T-CGAN

Conditional Generative Adversarial Netv Series with Irregular Sampling

20 Nov 2018, arXiv

Conditional Generative Adversarial Network for Data Augmentation in Noisy Time

Introduction

- For many time series data, there are only small labeled datasets are available.
- Solution: perform data augmentation to create synthetic data to increase the size of datasets.
- Data augmentation for time series has been limited to mainly two relatively simple techniques: time slicing and time warping.
- Time slicing: Cropping slices from time series and performing classification at the slice level.
 - \rightarrow Cutting the time series tends to **remove temporal correlation** in the data.
- Time warping: Warping a randomly selected slice of a time series by stretching it.

 \rightarrow Not suitable for datasets whose time scale has special meaning.

Introduction

- TCGAN: ullet
 - Generating new irregularly-sampled time series •
 - Conditioning the generator and discriminator with the **timestamps**. •
 - Assume that the time series is noisy.

Introduction

Experiment:

- move to a perfectly balanced setting

• Synthetic scenario: **Compare the performance** of a classifier trained with data generated by T-CGAN against the performance of the same classifier trained on the original data.

 Real-world: consider an unbalanced-class classification problem and we use the T-CGAN to generate time series in the class which features the smaller training set, so as to

Technical Background

- GAN: Generator (capture data distribution) + Discriminator (identify the source of a sample)
- Objective function: $G^* = min_G max_D V(D, G)$ $V(D,G) = E_{x \sim p_{data}} \left[log D(x) \right] + E_{x \sim p_G} \left[log (1 - D(G(x))) \right]$
- CGAN: GAN conditioned on extra information y
- Objective function: $G^* = min_G max_D V(D, G)$

$$V(D,G) = E_{x \sim p_{data}} \left[log D(x | y) \right] + E_{x \sim p_G} \left[e^{-\frac{1}{2} \sum_{x \sim p_G} \frac{1}{2} \sum_{x \sim p_G$$

log(1 - D(G(x | y)))

T-CGAN Model

- Generator, Discriminator: two CNNs lacksquare
- Z: a noisy space used to seed the generative model
- The objective function of T-CGAN: lacksquare $min_G max_D V(D, G) = E_{x \sim p_{data}(x)} \left[log D(A_{A_{data}(x)}) \right]$

$$[x \mid t)] + E_{z \sim p_z(z)} \left[log(1 - D(G(z \mid t))) \right]$$

Experiments

- **10-fold randomization**
- Synthetic data: sine waves and sawtooth waves

• Use Area Under Receiver Operating Characteristic Curve (AUROC) to evaluate performances

Experiments

- Real-world data
 - Classification on regularly sampled time series.
 - Starlight curves: classify objects by their astronomical light curve.
 - Power Demand: distinguish days from summer and winter by power demand time series.
 - ECG200: distinguish heartbeat from normal and myocardial infarction by electrical activity records.

Dataset	Real data	Time Slicing	Time Warping	T-CGAN
Starlight curves	0.7127 ± 0.1371	0.7534 ± 0.0082	0.9840 ± 0.0099	0.9851 ± 0.0156
Power Demand	0.6211 ± 0.1762	0.7152 ± 0.0932	0.7988 ± 0.0836	0.8336 ± 0.1553
ECG200	0.7014 ± 0.0335	0.6666 ± 0.0836	0.7227 ± 0.0391	$\textbf{0.7882} \pm 0.0122$

Experiments

- Randomly removing a certain amount of data from each series.
 - Classification on irregularly sampled time series. •

Table 5: AUROC reached by each method over the different experimental scenarios, in case of irregular sampling (20% missing data, randomly selected), averaged over 10 repetitions.

Figure 4: AUROC with varying percentage (10%, 20%, 30%, 40%) of missing values for the three datasets without augmentation (real) and with augmentation through time warping (WP) and T-CGAN (gan).