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Section 4.2 Itô's Integral for Simple Integrands

∫
T

0
Δ(t) dW(t)

1.Adapted to 𝓕(t) → ∆(t) is 𝓕(t)-measurable 

2.∆(t) is independent of future Brownian increments 

3.At time t the randomness of ∆(t) has been resolved

投資組合標的物價格 1.Brownian motion 
2.Together with a filtration 𝓕(t)

∫
T

0
Δ(t) dg(t) = ∫

T

0
Δ(t)g′￼(t) dt

Problem : 
Brownian motion paths cannot 
be differentiated with respect to 
time.



4.2.1 Construction of the Integral

Define the Itô integral for simple integrands ∆(t) 

Let  be a partition of ;  

i.e.,  

Assume that ∆(t) is constant in t on each subinterval .  

Such a process ∆(t) is a simple process.

Π = {t0, t1, …, tn} [0,T]

0 = t0 ≤ t1 ≤ . . . ≤ tn = T .

[tj, tj+1)



Explain from the trading behavior of financial markets

W(t) : the price per share of an asset at time t. 

∆(t): as the position  taken in the asset at each trading date and held to the next trading date. 

: as the trading dates in the asset. 

I(t): the gain from trading at each time t.

t0 , t1 , …, tn−1

 

 

I(t) = Δ(t0)[W(t) − W(t0)] = Δ(0)W(t), 0 ≤ t ≤ t1,

I(t) = Δ(0)W(t1) + Δ(t1)[W(t) − W(t1)], t1 ≤ t ≤ t2,

I(t) = Δ(0)W(t1) + Δ(t1)[W(t2 − W(t1] + Δ(t2)[W(t) − W(t2)], t2 ≤ t ≤ t3,

 

          →   

In general, if tk ≤ t ≤ tk+1

I(t) =
k−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] + Δ(tk)[W(t) − W(tk)] I(t) = ∫
T

0
Δ(u) dW(u)

discrete continuous



Theorem 4.2.1. The Itô integral defined by (4.2.2) is a martingale.

 

Let  be given. We shall assume that  and  are in different subintervals of the 

partition   (i.e., there are partition points  and   such that ,  and . 

If s and t are in the same subinterval, the following proof simplifies. Equation (4.2.2) may be 

rewritten as

                                               

proof :
0 ≤ s ≤ t ≤ T s t

Π tℓ tk tℓ < tk s ∈ [tℓ, tℓ+1) t ∈ [tk, tk+1)

I(t) =
ℓ−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] + Δ(tℓ)[W(tℓ+1) − W(tℓ)]

+
k−1

∑
j=ℓ+1

Δ(tj)[W(tj+1) − W(tj)] + Δ(tk)[W(t) − W(tk)]

   𝔼[I(t) ∣ ℱ(s)] = I(s) ∀s ≤ t

0~  的部分s

~  的部分s t

① ②

③ ④



proof :

①

②

By Theorem 3.3.4. Brownian motion is a martingale

The latest time appearing in this sum is  and  ,so every random variable in the 

first sum is . Therefore, 

 

For the second term, we “take out what is known”and use the martingale property of W 

to write 

             

                                                                      

tℓ tℓ ≤ s

ℱ(s) − measurable

𝔼
ℓ−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] ℱ(s) =
ℓ−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)]

𝔼 [Δ(tℓ)(W(tℓ+1) − W(tℓ)) ℱ(s)] = Δ(tℓ)(𝔼 [W(tℓ+1) ℱ(s)] − W(tℓ))
= Δ(tℓ)(W(s) − W(tℓ))



proof :

③

※ iterated conditioning: 
∀ I1 ⊆ I2 , 𝔼[𝔼(Y | I2) | I1] = 𝔼(Y | I1)

The summands in the third term are of the form  ,where 

. This permits us to use the following iterated conditioning trick, which 

is based on properties (iii) iterated conditioning and (ii) taking out what is known 

 

                                                               

                                           

