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Theorem 4.6.5 ( Levy, two dimensions )

Let  and , , be martingales relative to a filtration , .  

Assume that for , we have ,  has continuous paths, and  for 

all . If, in addition,  for all , then  and  are independent 

Brownian motions.

M1(t) M2(t) t ≥ 0 ℱ(t) t ≥ 0

i = 1,2 Mi(0) = 0 Mi(t) [Mi, Mi](t) = t

t ≥ 0 [M1, M2](t) = 0 t ≥ 0 M1(t) M2(t)

①

② ③

⇒  and  are Brownian motions.M1(t) M2(t)

Recall Theorem 4.6.4 (Levy, one dimension) 

Let , , be a martingale relative to a filtration , . Assume that ,  

has continuous paths, and  for all . Then  is a Brownian motion.

M(t) t ≥ 0 ℱ(t) t ≥ 0 M(0) = 0 M(t)

[M, M](t) = t t ≥ 0 M(t)



proof:

To show independence, we examine the joint moment-generating function. 

Let  be a function whose derivatives are defined and continuous. The two-dimensional 

Itô-Doeblin formula implies that 

 

                    

f(t, x, y)

df(t, M1, M2) = ft dt + fx dM1 + fy dM2 +
1
2

fxx dM1dM1 +
1
2

fyy dM2dM2 + fxy dM1 dM2

= ft dt + fx dM1 + fy dM2 +
1
2

fxx dt +
1
2

fyy dt

dt dt 0



proof:

We integrate both sides to obtain 

      

 

 

Taking expectations on both sides 

 

f (t, M1(t), M2(t))
= f (0,M1(0), M2(0)) + ∫

t

0 [ ft (s, M1(s), M2(s)) +
1
2

fxx (s, M1(s), M2(s)) +
1
2

fyy (s, M1(s), M2(s))] ds

+∫
t

0
fx (s, M1(s), M2(s)) dM1(s) + ∫

t

0
fy (s, M1(s), M2(s)) dM2(s)

𝔼f (t, M1(t), M2(t))
= f (0,M1(0), M2(0)) + 𝔼∫

t

0
[ ft (s, M1(s), M2(s)) +

1
2

fxx (s, M1(s), M2(s))
+

1
2

fyy (s, M1(s), M2(s)) ]ds



proof:

Now, fix numbers  and  and define 

      

Then  ,   ,   

 ,   

the second term on the right-hand side is zero 

 

⇒  

⇒  must be independent.

u1 u2

f(t, x, y) = exp {u1x + u2y −
1
2

(u2
1 + u2

2)t}
ft(t, x, y) = −

1
2

(u2
1 + u2

2)f(t, x, y) fx(t, x, y) = u1 f(t, x, y) fy(t, x, y) = u2 f(t, x, y)

fxx(t, x, y) = u2
1 f(t, x, y) fyy(t, x, y) = u2

2 f(t, x, y)

𝔼 exp {u1M1(t) + u2M2(t) −
1
2

(u2
1 + u2

2)t} = 1

𝔼 exp {u1M1(t) + u2M2(t)} = exp { 1
2

(u2
1 + u2

2)t} = exp { 1
2

u2
1 t} exp { 1

2
u2

2 t}
= 𝔼[eu1M1(t)] × 𝔼[eu2M2(t)] M1(t), M2(t)



4.7 Brownian Bridge

This is a stochastic process that is like a Brownian motion except that with probability one. 

It reaches a specified point at a specified positive time. We first discuss Gaussian 

processes in general, the class to which the Brownian bridge belongs, and we then 

define the Brownian bridge and present its properties. The primary use for the Brownian 

bridge in finance is as an aid to Monte Carlo simulation.



4.7.1 Gaussian Processes

Definition 4.7.1.  

A Gaussian process , , is a stochastic process that has 

the property that, for arbitrary times , the random variables 

 are jointly normally distributed. 

The joint normal distribution of a set of vectors is determined by their means and covariances. Therefore, 

for a Gaussian process, the joint distribution of  is determined by the means and 

covariances of these random variables.  

We denote the mean of X(t) by m(t),   

And denote the covariance of X(s) and X(t) by  c(s, t) = E .

X(t) t > 0

0 < t1 < t2 < . . . < tn
X(t1), X(t2), . . . , X(tn)

X(t1), X(t2), . . . , X(tn)

m(t) = 𝔼X(t)

c(s, t) = 𝔼[(X(s) − m(s))(X(t) − m(t))]



4.7.2 Brownian Bridge as a Gaussian Process

Definition 4.7.4.  

