ODE Teaching Part 2 for Fall, 2016

Revised on 2016-12-23

Material from the Instructor (based on Logan (3rd edition)
and Boyce-DiPrima’s book (10th edition))

Chapter 4: Linear Systems of Equations

0.1 Linear system in R" with constant coefficients

Definition 0.1 Let A be an n x n real matrix. The system of equation
dx
dt

is called a first order n x n linear system of ODE with constant coefficients (since A is a

constant matriz).

Ax, x=x)=(z1(t), ... ,z, ) €R" (1)

Remark 0.2 If there is no confusion, we will just write x (t) = (x1(t), ... ,2n ()" as x(t) =

(X1 (t), -,z ().

Remark 0.3 For a given initial condition x (ty) = xo € R™, we have existence and uniqueness
theorem for (1). Also, any solution is defined on t € (—o00,00) .

Example 0.4 Consider the 2 x 2 linear system of equations with constant coefficients
zy (t) = 3wy — 4oy
zh (1) = —x1 + bza.

One can write it as

dx 3 -4
a:Ax’ x=x(t) = (z1(t),22(t)), where A:(—l 5 )

Example 0.5 Consider the second order linear equation
2" (t)+x(t) =0, te(—o00,00). (2)
We know that its general solution is given by
x(t) =cicost + cysint, te€ (—o0,00), c¢1, ¢y are constants.

If we let y (t) = 2’ (t) (view y as a new variable), (2) gives

de. _~ dy _
aw VT

i.e. the vector-valued function x (t) = (z (t),y (t)) satisfies the system of equations

(G ) e a(0)=(50)(0) <3>

One can check that (2) is equivalent to (3). The same observation applies to higher order linear
equations with constant coefficients. The upshot is that a n-th order linear equation with constant
coefficients is equivalent to a first order n x n linear system of ODE with constant coefficients.
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Lemma 0.6 Ifx(t) and y (t) are both solutions to (1) on some interval I, then their linear com-
bination

z(t)=ax(t)+ey(t), tel

is also a solution of (1) on I. Here c1, co are arbitrary constants.
Remark 0.7 This says that the solution space of (1) has the structure of a vector space.

Proof. This is obvious. 0

We first need some results from linear algebra:

Lemma 0.8 If an n x n matriz A has n distinct real eigenvalues A\, ..., A, with corresponding
eigenvectors vy, ..., v,, then vy, ..., v, are linearly independent in R™.

Proof. We first claim that v; and vy are independent. Otherwise, we would have v; = cvy for some
constant ¢ # 0. Hence we get (applying A onto it) Ajv; = cAgvs. But we also have \jv; = ¢A\jvy and
SO c\ovy = cAjve. This will force \; = Ay, impossible. Hence v; and v, are independent. Similarly
if we have v3 = av; + vy with o + 32 # 0, then

/\3?]3 = oz)\lvl + ﬁ)\gvg
/\31]3 = 04)\31)1 + 5)\31}2

which implies « (A — A3) v1 4+ 8 (Aa — A3) v = 0 and so @ = 3 = 0, a contradiction. Thus vy, vs, v3

are independent. Keep going. One can see that vy, ..., v, are linearly independent. 0
Lemma 0.9 If an n X n matriz A has n distinct real eigenvalues \q, ..., A, with corresponding
eigenvectors vy, ..., vU,, then

PYAP = diag (M1, ..., A\n), (4)
where P = (vq, ..., v,) (each v; is a column eigenvector). Here diag (M1, ..., A,) means the diag-
onal matrix with diagonal elements A1, ..., \,.

Proof. Note that
AP = P x diag (A1, .-y \n)

and the proof is done. 0

Remark 0.10 Compare the difference between P x diag (A1, ..., An) (the i-th column of P is mul-
tiplied by X\;) and diag (A1, ..., \,) P (the i-th row of P is multiplied by ;).

