Stochastic Calculus For Finance - volume 2

Section 5.2.1 Girsanov's Theorem for a Single Brownian Motion Section 5.2.2 Stock Under the Risk-Neutral Measure 05/13/2025 卓伯呈

Section 5.2.1 Girsanov's Theorem for a Single Brownian Motion

In Theorem 1.6.1, we began with a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a nonnegative r.v Z satisfying $\mathbb{E}_{\mathbb{P}}Z = 1$. We then defined a new probability measure $\widetilde{\mathbb{P}}$ by the formula

$$\widetilde{\mathbb{P}}(A) = \int_A Z(\omega) dP(\omega)$$
 for all $A \in \mathcal{F}$. (5.2.1)

Any random variable X now has two expectations, one under the original probability measure \mathbb{P} , which we denote $\mathbb{E}X$, and the other under the new probability measure $\widetilde{\mathbb{P}}$, which we denote $\widetilde{\mathbb{E}}X$. These are related by the formula $\widetilde{\mathbb{E}}X = \mathbb{E}[XZ]$ (5.2.2).

If $\mathbb{P}\{Z > 0\} = 1$, then \mathbb{P} and $\widetilde{\mathbb{P}}$ are equivalent measure i.e. $\mathbb{P}(A) = 0 \iff \widetilde{\mathbb{P}}(A) = 0$ and (5.2.2) has the companion formula $\mathbb{E}X = \widetilde{\mathbb{E}}\left[\frac{X}{Z}\right]$ (5.2.3)

We say Z is the *Radon-Nikodym derivative* of $\widetilde{\mathbb{P}}$ with respect to \mathbb{P} , and we write $Z = \frac{d\widetilde{\mathbb{P}}}{d\mathbb{P}}$

Suppose further that Z is an almost surely positive random variable satisfying $\mathbb{E}Z = 1$, and we define $\widetilde{\mathbb{P}}$ by (5.2.1). We can then define the *Radon-Nikodym* derivative process

$$Z(t) = \mathbb{E}[Z|\mathcal{F}(t)], 0 \le t \le T$$

Where $\{\mathcal{F}(t): t \geq 0\}$ is some given filtration.

The *Radon-Nikodym derivative process* is a martingale because of iterated conditioning

(Theorem 2.3.2(iii)): for $0 \le s \le t \le T$,

$$\mathbb{E}[Z(t)|\mathcal{F}(s)] = \mathbb{E}\left[\mathbb{E}[Z|\mathcal{F}(t)]|\mathcal{F}(s)\right] = \mathbb{E}[Z|\mathcal{F}(s)] = Z(s). \tag{5.2.7}$$

Lemma 5.2.1. Let t satisfying $0 \le t \le T$ be given and let Y be an F(t)-measurable random variable. Then

$$\widetilde{\mathbb{E}}Y = \mathbb{E}[YZ(t)]$$
 (5.2.8)

Proof:

$$\widetilde{\mathbb{E}}Y = \mathbb{E}[YZ] = \mathbb{E}[\mathbb{E}[YZ|F(t)]] = \mathbb{E}[Y\mathbb{E}[Z|F(t)]] = \mathbb{E}[YZ(t)]$$

Lemma 5.2.2. Let s and t satisfying $0 \le s \le t \le T$ be given and let Y be an F(t)-measurable random variable. Then

$$\widetilde{\mathbb{E}}[Y|F(s)] = \frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)] \quad (5.2.9)$$

Vertify the two defining conditions of conditional expectation (Definition 2.3.1)

- (i) $\frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)]$ is F(s)-measurable
- (ii) Now let $A \in F(s)$, we want to show

$$\int_{A} \frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)] d\widetilde{\mathbb{P}} = \int_{A} Y d\widetilde{\mathbb{P}} = \widetilde{\mathbb{E}}[\mathbb{I}_{A}Y]$$

Definition 2.3.1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let \mathcal{G} be a sub- σ -algebra of \mathcal{F} , and let X be a random variable that is either nonnegative or integrable. The conditional expectation of X given \mathcal{G} , denoted $\mathbb{E}[X|\mathcal{G}]$, is any random variable that satisfies

- (i) (Measurability) $\mathbb{E}[X|\mathcal{G}]$ is \mathcal{G} -measurable, and
- (ii) (Partial averaging)

$$\int_{A} \mathbb{E}[X|\mathcal{G}](\omega) d\mathbb{P}(\omega) = \int_{A} X(\omega) d\mathbb{P}(\omega) \quad \text{for all } A \in \mathcal{G}.$$
 (2.3.17)

