Stochastic Calculus For Finance - volume 2

- Section 4.4.2 Formula for Ito Process
- Section 4.4.3 Ito integral of a deterministic integrand

02/25/2025,卓伯呈

Section 4.4.2 Formula for Ito Process

Theorem 4.4.6 (Itô-Doeblin formula for an Itô process). Let X(t), $t \geq 0$, be an Itô process as described in Definition 4.4.3, and let f(t,x) be a function for which the partial derivatives $f_t(t,x)$, $f_x(t,x)$, and $f_{xx}(t,x)$ are defined and continuous. Then, for every $T \geq 0$,

$$f(T, X(T)) = f(0, X(0)) + \int_{0}^{T} f_{t}(t, X(t)) dt + \int_{0}^{T} f_{x}(t, X(t)) dX(t) + \frac{1}{2} \int_{0}^{T} f_{xx}(t, X(t)) d[X, X](t) = f(0, X(0)) + \int_{0}^{T} f_{t}(t, X(t)) dt + \int_{0}^{T} f_{x}(t, X(t)) \Delta(t) dW(t) + \int_{0}^{T} f_{x}(t, X(t)) \Theta(t) dt + \frac{1}{2} \int_{0}^{T} f_{xx}(t, X(t)) \Delta^{2}(t) dt.$$
 (4.4.22)
$$df(t, X(t)) = f_{t}(t, X(t)) dt + f_{x}(t, X(t)) dX(t) + \frac{1}{2} f_{xx}(t, X(t)) dX(t) dX(t).$$
 (4.4.23)

Ito Processes-Definition

Definition 4.4.3. Let W(t), $t \ge 0$, be a Brownian motion, and let F(t), $t \ge 0$, be an associated filtration. An Ito process is a stochastic process of the form

$$X(t) = X(0) + \int_0^t \Delta(u)dW(u) + \int_0^t \theta(u)du \quad (4.4.16)$$

where X(0) is nonrandom and $\Delta(u)$ and $\theta(u)$ are adapted stochastic processes

$$dX(t) = \Delta(t)dW(t) + \theta(t)dt$$

Lemma 4.4.4 The quadratic variation of the Ito process is

$$[X,X](t) = \int_0^t \Delta^2(u) du \ (4.4.17)$$

Proof:

Notation I(t) =
$$\int_0^t \Delta(u)dW(u)$$
, $R(t) = \int_0^t \theta(u)du$
 $X(t) = X(0) + \int_0^t \Delta(u)dW(u) + \int_0^t \theta(u)du$ (4.4.16)
 $\Rightarrow X(t) - X(0) = I(t) + R(t)$

$$\sum_{j=0}^{n-1} [X(t_{j+1}) - X(t_j)]^2$$

$$= \sum_{j=0}^{n-1} [I(t_{j+1}) - I(t_j)]^2 + \sum_{j=0}^{n-1} [R(t_{j+1}) - R(t_j)]^2 + 2\sum_{j=0}^{n-1} [I(t_{j+1}) - I(t_j)][R(t_{j+1}) - R(t_j)]$$

2

$$\sum_{j=0}^{n-1} [I(t_{j+1}) - I(t_j)]^2$$

Recall Theorem 4.3.1(vi)

Theorem 4.3.1. Let T be a positive constant and let $\Delta(t)$, $0 \le t \le T$, be an adapted stochastic process that satisfies (4.3.1). Then $I(t) = \int_0^t \Delta(u) dW(u)$ defined by (4.3.3) has the following properties.