Lemma 0.11 If A is a real eigenvalue of A with corresponding eigenvector v € R"™ (note that
v #0), then the function
x(t) = eMv, te (—oo,00)

is a solution of (1) on (—o0,00) .

Proof. We have Av = \v. Hence

le_)t( (t) = AeMv = A (eMv) = Ax (t).



Lemma 0.12 (First version.) If A has n distinct real eigenvalues Ay, ..., A\, with corresponding

eigenvectors vy, ..., vy, then if x (t) € R™ is a solution of (1) on (—oo0,00), it can be expressed as
x (1) = creMoy + - -+ cpe’to,,  t € (—o0,0) (5)
for some constants ¢y, ..., ¢,. Therefore, the general solution of the linear system dx/dt = Ax in

this case (i.e., A has n distinct real eigenvalues) is given by (5).
Proof. At any time ¢ € (—o0, 00) one can decompose x (t) as

x(t)=a;(t)vy+ -+ a,(t)v,

for some coefficient functions a; (t), ..., a, (t). We now have
dx , ,
%(t) =ay(t)vy+---+a, (t)v, = Ax(t) = Mag (t)v1 + - -+ Apay () v,
This implies @} (t) = A\jaq (t), ..., al, (t) = A\an (t) . Hence there exist constants ¢, ..., ¢, such that
ay (t) = M, . an () = e, t € (—00,00).

The proof is done. O
Remark 0.13 (Matrix representation of the solution.) One can express (5) as
x(t)=PD(t)C, te(—00,00) (6)

where P = (vy, ..., v,) (each v; is a column eigenvector of \;), D = diag (e*lt, s e’\"t) ,and C' is
an arbitrary constant (column) vector.

Remark 0.14 (Matrixz representation of the solution.) In case there is a initial condition

x (0) = xq, then one just solve for C' = (c1, ..., ¢,) so that
civg + -+ CpU, = Xo. (7)
In matriz form we have PC' = xq (column vector), where P = (vy, ..., v,) (each v; is a column

eigenvector of \;) and C' = (cy, ...c,) (column vector) is to be solved. Hence we get C' = P~'xy and
50

x (t) = creMvy 4 - - -+ e,

=PD()| : | =PD@)P'xp, x(0)=xq, (8)

Cn

where D (t) is the diagonal matriz diag (e’\lt, ey eA"t). Since the solution for ci, ..., ¢, in the

equation (7) is unique, we know that there is a unique solution to the initial value problem

dx_

i Ax, x(0) =x¢ 9)

and the solution is defined on t € (—o0, 00) .

We can summarize the conclusion in the above remark as:



Lemma 0.15 (Second version.) Assume A has n distinct real eigenvalues A\, ..., A, with
corresponding eigenvectors vy, ..., v, and let P = (vy, ..., v,). Then the general solution to the
equation dx/dt = Ax is given by

x(t)=PD(t)C, where C is an arbitrary constant vector, t € (—o0,00) (10)

and the unique solution to the initial value problem (9) is given by

x(t) = PD(t) P"'xy, t € (—00,00) (11)
where D (t) is the diagonal matriz diag (eM*, ..., e*').
Remark 0.16 (Important.) If we choose different eigenvectors wy, ..., wy for Ay, ..., An, then
there are numbers ay, ..., a, (all are nonzero) so that
Wy = U1, ey Wy = AUy,
Hence the matriz @ = (wq, ..., wy,) (each w; is a column eigenvector) satisfies the identity

QQ = PM, where M = diag(ay, ..., a,)
and Sso
QD (t)Q'xg = PMD (t) (PM) " xo = P [MD (t) M| P"'xy = PD (t) P"'xo.