(ii) Now let $A \in F(s)$, we want to show

$$\int_{A} \frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)]d\widetilde{\mathbb{P}} = \int_{A} Y d\widetilde{\mathbb{P}} = \widetilde{\mathbb{E}}[\mathbb{I}_{A}Y]$$

$$\widetilde{\mathbb{E}}\left[\mathbb{I}_{A} \frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)]\right]
= \widetilde{\mathbb{E}}\left[\mathbb{E}\left[\mathbb{I}_{A} \frac{1}{Z(s)} YZ(t)|F(s)\right]\right] , \text{use lemma 5.2.1 } (\widetilde{\mathbb{E}}Y = \mathbb{E}[YZ(t)])
= \mathbb{E}\left[Z(s)\mathbb{E}\left[\mathbb{I}_{A} \frac{1}{Z(s)} YZ(t)|F(s)\right]\right] = \mathbb{E}\left[\mathbb{E}[\mathbb{I}_{A} YZ(t)|F(s)]\right] = \mathbb{E}[\mathbb{I}_{A} YZ(t)]
= \widetilde{\mathbb{E}}[\mathbb{I}_{A}Y] = \int_{A} Y \, d\widetilde{\mathbb{P}}$$

So,
$$\frac{1}{Z(s)} \mathbb{E}[YZ(t)|F(s)] = \widetilde{\mathbb{E}}[Y|F(s)]$$

Theorem 5.2.3 (Girsanov, one dimension). Let W(t), $0 \le t \le T$, be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{F}(t)$, $0 \le t \le T$, be a filtration for this Brownian motion. Let $\Theta(t)$, $0 \le t \le T$, be an adapted process. Define

$$Z(t) = \exp\left\{-\int_0^t \Theta(u)dW(u) - \frac{1}{2}\int_0^t \Theta^2(u)du\right\},\tag{5.2.11}$$

$$\widetilde{W}(t) = W(t) + \int_0^t \Theta(u) du, \tag{5.2.12}$$

and assume that1

$$\mathbb{E} \int_0^T \Theta^2(u) Z^2(u) du < \infty. \tag{5.2.13}$$

Set Z = Z(T). Then $\mathbb{E}Z = 1$ and under the probability measure $\widetilde{\mathbb{P}}$ given by (5.2.1), the process $\widetilde{W}(t)$, $0 \le t \le T$, is a Brownian motion.

(i)EZ=1

Proof:

$$Z(t) = \exp\left\{-\int_0^t \Theta(u) \, dW(u) - \frac{1}{2} \int_0^t \Theta^2(u) \, du\right\}, \qquad (5.2.11)$$

$$X(t) = -\int_0^t \Theta(u) \, dW(u) - \frac{1}{2} \int_0^t \Theta^2(u) \, du$$

and $f(x) = e^x$ so that $f'(x) = e^x$ and $f''(x) = e^x$, we have

$$\begin{split} dZ(t) &= df\big(X(t)\big) \\ &= f'\big(X(t)\big) \, dX(t) + \frac{1}{2}f''\big(X(t)\big) \, dX(t) \, dX(t) \\ &= e^{X(t)}\Big(-\Theta(t) \, dW(t) - \frac{1}{2}\Theta^2(t) \, dt\Big) + \frac{1}{2}e^{X(t)}\Theta^2(t) \, dt \\ &= -\Theta(t)Z(t) \, dW(t). \end{split}$$

Integrating both sides of the equation above, we see that

$$Z(t) = Z(0) - \int_0^t \Theta(u)Z(u) \, dW(u). \tag{5.2.14}$$

Because Itô integrals are martingales, Z(t) is a martingale. In particular, $\mathbb{E}Z = \mathbb{E}Z(T) = Z(0) = 1$.

(ii) The process $\{\widetilde{W}(t): 0 \le t \le T\}$ is a Brownian motion under $\widetilde{\mathbb{P}}$, where $d\widetilde{\mathbb{P}} = Zd\mathbb{P} = Z(T)d\mathbb{P}$

Proof:

Theorem 4.6.4 (Levy, one dimension). Let M(t), $t \ge 0$, be a martingale relative to a filtration $\mathcal{F}(t)$, $t \ge 0$. Assume that M(0) = 0, M(t) has continuous paths, and [M,M](t) = t for all $t \ge 0$. Then M(t) is a Brownian motion.

