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Definition

Given a random process W,
we define the first passage time 7 of W atlevel m as :
T = min {n; W :m}, for a positive numer m;
m n
If the random process W never reach level m,

then we define T = 0.






Goal & Application

We would like to understand the first passage time distribution, and furthermore
the joint distribution of Brownian motion and its maximum.

The FPTD arises from some walks (processes) such that something remarkable
happens when it reaches a certain point (absorbing point).

The distribution is used in pricing exotic options, such as barrier options.



Recall

From volume 1, we have studied the discrete case; we use counting method and
reflection principle to derive the FPTD for the discrete case.

As for continuous case, since we can approximate it by infinitely many discrete
cases, so we would also like to “count” the FPTD for the continuous case.

Of course, since Brownian motion contains uncountable points, we would like to
“count” it in a sense of integration.



Reflection Equality

Fix some positive real level m, time ¢ and some difference w, where w < m.

WLOG, consider a Brownian motion M ( t) starting at 0.
M(t) s
P{Tms t, W(1) Sw} = P{(TmS t),W( 1) ZZm—w}, w<m, m>0 (3.7.1) , _,

After substituting w =m into formula (3.7.1) , we obtain:

P{ngz, W(1) Sm} = P{W(t) >m]}.
But also if W(¢) > m, then T < t naturally holds, hence:

P{Tmst, W( 1) Zm} = P{W(t) >m}.

Together we have the cumulative distribution function for z _:

P{ng z}:P{ng t, W(1) gm}+ P{rmg t, W(1) Zm}
=2P{W(t) >m} (*)




Theorem 3.7.1.

For all m# 0, the random variable T has cumulative distribution f unction
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proof

From ( *), P{r <t}=2P{W(1) >m}=
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Remark 3.7.2.

We would like to first introduce the Laplace transform for suitable functions f :
Fort>0, F(a):=L{f (1) }:=f f(t)e~%dt, Vae C.
0

From (3.7.3) , we can obtain the Laplace transform formula for z _:

00 o0 —at—L
[E{e_mm}zf e~df (1) dtzf ] e 2t dt foralla>0. (3.7.4)
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Notes

Formula ( 3.6.9) provides that E{e” “"m}=¢~ mIN2a for all a > 0.
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While (3.7.4) provides that E{e ™ “"m} = / ——e 2t d¢ for all o> 0.
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These two formula provides different Laplace transform formula, but with some

further considerations, we can prove that these two are equivalent.



Notes

The benefit of using Laplace transform is that we can differentiate both sides

wuth respect to o and we can obtain:
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Notes

Or equivalently:

da

= lim [E{Tmemm} =limL

a=0 a—0

=>E{r }—> 0, as a—0.

- iF( a) =L{txf (1) }=L{
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Distribution of Brownian Motion and Its Maximum

After understanding FTPD, we can now derive the joint distribution of Brownian
motion and its maximum, which is used in pricing barrier options.

When pricing exotic options, it is more convenient to first simulate the value before
some time t<T, and then stimulate the maximum of the Brownian motion due to the
property of path dependence, so we would also like to derive the conditional
distribution of the maximum given some information.



Definition

M(t) 5

2m—-w ¢

We difine the maximum to date for Brownian motion to be :

M(t) = max W(s)  (3.7.5) i

0<s<t




Theorem 3.7.3.

For t>0, the joint density of (M(t),W(t)) is
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, w<m,m>0. (3.7.7)



proof

We first observe that M(t) > m if and only if T ST So we can rewrite (3.7.1) as

P{M(t) >m,W(t) <w}=P{W(t) >2m—-—w}, w<m, m>0. (3.7.6)
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proof

22

f e 2tdz, we can then
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differentiate first with respect to m to obtain:
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proof

Finally we differentiate both sides with respect to w and obtain:
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Corollary 3.7 .4.

The conditional distribution of M(t) given W(t) =w is

2m(m—w)
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proof

The conditional density can be written as:
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