Therefore, the solution formula (11) is independent of the choice of eigenvectors for the eigenvalues
Ay ey A

Proof. The proof is already done due to Remark 0.13 and Remark 0.14. Here we shall give a
different proof revealing the importance of eigenvalues and eigenvectors. Suppose we want to solve

the initial value problem

XA x(0)=x (12)
where the n variables z1, ...z, are coupled in each equation of the system. The idea is to decouple
the variables z1, ...z, by a linear change of variables. Let x (¢) = Py (t), where P is some constant
nonsingular nxn matrix and 'y (t) = (y1 (t), ... ,yn (t)) is the new variable. If we plug x (t) = Py (t)
into (12), we get

dy

PE = APy, Py (0)=xo.

Hence the new equation for the new variable y (t) is

d
Y P 'APy, y(0)= P 'x,.
dt
Therefore, if P"'AP is a diagonal matrix diag (A1, ..., A,) (in such a case, Ay, ..., A, must be
eigenvalues of A and the column vectors vy, ..., v, of P must be eigenvectors of A) we will have
dy, dys dyy, -1
— =) —— = cee == = \Wn, 0)=P
dt 191, at 2Y2, " a Y y (0) X0

and the solution y (¢) is (note that now the system has been decoupled)
y (t) = diag (e, ..., ™)y (0) = diag (e, ..., e*") (P™'x¢) = D (t) P~ 'xq.

Thus
x(t) = Py (t) = PD (t) P'x

and the proof is done. O



Example 0.17 Consider the linear system

{ o (t) = 3x1 — X9

xh (t) = 4oy — 2.

a=(53)

and A\ =2, Ay =—1, vy = (1,1), vo = (1,4). Thus

We have

and

-0 ()

L1 de et e gt
T3\ 4e? —4et —e?t 4 4t X0

is the solution of (18) with initial data xo. One can also use the formula

x(t):clegt< 1 > +cpet < i)

and solve for ¢y, co satisfying the system

X(O)zcl(1>+62<i):x0.

In general, the n x n real matrix A may have repeated or complex eigenvalues. To discuss the
general solution of the linear system dx/dt = Ax, we need to introduce the following concept of
the exponential of a real matrix A :

Definition 0.18 Let A be an n x n real matriz. We define its exponential e? to be the n x n real

matrix
2 A3

A f— — — . . .

e"=1+A+ 2!—1—3!—1- . (14)
Remark 0.19 By definition, we have €® = I, where 0 is the zero n X n matriz.
Remark 0.20 The definition is motivated by the Taylor series for e* :

r?
e””:1+x—|—§+§+---, x € (—00,00).

Example 0.21 If A = diag (\1, ..., \,), then e = diag (6)‘1, cey eA”).
Of course, we need to check the following;:

Lemma 0.22 Let A = (a;;) be an n x n real matriz. Then the series

A2 A3
T+ A+ 5+ g+ (15)
converges absolutely. In particular, the above series converges and is a well-defined matriz, denoted
A
as e’.



Proof. Let M = max;<; <, |a;;| and for convenience, look at the (1,1) term al®) in each AF. We

have
‘agl) < M, ‘aﬁ) <nM?, ‘agl) <n’M?, ‘agl) <ndM*, . ete
Hence the series at the (1,1) position in €', which is
O (2) aﬁ)
1+Cl +?+ 3‘+"',
satisfies
2 3 4
) agl) agl) ‘agl)
1+ fof) |+ 5+ Tt
M2 n?M?3  n3M* M
<1+ M+ 9] + a3l + 1 +oo-<et.
That is, the partial sum of the positive series
2 3 4
. (1) agl) ‘ agl) ‘ agl) ‘
Tl o g

has upper bound. Hence it must converge. The same argument applies to other components and
the proof is done. O

Lemma 0.23 Let A, B be two n x n real matrices such that B = P™*AP (in such a case we say
B is similar to A), where P is an invertible n x n matriz. Then

= P lefP. (16)
In particular, if B = diag (A1, ..., \n), then e = Pdiag (e’\l, ey e)‘") Pt

Remark 0.24 (Important.) The above says that, to compute e, it suffices to diagonalize the
matriz A (if this can be done).

