-Doeblin formula in differential form simplifies to

df (t, W (t)) = fo(t, W(t))dt + f.(¢t, W(t))dW (t) + %fm(:i, W (t))dt. (4.4.13)



