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Section 5.2.1 Girsanov’s Theorem for a Single Brownian Motion

In Theorem 1.6.1, we began with a probability space (Q, F, IP) and a nonnegative

r.v Z satisfying EpZ = 1. We then defined a new probability measure P by the
formula

P(A) = / Z(w)dP(w)  forall A e F. (5.2.1)
A

Any random variable X now has two expectations, one under the original
probability measure P, which we denote EX, and the other under the new
probability measure P, which we denote EX. These are related by the formula

EX = E[XZ] (5.2.2).

If P{Z > 0} = 1, then IP and P are equivalent measure i.e.P(4) = 0 & P(4) =0
and (5.2.2) has the companion formula EX = E[%] (5.2.3)



We say Z is the Radon-Nikodym derivative of P with respect to P, and we write
7=
dPp

Suppose further that Z is an almost surely positive random variable satisfying
EZ = 1, and we define P by (5.2.1). We can then define the Radon-Nikodym

derivative process
Z(t) =E[ZIF®],0<t<T

Where {F(t):t = 0} is some given filtration.

The Radon-Nikodym derivative process is a martingale because of iterated
conditioning

(Theorem 2.3.2(111)): for0 < s <t < T,

E[Z(t)|F(s)] = E[E[Z|F()]|F(s)] = E[Z|F(s)] = Z(s). (5.2.7)



Lemma 5.2.1. Let t satisfying 0 < t < T be given and let Y be an F(t)-measurable
random variable. Then

EY = E[YZ(¢t)] (5.2.8)
Proof:

~

EY = E[YZ] = E[E[YZ|F()]] = E|[YE[Z|F(®)]]| = E[YZ(®)]



Lemma 5.2.2. Let s and t satisfying 0 < s <t < T be given and let Y be an F(t)-

measurable random variable. Then

BIYIF(s)] = —— E[YZ(6)|F(s)

Z(s)

Vertify the two defining conditions of conditional ex

(1) — (S) E|YZ(t)|F(s)] is F(s)-measurable
(i) Now let A € F(s), we want to show

(5.2.9)

pectation (Definition 2.3.1)

1 o
LZ(S) [YZ(t)|F(s)]dP = LYdIPzIE[]IAY]

Definition 2.3.1. Let (2, F,P) be a probability space, let G be a sub-o-algebra of
F, and let X be a random variable that is either nonnegative or integrable. The
conditional expectation of X given G, denoted E[X |G|, is any random variable that
satisfies

(i) (Measurability) E[X |G| is G-measurable, and

(ii) (Partial averaging)

/IE[XQ fX JAP(w) forall A€ G, (2.3.17)




(i) Now let A € F(s), we want to show

f LIE[YZ(t)|F(s)]dI’P5 =f Y dP = E[1,Y]
A A

Z(s)
E|I - E[YZ(O|F(s)]
L BV ZOIF) |
=E E [HA$YZ(t)|F(s)_ ] use lemma 5.2.1 (EY = E[YZ(?)])
' 1
= E|Z(s)E [HAZ(S) YZ(t)|F(S)” = E|E[I,YZ()|F (s)]| = E[I,YZ(?)]

=E[]IAY]=j Y dP
A

So, %IE[YZ(tNF(S)] = E[Y|F(s)]



Theorem 5.2.3 (Girsanov, one dimension). Let W(t), 0 < t < T, be a Brownian
motion on a probability space (2, F,P), and let F(t), 0 < t < T, be a filtration for
this Brownian motion. Let O(t), 0 <t < T, be an adapted process. Define

t t
Z(t) = exp {— / O(u)dW (u) — % / 0° (u)du} : (5.2.11)
0 0

31.

W (t) =W(t) + f@(u)du, (5.2.12)
0
and assume that!
T
]E/ O%(u) Z*(u)du < . (5.2.13)
0

Set Z = Z(T). Then EZ = 1 and under the probability measure P given by (5.2.1),

the process 'H-f"(f.), 0<t<T, is a Brownian motion.



(i)EZ=1

Proof: 2= e {- [0 awe) -3 [[€wal, (5211)

t t
X(t) = _fu O(u) dW(u) — %]ﬂ Qz(q)du
and f(z) = e® so that f'(x) = e® and f”(z) = e*, we have

dZ(t) = df (X (t))
= f'(X(t)) dX(t) + % f1(X(t) dX () dX (2)

= exifI'(— O(t) dW (t) — %eﬂ(t) d‘t) + %ex“?'eﬁ(t) dt
= —O(t)Z(t) dW(t).

Integrating both sides of the equation above, we see that
t
Z(t)=2Z(0) - / O(u)Z(u)dW(u). (5.2.14)
0

Because It0 integrals are martingales, Z(t) is a martingale. In particular,

EZ =EZ(T) = Z(0) = 1.



(ii) The process {W(t):0 < t < T} is a Brownian motion under P,
where dP = ZdP = Z(T)dP

Proof: | Theorem 4.6.4 (Levy, one dimension). Let M(t), t > 0, be a martingale relative
to a filtration F(t), t > 0. Assume that M(0) = 0, M(t) has continuous paths, and
(M, M]|(t) =t forallt > 0. Then M(t) is a Brownian motion.