Proof. By definition we have

P'AP)>  (P'AP)®
2 3
(P1AP)* (P'AP)®
2 3

A A3
_ p-1
=P (I+A+§+§+ )P,

eB:eP_lAP:[_'_PflAP_i_(

=P lIPp+PlAP +

which means that the n-th partial sum (denote it as s,,) in the series for e is given by

Ar A3 A"
n:P‘1<I+A+—+—+ +—>P.
21 3 n!

Since we have 2 A
lim (I+A+—+—+ —l——):eA,
n—oo 21 3! n!

we get
lim s, = P~ te?P.

n—oo

The proof is done. O



Lemma 0.25 If A € R is an eigenvalue of an n X n real matrix A with corresponding eigenvector
v #0 € R, then etv = eMv.

Proof. We have

2 3
eAv:(I+A+A—+A—+---)v

2! 3!
A? A3 A2 A3
:]U+AU+§U+§U+'”:U+)\U+§v+§v+'”
A2\ A
= (1+)\+§+§+-~->v:e v.
0
Lemma 0.26 If B is an n x n real matriz satisfying AB = BA, then we have
Bet = ¢“B (17)
and
€A+B — eAeB —_ €B€A (18)
In particular, for any n x n real matriz A the matric e? is always invertible with
(eA)_1 =" (19)

Remark 0.27 (Interesting) The condition AB = BA in (17) and (18) are necessary. There exist
two 2 x 2 real matrices A, B such that AB # BA and

etel + ePel
For example, take
0 1 10 0 0 0 1
=(0) e=(an) e=(0) o= (00)

We have
A_11 B_€0 AB_el BA_ee
6_<01’€_01’6‘9_017‘36_01

A+B _ B+a [ € e—1
e =e —(0 ) )

Thus eATB = eB+4 e4eB and ePe are all different.

and

Proof. (Omit in class. See Remark 0.32 also.) For (17), we have

) A2 A3 Al
BeA:B<]1LI&Sj>, 8j:I+A+§+§+”.+F

= lim (Bs;) = lim (s;B) = <hm sj> B=¢elB.

The proof of (18) is more delicate. For convenience we look at the case n = 2. For given ¢ > 0, we

can write e as

A2 A3 AJ a; b; * %
A_ i e T Bl = i Y
e—<I+A+2!+3!+ +j!)+ (Cj dj)+(**>,
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where each term x in the second matrix satisfies || < e (if j is large enough). Similar we have

B2 B3 BJ S5 h.
I+B+rtgrt o)+ = by :
3' j' Cj dj * ok

where || < e. Now

and (here we use the assumption AB = BA)

(v (2 d)
¢ dj ¢ dj
A2 A3 AJ B2 B3 BI
(I—FA—F?—F?—F +]!>([+B+7+§+ +7>
A+ B)Y? (A+B)?
(A+B)  (A+B)
21 3!
A+ B)? A+ B
A+p7’ L A+B)
2! !

—T+(A+B)+

(this is not same as [ + (A + B) + ).

However, in the limit we can get

<I+A+§—f+§—f’+---+"‘—,) (1+B+§?+§f’+ -+ 2

lim / =0,
jmrc0 (1 +(A+B)+ AL 4y (ALBY )
which implies .
lim a b 4 b = AtB
j—00 Cj dj Ej dj
and then
oApB — JA+B
The proof is done.
To prove the last identity, note that A and —A are commutable, which implies
efe™ = M) — 0 — [ (similarly, we have e e = I).
Therefore (eA)_l =e 4 O

Lemma 0.28 Let A = (a;;) be an n X n real matriz and let I C R be a bounded interval. Then
the series 202 434
t t

- ... 2
o + 3l + (20)

converges absolutely and uniformly for allt € I. In particular, e is defined on t € (—o0,0).