- (i) when t = 0, $\widetilde{W}(0) = 0$ $\widetilde{W}(t) = W(t) + \int_0^t \Theta(u) du$,
- (ii) $\widetilde{W}(t)$ has continuous paths
- (iii) $d\widetilde{W}(t)d\widetilde{W}(t) = (dW(t) + \Theta(t)dt)^2 = dW(t)dW(t) = dt$
- \rightarrow only need to show that $\{\widetilde{W}(t): 0 \le t \le T\}$ is martingale under $\widetilde{\mathbb{P}}$

 $\{\widetilde{W}(t): 0 \le t \le T\}$ is martingale under $\widetilde{\mathbb{P}}$ Proof:

Showing that $\{\widetilde{W}(t)Z(t): 0 \le t \le T\}$ is martingale under \mathbb{P} , then using Lemma 5.2.2 to prove that $\{\widetilde{W}(t): 0 \le t \le T\}$ is martingale under $\widetilde{\mathbb{P}}$

using Itô's product rule (Corollary 4.6.3):

$$\begin{split} d\big(\widetilde{W}(t)Z(t)\big) &= \underbrace{\widetilde{W}(t)\,dZ(t) + Z(t)\,d\widetilde{W}(t) + d\widetilde{W}(t)\,dZ(t)}_{=\,\widetilde{W}(t)\Theta(t)Z(t)\,dW(t) + Z(t)\,dW(t) + Z(t)\,dW(t) + Z(t)\,\Theta(t)\,dt}_{=\,\widetilde{W}(t)\Theta(t)+\widetilde{W}(t)+\widetilde{W}(t)\,dV(t)}_{=\,\widetilde{W}(t)\Theta(t)+1\big)Z(t)\,dW(t). \end{split}$$

 $\rightarrow \widetilde{W}(t)Z(t)$ is a martingale under \mathbb{P}

$$dZ(t) = df(X(t))$$

$$= f'(X(t)) dX(t) + \frac{1}{2}f''(X(t)) dX(t) dX(t)$$

$$= e^{X(t)} \left(-\Theta(t) dW(t) - \frac{1}{2}\Theta^{2}(t) dt \right) + \frac{1}{2}e^{X(t)}\Theta^{2}(t) dt$$

$$= -\Theta(t)Z(t) dW(t).$$

$$\widetilde{W}(t) = W(t) + \int_{0}^{t} \Theta(u) du,$$

$$d\widetilde{W}(t) = dW(t) + \Theta(t) dt$$

 $\{\widetilde{W}(t): 0 \le t \le T\}$ is martingale under $\widetilde{\mathbb{P}}$

Proof:

Showing that $\{\widetilde{W}(t)Z(t): 0 \le t \le T\}$ is martingale under \mathbb{P} , then using Lemma 5.2.2 to prove that $\{\widetilde{W}(t): 0 \le t \le T\}$ is martingale under $\widetilde{\mathbb{P}}$

Now let $0 \le s \le t \le T$ be given. Lemma 5.2.2 and the martingale property for $\widetilde{W}(t)Z(t)$ under $\mathbb P$ imply

$$\widetilde{\mathbb{E}}[\widetilde{W}(t)|\mathcal{F}(s)] = \frac{1}{Z(s)} \underline{\mathbb{E}}[\widetilde{W}(t)Z(t)|\mathcal{F}(s)] = \frac{1}{Z(s)} \underline{\widetilde{W}}(s)Z(s) = \widetilde{W}(s).$$

Lemma 5.2.2. Let s and t satisfying $0 \le s \le t \le T$ be given and let Y be an $\mathcal{F}(t)$ -measurable random variable. Then

$$\widetilde{\mathbb{E}}[Y|\mathcal{F}(s)] = \frac{1}{Z(s)} \mathbb{E}[YZ(t)|\mathcal{F}(s)]. \tag{5.2.9}$$

 $ightharpoonup \widetilde{W}(t)$ is a martingale under $\widetilde{\mathbb{P}}$

Section 5.2.2 Stock Under the Risk-Neutral Measure

Let W(t), $0 \le t \le T$, be a Brownian motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{F}(t)$, $0 \le t \le T$, be a filtration for this Brownian motion. Here T is a fixed final time. Consider a stock price process whose differential is

$$dS(t) = \alpha(t)S(t) dt + \sigma(t)S(t) dW(t), \quad 0 \le t \le T.$$
 (5.2.15)

The mean rate of return $\alpha(t)$ and the volatility $\sigma(t)$ are allowed to be adapted processes. We assume that, for all $t \in [0, T]$, $\sigma(t)$ is almost surely not zero.