(i) whent=0,W(0)=0 W(t) = W(t)+ /D o) du,
(ii) W (¢t) has continuous paths
(iii) dW (@®)dW (t) = (dW (t) + 0(t)dt)?= dW (t)dW (t) = dt

=>only need to show that {IWW (t): 0 < t < T} is martingale under P



{W(t):0 <t < T} is martingale under P

Proof:

Showing that {W (¢)Z(t): 0 < t < T} is martingale under P, then using Lemma
5.2.2 to prove that {WW (t): 0 < t < T} is martingale under P

using It6’s product rule (Corollary 4.6.3):

dZ(t) = df (X (t))

d(W(t)Z(t)) = W(t)dZ(t) + Z(t) dW (t) + dW (t) dZ(t) _ X)X + LX) X ax(o

= - W()OW) Z() W () + Z(8) AW (D) + ZW) OB dt | _ pxer(— apawy - Lo a) + Leroeriy
+(dW(t) + O(t)dt) ( — O(t)Z(t) dW (t)) — —O(t)2(t) dW(2).

= (= W()O(t) + 1) Z(t) dW (¢).

Wi(t) = W(t) + / te(u) du,
0
dW(t) = dW (t) + 0(t)dt

= W (t)Z(t) is a martingale under P



{W(t):0 <t < T}is martingale under P

Proof:

Showing that {W (¢)Z(t): 0 < t < T} is martingale under P, then using Lemma
5.2.2 to prove that {WW (t): 0 < ¢t < T} is martingale under P

Now let 0 < s <t < T be given. Lemma 5.2.2 and the martingale property
for W(t)Z(t) under P imply

W (0)| F(5)] = = E[W(©)2(8)|F(s)] = ——W(s)Z(s) = W(s).

Z(s)

Z()

Lemma 5.2.2. Let s and t satisfying0 < s <t <T be given and let Y be an
F(t)-measurable random variable. Then
1

E[Y|F(s)] = ?(—)]E[YZ(f,)l.'F(s)] (5.2.9)

= W(t) is a martingale under P



Section 5.2.2 Stock Under the Risk-Neutral Measure

Let W(t), 0 <t < T, be a Brownian motion on a probability space (12, F,P),
and let F(t), 0 <t < T, be a filtration for this Brownian motion. Here T is a
fixed final time. Consider a stock price process whose differential is

dS(t) = a(t)S(t)dt + o(t)S(t) dW (), 0<t<T. (5.2.15)

The mean rate of return «(t) and the volatility o(t) are allowed to be adapted
processes. We assume that, for all ¢ € [0,T], o(¢) is almost surely not zero.

This stock price is a generalized geometric Brownian motion (see Example
4.4.8, in particular, (4.4.27)), and an equivalent way of writing (5.2.15) is (see
(4.4.26))

S(t) = S(0) exp { fu ta(s)dW(s) + /D t (a(s) - %JZ(S)) ds} . (5.2.16)

Recall 4.4.8 dS(t) = df (X(t))

x@= [ o) dw(s) + [ (a(s) - 20%(9))ds. — F(X(0) dX(O + L (X () dX () dX (0
= S(0)eX® dX (t) + %S(D)ex“} dX(t)dX(t)

dX(t) =o(t)dW(t) + (cr(t) - %ﬂ*(t)) dt, = S(t)dX(t) + ;—;S(t} dX(t)dX(t)
= a(t)S(t)dt + o(t)S(t) dW(t).




Interest rate process {R(t):0 <t < T} (R(t) is F(t)-measurable)
Define the discount process {D(t):0 <t < T}

D(t) = e~ Jo RXs (5217
Let [(t) = [T R(s)ds = dI(t) = R(t)dt, dI(t)dI(t) = 0
fO) =™, [/ = —e™, f"(x) = e

dD(t) = df (I(t))
= F(1(0) dI(8) + 3 £ (1(6)) dT(2) dI )

= —f(I(t))R(¢) dt
= —R(t)D(t) dt.

Discounted price process {D(t)S(t):0 <t < T}

t t
D(t)S(t) = S(0) exp {[J o(s)dW(s) + /n (a(s) — R(s) - %az(s)) ds} ,
(5.2.19)




Discounted price process {D(t)S(t):0 <t < T}

t

D(t)S(t) = S(0) exp {/: o(s)dW (s) +/D

using It6’s product rule (Corollary 4.6.3):

(a(s) - R(s) — %az(s)) ds} ,

(5.2.19)

d(D()S(t)) = D()dS(t) + S(t)dD(t) + dSE)dD(t) ’
=D()a(t)S(t)dt + D(t)a(t)S(t)dW (t) + S(t)(—R(t)D(t)dt)
= [a(t) = R()|D()S(t)dt + a(t)D(t)S(t)dW (t)

Let 6(t) = “(t)_R(t),rewriting the above, we got:

dS(t) = a(t)S(t) dt + o (t)S(t) dW (t)
dD(t) = —R(t)D(t) dt.

o(t)

d(D(0)S()) = a()8()D(E)S()dt + a()D(£)S(£)dW (t)
=o(®)D®)S@)[0()dt + AW (t)] = a(t)D(t)S(t)dW (¢t)

Theorem 5.2.3 (Girsanov, one dimension).

W(t) = W(t) + /ﬂte(u) du, dW () =dW(t) +0(t)dt




Now change our measure from P to P
>{D(t)S(t):0 <t < T } becomes a martingale under P
d(D()S()) = a(®)D()S()dW (t)

t

D()S(t) =D(0)S(0) + J a(t)D()S(t)dW (t)

0
by Girsanov’s theorem, W (t) is a Brownian motion under P

price process S(t) in terms of W (t)

dS(t) = a(t)S)dt + a()SE)dW (t); dW (t) = dW (t) + 0(t)dt
= a(t)S(t)dt + a(t)S(E)[dW (t) — 0(t)dt]
= [a(t) — a(®)O()]S(t)dt + a(£)S(t)dW (t)

= R(t)S(t)dt + c()S(t)dW (¢t)
: N t __a(t)—R(t)
S(t) =S(U)exp{ /ﬂ o(s)dW (s) + fu (R(s)— %az(S)) ds}- 0(t) = a(t)