- (i) (Continuity) As a function of the upper limit of integration t, the paths of I(t) are continuous.
- (ii) (Adaptivity) For each t, I(t) is $\mathcal{F}(t)$ -measurable.
- (iii) (Linearity) If $I(t) = \int_0^t \Delta(u) dW(u)$ and $J(t) = \int_0^t \Gamma(u) dW(u)$, then $I(t) \pm J(t) = \int_0^t \left(\Delta(u) \pm \Gamma(u)\right) dW(u)$; furthermore, for every constant c, $cI(t) = \int_0^t c\Delta(u) dW(u)$.
- (iv) (Martingale) I(t) is a martingale.
- (v) (Itô isometry) $\mathbb{E}I^2(t) = \mathbb{E}\int_0^t \Delta^2(u) du$.
- (vi) (Quadratic variation) $[I, I](t) = \int_0^t \Delta^2(u) du$.

$$\sum_{j=0}^{n-1} [R(t_{j+1}) - R(t_j)]^2$$

$$\max_{0 \le k \le n-1} |R(t_{k+1}) - R(t_k)| \cdot \sum_{j=0}^{n-1} |R(t_{j+1}) - R(t_j)|$$

$$= \max_{0 \le k \le n-1} |R(t_{k+1}) - R(t_k)| \cdot \sum_{j=0}^{n-1} \left| \int_{t_j}^{t_{j+1}} \Theta(u) \, du \right|$$

$$\leq \max_{0 \le k \le n-1} |R(t_{k+1}) - R(t_k)| \cdot \sum_{j=0}^{n-1} \int_{t_j}^{t_{j+1}} |\Theta(u)| \, du$$

$$= \max_{0 \le k \le n-1} |R(t_{k+1}) - R(t_k)| \cdot \int_{0}^{t} |\Theta(u)| \, du,$$

$$as \|\pi\| \to 0 \ (R \ is \ continuous)$$

$$2\sum_{j=0}^{n-1} [I(t_{j+1}) - I(t_j)][R(t_{j+1}) - R(t_j)]$$

$$2 \max_{0 \le k \le n-1} |I(t_{k+1}) - I(t_k)| \cdot \sum_{j=0}^{n-1} |R(t_{j+1}) - R(t_j)|$$

$$\le 2 \max_{0 \le k \le n-1} |I(t_{k+1}) - I(t_k)| \cdot \int_0^t |\Theta(u)| \, du,$$

$$as \|\pi\| \to 0 \ (I \ is \ continuous)$$

Definition 4.4.5. Let X(t), $t \ge 0$, be an Ito process as described in Definition 4.4.3, and let $\Gamma(t)$, $t \ge 0$, be an adapted process. We define the integral with respect to an Ito process

$$\int_0^t \Gamma(u)dX(u) = \int_0^t \Gamma(u)\Delta(u)dW(u) + \int_0^t \Gamma(u)\theta(u)du \quad (4.4.20)$$
 Recall the proof of Theorem 4.4.1

Theorem 4.4.1 (Itô-Doeblin formula for Brownian motion). Let f(t,x) be a function for which the partial derivatives $f_t(t,x)$, $f_x(t,x)$, and $f_{xx}(t,x)$ are defined and continuous, and let W(t) be a Brownian motion. Then, for every $T \geq 0$,

$$f(T, W(T)) = f(0, W(0)) + \int_0^T f_t(t, W(t)) dt + \int_0^T f_x(t, W(t)) dW(t) + \frac{1}{2} \int_0^T f_{xx}(t, W(t)) dt.$$
(4.4.3)

$$f(T, W(T)) - f(0, W(0))$$

$$= \sum_{j=0}^{n-1} \left[f(t_{j+1}, W(t_{j+1})) - f(t_{j}, W(t_{j})) \right]$$

$$= \sum_{j=0}^{n-1} f_{t}(t_{j}, W(t_{j}))(t_{j+1} - t_{j}) + \sum_{j=0}^{n-1} f_{x}(t_{j}, W(t_{j}))(W(t_{j+1}) - W(t_{j}))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{xx}(t_{j}, W(t_{j}))(W(t_{j+1}) - W(t_{j}))^{2}$$

$$+ \sum_{j=0}^{n-1} f_{tx}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})(W(t_{j+1}) - W(t_{j}))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{tt}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})^{2} + \text{ higher-order terms.}$$

$$(4.4.9)$$

$$f(T, X(T)) - f(0, X(0))$$

$$= \sum_{j=0}^{n-1} f_t(t_j, X(t_j))(t_{j+1} - t_j) + \sum_{j=0}^{n-1} f_x(t_j, X(t_j))(X(t_{j+1}) - X(t_j))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{xx}(t_j, X(t_j))(X(t_{j+1}) - X(t_j))^2$$