       ⇒ 

Δ(tj)[W(tj+1) − W(tj)]
tj ≥ tℓ+1 ≥ s

𝔼 {Δ(tj)(W(tj+1) − W(tj)) ℱ(s)} = 𝔼 {𝔼 [Δ(tj)(W(tj+1) − W(tj)) ℱ(tj)] ℱ(s)}
= 𝔼 {Δ(tj)(𝔼 [W(tj+1) ℱ(tj)] − W(tj)) ℱ(s)}
= 𝔼 {Δ(tj)(W(tj) − W(tj)) ℱ(s)} = 0

𝔼
k−1

∑
j=ℓ+1

Δ(tj)[W(tj+1) − W(tj)] ℱ(s) = 0



The fourth term 

 

                                                               

                                          

𝔼 {Δ(tk)(W(t) − W(tk)) ℱ(s)} = 𝔼 {𝔼 [Δ(tk)(W(t) − W(tk)) ℱ(tk)] ℱ(s)}
= 𝔼 {Δ(tk)(𝔼 [W(t) ℱ(tk)] − W(tk)) ℱ(s)}
= 𝔼 {Δ(tk)(W(tk) − W(tk)) ℱ(s)} = 0

proof :

④




                        

𝔼 [I(t) ℱ(s)] =
ℓ−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] + Δ(tℓ)[W(tℓ+1) − W(tℓ)]+
k−1

∑
j=ℓ+1

Δ(tj)[W(tj+1) − W(tj)] + Δ(tk)[W(t) − W(tk)]

=
ℓ−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] + Δ(tℓ)(W(s) − W(tℓ)) = I(s)



Because  is a martingale and , 

 ⇒   

⇒   

⇒  

I(t) I(0) = 0

𝔼 [I(t) ℱ(s)] = I0 𝔼 {𝔼 [I(t) ℱ(0)]} = 𝔼(I0)

𝔼I(t) = 𝔼(I0) = 𝔼(0) = 0

Var I(t) = 𝔼 I2(t) − [𝔼 I(t)]2 = 𝔼 I2(t)

proof :



Theorem 4.2.2. (Itô isometry). The Itô integral defined by (4.2.2) satisfies

𝔼 I2(t) = 𝔼∫
t

0
Δ2(u) du

 

Let  

so that 

proof :
Dj = W(tj+1) − W(tj) for j = 0, . . . , k − 1 and Dk = W(t) − W(tk)

I(t) =
k−1

∑
j=0

Δ(tj)[W(tj+1) − W(tj)] + Δ(tk)[W(t) − W(tk)] =
k

∑
j=0

Δ(tj) Dj

I2(t) =
k

∑
j=0

Δ(tj) Dj

2

=
k

∑
j=0

Δ2(tj) D2
j + 2 ∑

0≤i<j≤k

Δ(ti) Δ(tj) Di Dj

① ②



proof :

show that the expected value of each of the cross terms is zero.For , the random 

variable  is , while the Brownian increment  is 

independent of . Furthermore, . Therefore 

i < j

Δ(ti)Δ(tj)Di ℱ(tj) − measurable Dj

ℱ(tj) 𝔼Dj = 0

𝔼[Δ(ti)Δ(tj)DiDj] = 𝔼[Δ(ti)Δ(tj)Di] ⋅ 𝔼Dj = 𝔼[Δ(ti)Δ(tj)Di] ⋅ 0 = 0.

※  

    : 布朗運動的增量 

    

   ,

𝔼Dj = 0
Dj

Dj = W(tj+1) − W(tj) ∼ N(0,tj+1 − tj)
𝔼Dj = 0 Var(Dj) = 𝔼D2

j = tj+1 − tj

※  is independent of     

     

⇒  不是  

⇒  is independent of 

Dj ℱ(tj)
Dj = W(tj+1) − W(tj)

Dj ℱ(tj) − measurable

Dj ℱ(tj)



proof :

consider the square terms .The random variable  is  , 

and the squared Brownian increment  is independent of .Furthermore,

 for  and . Therefore, 

 

             

Δ2(tj) D2
j Δ2(tj) ℱ(tj) − measurable

D2
j ℱ(tj)

𝔼D2
j = tj+1 − tj j = 0,...,k − 1 𝔼D2

k = t − tk

𝔼I2(t) =
k

∑
j=0

𝔼[Δ2 (tj) D2
j ] =

k

∑
j=1

𝔼Δ2 (tj) ⋅ 𝔼D2
j

=
k−1

∑
j=1

𝔼Δ2(tj) (tj+1 − tj) + 𝔼Δ2 (tk)(t − tk) .



proof :

But  is constant on the interval , and hence  

Similarly,  

 

Δ(tj) [tj, tj+1) Δ2(tj)(tj+1 − tj) = ∫
tj+1

tj

Δ2(u) du .