Ao T+ tA+

Proof. Since the interval I is bounded, each component of the matrix tA = (ta;;) is bounded. Let

M = maxyer1<;j<n |ta;;| and for convenience, look at the (1,1) term a%’i) (t) in each (tA)" . We have

a0 < nar,

af? ()] < n2ar?,

‘an ) aﬁ) (t)‘ <n*M* .., etc
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Hence the series at the (1,1) position in e, which is

2 3
a? () P (1)

1
1+ald) (1) + o ot tel (21)
satisfies
2 3 4
P O] I A Ol O]
1—|—‘a11(t)‘—|— T A TR
M2 2M3 3M4
§1+M+n2‘ +n3' +n4l +---<e™ forall tel.

By the Weierstrass M-test in Advanced Calculus (see Rudin, p. 148), the series (21) converges
uniformly on /. The same argument applies to other components and the proof is done. 0J

As a consequence of Lemma 0.28, we have:

Lemma 0.29 Let A = (a;;) be an n x n real matriz. We have

%em = Aett = A forall t e (—o0,00). (22)

Proof. We already know that the series

12A2 343 tiAI
TR TR T

converges uniformly (as j — oo) on any finite interval ¢ € (a, b) to e1. Similarly the series

2tA% 312 A3 gt A 12 A2 -t ATl
—s5. ()= A ce =A(T+tA+ — + .o 2
gt = At 5t T < AT T (j—l)!) (23)

also converges uniformly (as j — oo) on t € (a,b) to Ae!t. Hence (see Rudin’s book "Principles
of Mathematical Analysis", p. 152, Theorem 7.17) one can change the order of differentiation and
limit, and get

d d i . d
et =5 (s 0) = i (§50))

t2A? 1A
=lim [A(I+tA+ -+ + —— || = A forall te (a,b).

Since the interval (a,b) can be arbitrary, the identity is valid for all ¢ € (—oo, 00) . This proves the
first identity. For the second identity, we can also write (23) as

d {2 A2 L AT
55 (1) = <I+tA+—+---+—)A

2! (7— 1)
and get £e't = ¢ A, t € (—00,00). One can also use the fact that A and tA commute and by
Lemma 0.26 we obtain Ae!t = ¢4 A for all t € (—o00, 0). O

We are ready to state the following fundamental theorem for a linear system:



Theorem 0.30 (Fundamental theorem for linear system.) For a given xo € R", the initial
value problem

d_x = Ax
dt (24)
x (0) = xg

has a unique solution x (t) € R"™ defined on (—o0,00) and is given by
x(t) = %y, t€ (—00,00). (25)
Here e is the exponential matriz of the matriz tA.

Remark 0.31 In case A is diagonalizable with P~'AP = diag (\1, ..., \n) (call it D), we have

tA, t(PDP—l)

exy = e Xy = eP(tD)P*lXO _ PetDP—lxo — PD (t) P_lxo, (26)

where D (t) is the diagonal matriz diag (e)‘lt, s e)‘”t) . This is the same as (11).

Proof. We first have x (0) = e’xq = Ixg = x¢ and

dx d

i AGE (ci tA>X = (Ae") x0 = A (¢"'x0) = Ax(t), V1€ (—00,00).

Thus it is a solution of (24) on (—o0, 00) .
If y () is another solution on some interval I, 0 € I, with y (0) = x¢, we look at

d 44 d t(—A) t(—A _aydy
— t)) = — 1)) = (—A) !y (1) + Y (¢
Sy (1)) = 5 (O (1)) = (—A) Ay (1) 4+ O
= (—A) Ty (1) 4 e CVAy (1) =0, Viel,
where we have used the identity Aet(- =4 A. Hence e *y (t) = const. on I and by y (0) = xq,
we obtain y (t) = e'xg, t € I. The proof is done. O
Remark 0.32 As an application of the fundamental theorem, we can use it to prove that if AB =
BA, then
€A+B — eAeB7 (27)
where A, B are two n X n real matrices. We consider the ODE
dx
A+ B
dt = )% (28)
x (0) = xo.
PHA+B) 5

The unique solution is given by x (t) = . On the other hand, we also have

jt (etAetho) = <jt€tA> ePxq + € (%etB ) (AetA) ePxy + e (Be'xq)

— Aee'Pxy 4+ Be'e'Pxy = (A + B) e e'Pxy,

where we have used the identity e B = Be'? (this is much easier to check than (27)). Thus e'e'Px
is also a solution of (28) (note that e'‘e tBXo{ 1—o = Xo) and uniqueness implies

eAetByy = l(A+B) g

for allt € (—o0,00) and all xo € R"™. In particular, we have
eetB = B v ¢ € (—00,00).