$$+ \sum_{j=0}^{n-1} f_{tx}(t_j, X(t_j))(t_{j+1} - t_j)(X(t_{j+1}) - X(t_j))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{tt}(t_j, X(t_j))(t_{j+1} - t_j)^2 + \text{ higher-order terms.} \quad (4.4.21)$$

as $\|\pi\| \to 0$

$$\lim_{\|\Pi\| \to 0} \left| \sum_{j=0}^{n-1} f_{tx}(t_j, W(t_j))(t_{j+1} - t_j) (W(t_{j+1}) - W(t_j)) \right|$$

Recall

$$\|H\| \to 0 \Big|_{j=0}^{\infty}$$

$$\leq \lim_{\|H\| \to 0} \sum_{j=0}^{n-1} |f_{tx}(t_{j}, W(t_{j}))| \cdot (t_{j+1} - t_{j}) \cdot |W(t_{j+1}) - W(t_{j})|$$

$$\leq \lim_{\|H\| \to 0} \max_{0 \leq k \leq n-1} |W(t_{k+1}) - W(t_{k})| \cdot \lim_{\|H\| \to 0} \sum_{j=0}^{n-1} |f_{tx}(t_{j}, W(t_{j}))| (t_{j+1} - t_{j})$$

$$= 0 \cdot \int_{0}^{T} |f_{tx}(t, W(t))| dt = 0.$$

$$(4.4.10)$$

The fifth term is treated similarly:

$$\lim_{\|\Pi\| \to 0} \left| \frac{1}{2} \sum_{j=0}^{n-1} f_{tt}(t_{j}, W(t_{j}))(t_{j+1} - t_{j})^{2} \right| \\
\leq \lim_{\|\Pi\| \to 0} \frac{1}{2} \sum_{j=0}^{n-1} \left| f_{tt}(t_{j}, W(t_{j})) \right| \cdot (t_{j+1} - t_{j})^{2} \\
\leq \frac{1}{2} \lim_{\|\Pi\| \to 0} \max_{0 \le k \le n-1} (t_{k+1} - t_{k}) \cdot \lim_{\|\Pi\| \to 0} \sum_{j=0}^{n-1} \left| f_{tt}(t_{j}, W(t_{j})) \right| (t_{j+1} - t_{j}) \\
= \frac{1}{2} \cdot 0 \cdot \int_{0}^{T} f_{tt}(t, W(t)) dt = 0. \tag{4.4.11}$$

The higher-order terms likewise contribute zero to the final answer.

$$f(T, X(T)) - f(0, X(0))$$

$$= \sum_{j=0}^{n-1} f_t(t_j, X(t_j))(t_{j+1} - t_j) + \sum_{j=0}^{n-1} f_x(t_j, X(t_j))(X(t_{j+1}) - X(t_j))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{xx}(t_j, X(t_j))(X(t_{j+1}) - X(t_j))^2$$

$$\int_0^T f_x(t,X(t)) dX(t) = \int_0^T f_x(t,X(t)) \Delta(t) dW(t) + \int_0^T f_x(t,X(t)) \Theta(t) dt.$$

$$\frac{1}{2} \int_0^T f_{xx}(t, X(t)) d[X, X](t) = \frac{1}{2} \int_0^T f_{xx}(t, X(t)) \Delta^2(t) dt$$

$$f(T,X(T)) - f(0,X(0))$$

$$= \sum_{j=0}^{n-1} f_t(t_j,X(t_j))(t_{j+1} - t_j) + \sum_{j=0}^{n-1} f_x(t_j,X(t_j))(X(t_{j+1}) - X(t_j))$$

$$+ \frac{1}{2} \sum_{j=0}^{n-1} f_{xx}(t_j,X(t_j))(X(t_{j+1}) - X(t_j))^2$$

$$f(T,X(T))$$

$$= f(0,X(0)) + \int_0^T f_t(t,X(t)) dt + \int_0^T f_x(t,X(t)) dX(t)$$

$$+ \frac{1}{2} \int_0^T f_{xx}(t,X(t)) d[X,X](t)$$

$$= f(0,X(0)) + \int_0^T f_t(t,X(t)) dt + \int_0^T f_x(t,X(t)) \Delta(t) dW(t)$$

$$+ \int_0^T f_x(t,X(t)) \Theta(t) dt + \frac{1}{2} \int_0^T f_{xx}(t,X(t)) \Delta^2(t) dt. \quad (4.4.22)$$