Δ2(tk)(t − tk) = ∫
t

tk

Δ2(u) du .

𝔼I2(t) =
k

∑
j=0

𝔼 [Δ2(tj) ] × 𝔼D2
j =

k−1

∑
j=0

𝔼 [Δ2(tj)] × (tj+1 − tj) + 𝔼 [Δ2(tk)] × (t − tk)

=
k−1

∑
j=0

𝔼 ∫
tj+1

tj

Δ2(u) du . + 𝔼 [∫
t

tk

Δ2(u) du . ] = 𝔼
k−1

∑
j=0

∫
tj+1

tj

Δ2(u) du. + ∫
t

tk

Δ2(u) du . = 𝔼∫
t

0
Δ2(u) du .



Theorem 4.2.3. The quadratic variation accumulated up to time t by the Itô integral

[I, I](t) = ∫
t

0
Δ2(u) du .

 Theorem3.4.3 Let  be a Brownian motion. Then  for all Recall : W [W, W](T) = T T ≥ 0

 

We first compute the quadratic variation accumulated by the Itô integral on one of the 

subintervals  on which  is constant. Choose partition points 

, and consider 

  

proof :

[tj, tj+1] Δ(u)

tj = s0 < s1 < , . . . , < sm = tj+1
m−1

∑
i=0

[I(si+1) − I(si)]2 =
m−1

∑
i=0

[Δ(tj)(W(si+1) − W(si))]
2

= Δ2(tj)
m−1

∑
i=0

(W(si+1) − W(si))2

※  I(si+1) − I(si) = ∫
si+1

si

Δ(tj)dW(u) = Δ(tj)[W(si+1 − W(si)] 布朗運動的增量性質



proof :

As and the step size  approaches zero 

 

 

We can get the quadratic variation accumulated by the Itô integral on intervals 

m → ∞ maxi=0,...,m−1(si+1 − si)

m−1

∑
i=0

[(W(si+1) − W(si))]
2

→
m−1

∑
i=0

(si+1 − si) = tj+1 − tj

Δ2(tj)
m−1

∑
i=0

(W(si+1) − W(si))2 = Δ2(tj)(tj+1 − tj) = ∫
tj+1

tj

Δ2(u)du

[0,t]

[I, I](t) = ∫
t

0
Δ2(u) du .



Quadratic variation: 

1. Computed path-by-path, the result can depend on the path. 

2. Depends on the size of the positions we take 

    We choose large positions , the Itô integral will have a large quadratic variation. 

    Choose small positions  and the Itô integral would have a small quadratic variation. 

3. Regarded as a measure of risk. 

The variance of I(t) 

1. Average over all possible paths of the quadratic variation. 

2. Cannot be random. 

3. More theoretical concept than quadratic variation. 

Empirical variance 

1. Computed from a realized path and is an estimator of the theoretical variance.

Δ(u)

Δ(u)



Remark 4.2.4. (on notation). The notations

  ⟺  

             

              is another way of the result of Theorem 4.2.3

Recall : dW(t) dW(t) = dt [W, W](t) = t, t ≥ 0

dI(t) dI(t) = Δ(t)dW(t) × Δ(t)dW(t) = Δ2(t)[dW(t)]2 = Δ2(t)dt

dI(t) dI(t) = [I, I](t) = Δ2(t)dt

integral form

differential form

 

  

 

I(t) = ∫
t

0
Δ(u) dW(u)

I(t) = I(0) + ∫
t

0
Δ(u) dW(u)

dI(t) = Δ(t)dW(t)

(4.2.11)

(4.2.12)

(4.2.13)

※ Theorem4.2.3 [I, I](t) = ∫
t

0
Δ2(u) du