Letting t = 1, we have proved (27).

10



Exercise 0.33 As an interesting application of Lemma 0.29, we can do the following:
1. Let A, B be two n x n real matrices and we have
et =€ Vite(—o00,00).
Prove or disprove that A = B.

2. Let A, B be two n x n real matrices and we have

Prove or disprove that A = B.

Solution:

(1). The answer is YES, i.e. A = B. To see this, apply d/dt to both sides and get
At = Be!®, Vit € (—00,00).

Letting t = 0, we get A = B.

(2). The answer is NO. It is possible to have A # B, but we still get e* = e”. As a simple
example, choose

(00 (0 =2r\ [a =p _ _
a=(20), b=( )= (3 ). amo o

A g [ e*cosfB —e“sinff\ (1 0\
en =1, e _<easinﬁ e cos 3 >_(O 1 =1

Similarly, we also have

Then

B __ . 0 —2km
e? =1 for any B_(ler 0 , kel

0.2 2 x 2 linear system with constant coefficients.

The key point in the fundamental theorem is to compute the matrix e*4. This is not easy when A
is not diagonalizable. However, if A is a 2 x 2 matrix, then e** is not difficult to compute. We first
have:

Lemma 0.34 If A is a 2 X 2 real matrix, then there is an invertible real matriz P such that
P~1AP has one of the forms

) Ga) (527): (29

for some real numbers \, u, «, 5.

Remark 0.35 We call (29) the Jordan canonical forms of A.
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Proof. Let \;, Ay € C be the two eigenvalues of A. If \;, Ay are real and distinct, we have the first
form. If A\;, )\ are real and equal (call them ), then there exists a nonzero vector v; € R? such
that Av; = Av;. Let W be the subspace of R? given by

W={veR*: Av= v} =ker (4 — \).

If W = R?, then A = A\ and we are in the first case again. Hence we assume that dim W = 1 and
choose any nonzero vector w € R? which is independent to v. Then we have

Aw = avy; + fw for some number « # 0, 5.

Note that if @ = 0, then we have Aw = fw, w # 0, and so [ is an eigenvalue (which must be
the same as \) and then we have two independent eigenvectors vy, w of A, a contradiction. Hence

a # 0 and the two equation
Av1 = )\Ul
Aw = av + pw

A (v, w) = (v, w) <8\ g), a#£0,

can be expressed as

which is the same as
o) A = (3 4 ). aro 30)

Since the matrix in (30) is upper triangular, the number 5 must be an eigenvalue and is equal to
A. As a conclusion, we have
AU1 = )\Ul,
{ (31)

Aw = avs + Aw, a#0

{ AUl = )\’Ul, (32)

Avg = v1 + Avg, where vy = éw.

and so

This gives the second case if we choose P = (vy,v9) .

Remark 0.36 Another argument to derive (31): we already have Avy = Avy. Since A # A, there
is a vector w # 0, independent to vy, such that Aw — Aw # 0. Let 0 = Aw — Aw # 0. By the
Cayley- Hamilton Theorem in Linear Algebra, we know that

(A=X)o=(A=X)(A=X)w=(A—\)’w=0.
Hence the nonzero vector o must lie in the eigenspace of the eigenvalue A\ and so o = av, for some
a € R, a#0. Thus we have
AUl = )\'Ul,
Aw = avy + \w, « # 0,
which is the same as (31).

