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Introduction

For many time series data, there are only small labeled datasets are available.
Solution: perform data augmentation to create synthetic data to increase the size of datasets.

Data augmentation for time series has been limited to mainly two relatively simple technigues:
time slicing and time warping.

Time slicing: Cropping slices from time series and performing classification at the slice level.

— Cutting the time series tends to remove temporal correlation in the data.

Time warping: Warping a randomly selected slice of a time series by stretching it.

— Not suitable for datasets whose time scale has special meaning.



Introduction
e TCGAN:

 Generating new irregularly-sampled time series

* (Conditioning the generator and discriminator with the timestamps.

* Assume that the time series is noisy.



Introduction

 EXxperiment:

* Synthetic scenario: Compare the performance of a classifier trained with data generated
by T-CGAN against the performance of the same classifier trained on the original data.

 Real-world: consider an unbalanced-class classification problem and we use the T-
CGAN to generate time series in the class which features the smaller training set, so as to
move to a perfectly balanced setting



Technical Background

GAN: Generator (capture data distribution) + Discriminator (identify the source of a sample)
Objective function: G * = min; maxyV(D, G)

V(D,G) =E,., |logD)|+E,., |log(1—D(G(x))]

CGAN: GAN conditioned on extra information y

Objective function: G * = min; maxyV(D, G)

V(D,G) = E,., |logD(x|y)| +E,., |log(1—D(G(x|y))
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T-CGAN Model

* (Generator, Discriminator: two CNNs
* Z. anoisy space used to seed the generative model

* The objective function of T-CGAN:
min; maxpV(D, G) = E.., [logD(x | t)] + EZNPZ(Z) [log(l — D(G(z]| t))]
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T = space of timestamp values

X = data space
G = data space learnt by the

generator




Experiments

e 10-fold randomization

 Use Area Under Receiver Operating Characteristic Curve (AUROC) to evaluate performances

e Synthetic data: sine waves and sawtooth waves
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Experiments

* Real-world data
* Classification on regularly sampled time series.
o Starlight curves: classify objects by their astronomical light curve.
 Power Demand: distinguish days from summer and winter by power demand time series.

« ECG200: distinguish heartbeat from normal and myocardial infarction by electrical activity
records.

Dataset Real data Time Slicing Time Warping T-CGAN

Starlight curves | 0.7127 4+ 0.1371 0.7534 & 0.0082  0.9840 £ 0.0099 0.9851 £ 0.0156
Power Demand | 0.6211 £ 0.1762 0.7152 £ 0.0932 0.7988 £ 0.0836 0.8336 + 0.1553
ECG200 0.7014 = 0.0335 0.6666 = 0.0836  0.7227 = 0.0391 0.7882 = 0.0122




Experiments

Randomly removing a certain amount of data from each series.

* (Classification on irregularly sampled time series.

Table 5: AUROC reached by each method over the different experimental scenarios, in case of irregular
sampling (20% missing data, randomly selected), averaged over 10 repetitions.

Dataset Real data Time Slicing Time Warping T-CGAN
Starlight Curves | 0.6798 + 0.0222 0.5200 £ 0.0041 0.9508 &+ 0.0041 0.9750 =+ 0.0040
Power Demand | 0.5011 4 0.0042 0.5020 + 0.1240 0.5322 4 0.0053 0.6999 + 0.0356

ECG200 0.5724 £+ 0.2410 0.5233 £+ 0.0210 0.6474 &= 0.0341 0.7202 £ 0.0546
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Figure 4: AUROC with varying percentage (10%, 20%, 30%, 40%) of missing values for the three datasets
without augmentation (real) and with augmentation through time warping (WP) and T-CGAN (gan).