Let  be a Brownian motion. Fix . We define the Brownian bridge from 0 to 0 on [0, 

T] to be the process 

 

Note that  as a function of t is the line from (0, 0) to (T,W(T)) 

We have subtracted this line away from the Brownian motion W(t), the resulting process X(t) 

satisfies X(0) = X(T) = 0

W(t) T > 0

X(t) = W(t) −
t
T

W(T) , 0 < t < T .
t
T

W(T)



Recall  3.3.2 

For , the random variables 

 are jointly normal because  are 

jointly normal. Hence, the Brownian bridge from 0 to 0 is a Gaussian process. 

so, the function is easily seen to be 

  ,  

 

 

0 < t1 < t2 < . . . < tn < T

X(t1) = W(t1) −
t1
T

W(T), . . . , X(tn) = W(tn) −
tn
T

W(T) W(t1), . . . , W(tn), W(T)

m(t) = 𝔼X(t) = 𝔼 [W(t) −
t
T

W(T)] = 0

c(s, t) = 𝔼 [(W(s) −
s
T

W(T)) (W(t) −
t
T

W(T))]
= 𝔼[W(s)W(t)] −

t
T

𝔼[W(s)W(T)] −
s
T

𝔼[W(t)W(T)] +
st
T2

𝔼[W2(T)]

= s ∧ t −
2st
T

+
st
T

= s ∧ t −
st
T

Recall 3.3.2 
Because the increments of brownian motion are independent 
and normally distributed, the random variables 

 are jointly normally distributed.W(t1), W(t2), . . . , W(tm)



Definition 4.7.5.

Let W(t) be a Brownian motion. Fix T > 0, , and . We define the Brownian bridge 

from a to b on [0, T] to be the process 

 

The mean function is affected 

 

the covariance function is not affected 

a ∈ R b ∈ R

Xa→b(t) = a +
(b − a)t

T
+ X(t), 0 ≤ t ≤ T,

ma→b(t) = 𝔼Xa→b(t) = a +
(b − a)t

T
.

ca→b(s, t) = 𝔼 [(Xa→b(s) − ma→b(s)) (Xa→b(t) − ma→b(t))] = s ∧ t −
st
T

.



4.7.3 Brownian Bridge as a Scaled Stochastic Integral

We cannot write the Brownian bridge as a stochastic integral of a deterministic integrand 

because the variance of the Brownian bridge isn’t monotonically increasing 

 

Obtain a process with the same distribution as the Brownian bridge from 0 to 0 as a scaled 

stochastic integral. In particular, consider 

 

The integral 

 is a Gaussian process

𝔼X2(t) = c(t, t) = t −
t2

T
=

t(T − t)
T

Y(t) = (T − t)∫
t

0

1
T − u

dW(u), 0 ≤ t < T .

I(t) = ∫
t

0

1
T − u

dW(u)



Recall Theorem 4.4.9 (Itô integral of a deterministic integrand). 

Let , , be a Brownian a motion, and let  be a nonrandom function of time. 

Define . For each , the random variable I(t) is normally distributed 

with expected value zero and variance 

W(s) s ≥ 0 Δ(s)

I(t) = ∫
t

0
Δ(s)dW(s) t ≥ 0

Var I(t) = ∫
t

0
Δ2(s)ds



For , the random variables 

 

are jointly normal because  are jointly normal. In particular, Y 

is a Gaussian process. 

The mean and covariance functions of   

 ,  

so that , we assume for the moment that  

 

                                  

If we had taken  

0 < t1 < t2 < . . . < tn < T

Y(t1) = (T − t1)I(t1), Y(t2) = (T − t2)I(t2), . . . , Y(tn) = (T − tn)I(tn)

I(t1), I(t2), . . . , I(tn)

I

mI(t) = 0 cI(s, t) = ∫
s∧t

0

1
(T − u)2

du =
1

T − s ∧ t
−

1
T

for all s, t ∈ [0,T)

mY(t) = 0 0 ≤ s ≤ t < T

cY(s, t) = 𝔼[Y(s)Y(t)] = 𝔼[(T − s)(T − t)I(s)I(t)] = (T − s)(T − t) ⋅ cI(s, t)

= (T − s)(T − t) ⋅
s

T(T − s)
=

(T − t)s
T

= s −
st
T

0 ≤ s, t < T

cY(s, t) = s ∧ t −
st
T

for all s, t ∈ [0,T)



Theorem 4.7.6.

Define the process 

Then Y (t) is a continuous Gaussian process on [0, T] and has mean and covariance 

functions. 

 

 

In particular, the process Y (t) has the same distribution as the Brownian bridge from 0 to 0 

on [0, T]

mY(t) = 0, t ∈ [0,T]

cY(s, t) = s ∧ t −
st
T

for all s, t ∈ [0,T]

Y(t) = {(T − t) ∫ t
0

1
T − u dW(u), for 0 ≤ t < T,

0, for t = T .



compute the stochastic differential of , 

 

 

If  as  , the drift term  becomes large in absolute value and is negative. 

This drives  toward zero.  

On the other hand, if , the drift term becomes large and positive, and this again drives 

 toward zero.  

This strongly suggests, and it is indeed true, that as  the process  converges to zero 

almost surely.

Y(t)

dY(t) = ∫
t

0

1
T − u

dW(u) ⋅ d(T − t) + (T − t) ⋅ d (∫
t

0

1
T − u

dW(u))
= − ∫

t

0

1
T − u

dW(u) ⋅ dt + dW(t) = −
Y(t)
T − t

dt + dW(t)

Y(t) > 0 t → T −
Y(t)
T − t

dt

Y(t)

Y(t) < 0

Y(t)

t → T Y(t)

Corollary 4.6.3 (Itô product rule)  
Let X(t) and Y (t) be Itô processes. Then

d(X(t)Y(t)) = X(t)dY(t) + Y(t)dX(t) + dX(t)dY(t) .