AN =a+i8, a=a—i8, >0, then let v; = u+ 11w, vy = u—iw, w # 0, be corresponding
complex eigenvectors of \; = a + i8 and A\, = a — if3 respectively. We have u, w € R? and by

Avy = Au+iAw = (a +i8) (u +iw) = (au — fw) + i (aw + [u)

we have

Au = au — Bw, Aw = Bu+ aw, (33)
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which also implies that u, w are linearly independent in R? (why? we first see that u # 0; then if
u is a multiple of w, A will have a real eigenvalue, a contradiction).
Now choose P = (w, u) (note that here we change the order of u, w) and the above implies

A =@ (§ 7).

which gives the third case. Note that here we have changed the order of u and w. O

Remark 0.37 (Important.) If we do not change order of u and w, we get

_ a f
PlAP:<_ﬁ a)

where now P = (u,w) and u + iw is the complex eigenvector of o+ if. The reason that we prefer

the form
a —p
(5.")
a p
-8 «

<g ;5><§) = (a+if)(z +1iy). (34)

instead of the form

18 that the we have the correspondence

Remark 0.38 (Interesting.) Let {u,w} be a basis of R?. If we have

Au = au — Pw
(35)
Aw = fu + aw,
which is same as A (u +iw) = (a + i) (u + iw) or
wo A= (5 7).
then we have (see Lemma 0.41 below)
- e*cos S —e%sin
ot ) = () ).
Hence we get
A B e*cosf —e*sin 3
e (U},U)—(’UJ,U) ( easinﬁ eaCOSB ) )
1.e. we can conclude the following identities:
etu = (e*cos B) u — (e*sin B) w
(36)
elw = (e*sin ) u + (e* cos ) w.

Example 0.39 Reduce the matriz
1 -1
(1)

13
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Solution: The matrix has two repeated eigenvalue A = 2. Solve
rT—y =2
{ T+ 3y =2y
to get one eigenvector v; = (1,—1). Choose w = (1,0) and get (note that one can choose any
nonzero vector w € R? which is independent to v). Then we have

e a(3)=(1) (1) 2(3) e 0o

where we note that the coefficient in front of w is 2, which is an eigenvalue (this must be the case
as claimed in our proof).
According to the proof, if we choose vy = éw = —w = (—1,0), we will have

e ()= () () e
p-(L o) (0 )
(0 ) (1) (1)

(5 ) (% )= (02)

is the canonical form. O

Hence

and

Example 0.40 Reduce the matriz

to canonical form.
Solution: The matrix has two complex conjugate eigenvalues A = 2+i (= a i, § > 0). Solve
3r—2y=(2+1i)x
{ r+y=2+10)y

to get x = (1 +14)y. Hence a complex eigenvector for 2 + i is (we take y = 1)

(1) ()3 e

If we let
11
then
1 (1 -1 3 =2 1 1
prar=(o 7)) (0 1)
(2 =3 11\ (2 -1\ (oo =P
| 01) \1 2 T\ B « ’
which is a canonical form. O

14



Lemma 0.41 If

(A0 Al a —f
p=(0n) o (03) « (5.7)

where A\, p, a, B are real numbers, then we have

B _ eM 0 or e teM or e cos St —e® sin Bt
N0 e 0 e e sin Bt e cos Bt
for all t € (—o0,00).

Remark 0.42 If

a b
5= 1)
then

a 2
€B:€A+C:€AEC:(8 2 ><I+O+C_+ )

()G (0a)= (2 )(

Proof. The first case is trivial. For the second case, we have

|

O =

(5 )

0t ), where (At) I and C' commute.

tB=(M\)I+C, (J:<O 0

Hence

At C’Q At 0 1 ¢ At t At
5 _ i c_ (€0 ¢ (e [ M te
e (5 (e )= (0 2) Ga) =0 &)