This stock price is a generalized geometric Brownian motion (see Example 4.4.8, in particular, (4.4.27)), and an equivalent way of writing (5.2.15) is (see (4.4.26))

$$S(t) = S(0) \exp \left\{ \int_0^t \sigma(s) \, dW(s) + \int_0^t \left(\alpha(s) - \frac{1}{2} \sigma^2(s) \right) ds \right\}. \tag{5.2.16}$$

Recall 4.4.8
$$dS(t) = df(X(t))$$

$$= \int_0^t \sigma(s) \, dW(s) + \int_0^t \left(\alpha(s) - \frac{1}{2}\sigma^2(s)\right) ds.$$

$$= f'(X(t)) \, dX(t) + \frac{1}{2}f''(X(t)) \, dX(t) \, dX(t)$$

$$= S(0)e^{X(t)} \, dX(t) + \frac{1}{2}S(0)e^{X(t)} \, dX(t) \, dX(t)$$

$$= S(t) \, dX(t) + \frac{1}{2}S(t) \, dX(t) \, dX(t)$$

 $= \alpha(t)S(t) dt + \sigma(t)S(t) dW(t).$

Interest rate process $\{R(t): 0 \le t \le T\}$ (R(t)) is F(t)-measurable) Define the discount process $\{D(t): 0 \le t \le T\}$

$$D(t) = e^{-\int_0^t R(s)ds}$$
 (5.2.17)

Let $I(t) = \int_0^t R(s)ds \rightarrow dI(t) = R(t)dt$, dI(t)dI(t) = 0 $f(x) = e^{-x}$, $f'^{(x)} = -e^{-x}$, $f''(x) = e^{-x}$

$$dD(t) = df(I(t))$$

$$= f'(I(t)) dI(t) + \frac{1}{2}f''(I(t)) dI(t) dI(t)$$

$$= -f(I(t))R(t) dt$$

$$= -R(t)D(t) dt.$$

Discounted price process $\{D(t)S(t): 0 \le t \le T\}$

$$D(t)S(t) = S(0) \exp\left\{ \int_0^t \sigma(s)dW(s) + \int_0^t \left(\alpha(s) - R(s) - \frac{1}{2}\sigma^2(s)\right) ds \right\},\tag{5.2.19}$$

Discounted price process $\{D(t)S(t): 0 \le t \le T\}$

$$D(t)S(t) = S(0) \exp\left\{ \int_0^t \sigma(s)dW(s) + \int_0^t \left(\alpha(s) - R(s) - \frac{1}{2}\sigma^2(s)\right) ds \right\},$$
(5.2.19)

using Itô's product rule (Corollary 4.6.3):

$$d(D(t)S(t)) = D(t)dS(t) + S(t)dD(t) + dS(t)dD(t)$$

$$= D(t)\alpha(t)S(t)dt + D(t)\sigma(t)S(t)dW(t) + S(t)(-R(t)D(t)dt)$$

$$= [\alpha(t) - R(t)]D(t)S(t)dt + \sigma(t)D(t)S(t)dW(t)$$

Let $\theta(t) = \frac{\alpha(t) - R(t)}{\sigma(t)}$, rewriting the above, we got:

$$dS(t) = \alpha(t)S(t) dt + \sigma(t)S(t) dW(t)$$

$$dD(t) = -R(t)D(t) dt.$$

$$d(D(t)S(t)) = \sigma(t)\theta(t)D(t)S(t)dt + \sigma(t)D(t)S(t)dW(t)$$

= $\sigma(t)D(t)S(t)[\theta(t)dt + dW(t)] = \sigma(t)D(t)S(t)d\widetilde{W}(t)$

Theorem 5.2.3 (Girsanov, one dimension).

$$\widetilde{W}(t) = W(t) + \int_0^t \Theta(u) du, \quad \underline{d\widetilde{W}(t) = dW(t) + \Theta(t)dt}$$

Now change our measure from \mathbb{P} to $\widetilde{\mathbb{P}}$

→ {D(t)S(t): 0 ≤ t ≤ T } becomes a martingale under
$$\widetilde{\mathbb{P}}$$

$$d(D(t)S(t)) = \sigma(t)D(t)S(t)d\widetilde{W}(t)$$

$$D(t)S(t) = D(0)S(0) + \int_0^t \sigma(t)D(t)S(t)d\widetilde{W}(t)$$

by Girsanov's theorem, $\widetilde{W}(t)$ is a Brownian motion under $\widetilde{\mathbb{P}}$

price process S(t) in terms of $\widetilde{W}(t)$

$$dS(t) = \alpha(t)S(t)dt + \sigma(t)S(t)dW(t); \ d\widetilde{W}(t) = dW(t) + \Theta(t)dt$$

$$= \alpha(t)S(t)dt + \sigma(t)S(t)[d\widetilde{W}(t) - \Theta(t)dt]$$

$$= [\alpha(t) - \sigma(t)\Theta(t)]S(t)dt + \sigma(t)S(t)d\widetilde{W}(t)$$

$$= R(t)S(t)dt + \sigma(t)S(t)d\widetilde{W}(t)$$

$$S(t) = S(0) \exp \left\{ \int_0^t \sigma(s) \, d\widetilde{W}(s) + \int_0^t \left(R(s) - \frac{1}{2} \sigma^2(s) \right) ds \right\}.$$

$$\theta(t) = \frac{\alpha(t) - R(t)}{\sigma(t)}$$