Graph Neural Network

Graph + Neural Network

Graph

- Nodes: contain data
- Edges: specify structure (how data are related)

Neural Network

CNN

RNN

Transformer

GNN Convolution Categories

Spatial-based convolutional GNN

- generalize the concept of convolution

Spectral-based convolutional GNN

- from signal processing

6 x 6 image with 3 x 3 kernel

Spatial-based Convolutional Graph Neural Network

Aggregation

- use neighbor feature to update hidden feature in next layer

Readout

- summarizes all the nodes feature to represent the whole graph

DCNN (Diffusion-Convolution Neural Network)

DCNN (Diffusion-Convolution Neural Network)

(a) Node classification

Node classification

$$\hat{Y} = \arg \max \left(f \left(W^d \odot Z \right) \right)$$

Spectral-based Convolutional Graph Neural Network

Discrete Fourier Transform

$$\begin{aligned} \mathbf{f}_{\mathbf{r}} \\ \mathbf{f}_{\mathbf{r}}$$

$$\hat{f}_{k} = \sum_{j=0}^{n-1} \hat{f}_{j} e^{-i \lambda T j k/n}$$
$$f_{k} = \left(\sum_{j=0}^{n-1} \hat{f}_{j} e^{-i \lambda T j k/n}\right) \frac{1}{n}$$

$$-a\pi i/n$$

 $\omega_n = e$

- ✓ We only consider undirected graph
- ✓ $D \in \mathbb{R}^{N \times N}$, degree matrix

$$D_{i,j} = \begin{cases} d(i) & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 (Sum of row *i* in *A*)

- ✓ Graph Laplacian L = D A (Positive semidefinite)
- ✓ *L* is symmetric (for undirected graph)
- ✓ $L = U \Lambda U^{T}$ (spectral decomposition)
- $\checkmark \Lambda = \operatorname{diag}(\lambda_0, \dots, \lambda_{N-1}) \in \mathbb{R}^{N \times N}$

✓
$$U = [u_0, ..., u_{N-1}] \in \mathbb{R}^{N \times N}$$
, orthonormal

✓ Vertex domain signal $D = \begin{vmatrix} 2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \quad A = \begin{vmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix}$ f(0) fu f(2) $L = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \quad \Lambda = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$ f(3) $U = \begin{bmatrix} 0.5 & -0.41 & 0.71 & -0.29 \\ 0.5 & 0 & 0 & 0.87 \\ 0.5 & -0.41 & -0.71 & -0.29 \end{bmatrix}$ -0.29 $f = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ -0.290.82 0

✓ Inverse Graph Fourier Transform of signal \hat{x} : $x = U\hat{x}$

Filtering

 $\hat{y} = g_{\theta}(\Lambda) \hat{x}$ θ_0 $\widehat{x_0}$ $\widehat{y_0}$ $\widehat{x_1}$ $\widehat{y_1}$ θ_1 $\widehat{y_2}$ θ_2 $\widehat{x_2}$ θ_3 $\widehat{x_3}$ $\widehat{y_3}$ \hat{x} $g_{\theta}(\Lambda)$ ŷ $g_{\theta}(\lambda_{i}) = \theta_{i}$

Recurrent Graph Neural Networks (RecGNNs)

• A node **exchanges information** with its neighbors

$$h_{v}^{(t)} = \sum_{u \in N(v)} f_{w}(x_{v}, x_{(v,u)}^{e}, x_{u}, h_{u}^{(t-1)})$$

Node features Node inputs Node features

Gated Graph Recurrent Neural Networks

$$h_{v}^{(t)} = GRU\left(h_{v}^{(t-1)}, \sum_{u \in N(v)} Wh_{u}^{(t-1)}\right)$$

 $h_v^{(0)} = x_v$ is node input

Auto-Encoders in Graph

Traditional Auto-Encoders

$$L(X, \hat{X}) = ||X - \hat{X}||^2$$

Advantage of using auto-encoder

- save storage and computer resources
- noise

Variational auto-encoder

- can generate new data
- embed to a distribution rather than a point

Variational auto-encoder

 $l_i(\theta,\phi) = -E_{z \sim q_\phi(z|x_i)}[log_{p_\theta}(x_i|z)] + KL(q_\phi(z|x_i)||p(z))$

Loss function

 $p(X, Z; \theta) = p(X; \theta)p(Z|X; \theta)$ $\Rightarrow \log p(X, Z; \theta) = \log p(X; \theta) + \log p(Z|X; \theta)$ $\Rightarrow \log p(X; \theta) = \log p(X, Z; \theta) - \log p(Z|X; \theta)$ \Rightarrow introduce an arbitrary distribution q(Z) on both sizeds and integrate over Z $\int q(Z) \log p(X; heta) dZ = \int q(Z) \log p(X, Z; heta) dZ - \int q(Z) \log p(Z|X; heta) dZ$ $= \left(\int q(Z) \log p(X, Z; \theta) dZ - \int q(Z) \log q(Z) dZ \right)$ $+\left(q(Z)\log q(Z)dZ - \int q(Z)\log p(Z|X; heta)dZ
ight)$ $= L(X, q, \theta) + KL(q(Z)||p(Z|X; \theta))$

Loss function

note that the first term doesn't change,

Loss function

note that KL divergence is non-negative, hence $\log p(X; \theta) \ge L(X, q, \theta)$, we can increase $\log p(X; \theta)$ by increasing $L(X, q, \theta)$ $\Rightarrow L(X, q, \theta) = \log p(X; \theta) - KL(q(Z)||p(Z|X; \theta))$ \Rightarrow note that the equality holds for ant choice of q(Z), we can introduce a distribution $q(Z|X; \theta')$ modeled by another neural network with parameter θ' to obtain, $L(X, q, \theta) = \log p(X; \theta) - KL(q(Z|X; \theta')||p(Z|X; \theta))$ $= E_{Z \sim q(Z|X; \theta')} \log p(X|Z; \theta) + E_{Z \sim q(Z|X; \theta')} \log p(Z) - E_{Z \sim q(Z|X; \theta')} \log q(Z|X; \theta') \therefore (1.)$ $= E_{Z \sim q(Z|X; \theta')} \log p(X|Z; \theta) - KL(q(Z|X; \theta')||p(Z))$

Variational Graph Auto-Encoder

 $L = E_{q(Z|X,A)}[logp(A|Z)] - KL[q(Z|X,A)||p(Z)]$

Variational Graph Auto-Encoder