Let W(t), $t \ge 0$, be a Brownian motion, let F(t), $t \ge 0$, be an associated filtration, and let $\alpha(t)$ and $\sigma(t)$ be adapted processes. Define the Ito process

$$X(t) = \int_0^t \sigma(s) \, dW(s) + \int_0^t \left(\alpha(s) - \frac{1}{2}\sigma^2(s)\right) ds. \tag{4.4.25}$$

Consider an asset price process given by

$$S(t) = S(0)e^{X(t)} = S(0)\exp\left\{\int_0^t \sigma(s) dW(s) + \int_0^t \left(\alpha(s) - \frac{1}{2}\sigma^2(s)\right)ds\right\},$$
(4.4.26)

where S(0) is nonrandom and positive. We may write S(t) = f(X(t)), where $f(x) = S(0)e^x$, $f'(x) = S(0)e^x$, and $f''(x) = S(0)e^x$. According to the Itô-Doeblin formula

$$dS(t) = df(X(t))$$

$$= f'(X(t)) dX(t) + \frac{1}{2} f''(X(t)) dX(t) dX(t)$$

$$= S(0)e^{X(t)} dX(t) + \frac{1}{2} S(0)e^{X(t)} dX(t) dX(t)$$

$$= S(t) dX(t) + \frac{1}{2} S(t) dX(t) dX(t)$$

$$= \alpha(t)S(t) dt + \sigma(t)S(t) dW(t). \tag{4.4.27}$$

$$dX(t) = \sigma(t) dW(t) + \left(\alpha(t) - \frac{1}{2}\sigma^2(t)\right) dt,$$

$$dX(t) dX(t) = \sigma^2(t) dW(t) dW(t) = \sigma^2(t) dt.$$

$$\alpha = 0$$
 $dS(t) = \sigma(t)S(t) dW(t).$

integration
$$S(t) = S(0) + \int_0^t \sigma(s)S(s) dW(s)$$
.

martingale
$$S(t) = S(0) \exp \left\{ \int_0^t \sigma(s) dW(s) - \frac{1}{2} \int_0^t \sigma^2(s) ds \right\}$$
 (4.4.29)

Theorem 4.4.9 (Ito integral of a deterministic integrand) Let W(s), $s \ge 0$, be a Brownian motion, and let $\Delta(s)$ be a nonrandom function of time. Define $I(t) = \int_0^t \Delta(s) dW(s)$. For each $t \ge 0$, the random variable I(t) is normally distributed with expected value zero and variance $\int_0^t \Delta^2(s) ds$.

Proof

I(t) is martingale and I(0)= $0 \rightarrow \text{mean}=0$

$$VarI(t) = \mathbb{E}I^2(t) = \int_0^t \Delta^2(s) ds$$
. by Theorem 4.3.1 (Ito's isometry)

Normal distribution

$$\mathbb{E}e^{uI(t)} = \exp\left\{\frac{1}{2}u^2 \int_0^t \Delta^2(s) \, ds\right\} \text{ for all } u \in \mathbb{R}. \tag{4.4.30}$$

$$\mathbb{E}\exp\left\{uI(t)-\frac{1}{2}u^2\int_0^t\Delta^2(s)\,ds\right\}=1,$$

$$\mathbb{E}\exp\left\{\int_0^t u\Delta(s)\,dW(s) - \frac{1}{2}\int_0^t \left(u\Delta(s)\right)^2ds\right\} = 1. \tag{4.4.31}$$

Martingale, it is a generalized geometric Brownian motion with mean rate of return $\alpha=0$, $\sigma(s)=u\Delta(s)$

$$t = 0$$
, value = 1