For the third case, we have

tB = (at)I + C, CZ(%t aﬁt>

and at 0 02 03
tB e
eB—<0 ea)<I+C+—+§+ )
where
c? 3
I+C+7+§+
(10 0 —pt 1/ —(Bt)? 0
‘<01)+(@to )*5(0 —W)
1/0 (Bt)° L/ B o 1[0 — (Bt)°
+§<—(ﬁt>3 0 )*I(o <ﬁt>4>+5(<m>5 0 >+
1— (ﬂt) +(Bt) 1. _(ﬁt)+(ﬂ?f!)3_(ﬁ5t!)5+... _(COS(&) —sm(ﬂt))
(Bt) — 4_(5;') U 1_%4_(@?44_... ~ \Usin (Bt) cos (5t) '
Hence

(5" L) (S S0 ) = (o et

The proof is done.



Corollary 0.43 For any 2 x 2 real matriz A we have
det e = 7™, (37)
where Tr A denotes the trace of A. In particular, we have
det et = !N for all t € (—o0,00). (38)

Remark 0.44 The above corollary is actually valid for any n x n real matriz A. We shall prove
this later on.

Proof. Choose P such that P~ AP = B has one of the forms in (29). Then e = PeP P~ where
A A A « PN I
B¢ 0 or e eA or e cpsﬁ e* sin 3
0 e 0 e e“sinf3 e“cos 3
and we also know that TrA = TrB, det A = det B, Tre? = Tre?, dete? = dete?. Now, in any

case, we have det e = e¢’"B and so
det e = T4,

The proof is done. O
Example 0.45 Assume that A is a 2 X 2 matriz. Is it possible to have

0 €
e = ( 2t )
e’ 0
for somet € R 7 Give your reasons.

Solution:

By the identity det !4 = eI A? we must have det e** > 0 for any matrix A and any ¢ € R. But
now
det et = —¢% < 0.

Hence it is impossible. O

By the previous lemmas, we have:

Corollary 0.46 Consider the 2 x 2 linear system
dx

— = Ax
dt (39)
X (0) =Xg € Rz,
where A has 2 repeated eigenvalue A and A # \I. Then the solution (in matriz form) is given by
A g N
x(t) =e%xg =P ( 8 S\t ) P %, (40)

where P is any 2 x 2 invertible matrix satisfying

s (A1
PAP_<0)\.

In particular, if P = (v1,v2), then Avy = vy, Avy = v1 + Avg, and x (t) can also be written (in
vector form) as
x (t) = creMvy + ¢ (te’\tvl + e)‘tUQ) , (41)

where c1, ¢y solves

. _ C1
vy + cove = Xo  (this is same as P %o = ( ) .
C2

16



Remark 0.47 Note that the coefficient of te™ is the eigenvector v;.
Remark 0.48 In the above corollary we have
(A=X)vy =0 and (A—X)vy =vy. (42)
In Linear Algebra book, the vector vs is also called a generalized eigenvector.
We also have:

Corollary 0.49 Consider the 2 x 2 linear system

dx = Ax
dt (43)

X(O) =Xp € R2,

where A has 2 complex conjugate eigenvalues o + i3, o —if, [ > 0. Then the solution (in matrix
form) is given by

oAl e cos (Bt) —e* sin (St) _
x () = e'xo = P ( e*sin (Bt) e cos (Ot) ) Pxo (44)

where P is any 2 x 2 invertible matriz satisfying

_ a —f
PlAP:<ﬁ N )

In particular, if P = (v1,v9) (note that now the eigenvector of A = a+ i3 is vy + vy ), then
Avy = avy + Pug, Avy = — v + avy, (45)
and x (t) can also be written (in vector form) as
x (t) = c1 [€* cos (Bt) - vy + € sin (Bt) - va]| + 3 [—€ sin (Bt) - v1 + €™ cos (Bt) - va] (46)

where ¢y, ¢y solves
C1U1 + CoU2 = Xg.

Remark 0.50 (another method) This is to use complex solutions and take its real part to
get real solutions. Assume A has 2 complex conjugate eigenvalues o + i3, o — i3, [ > 0, with
corresponding complex eigenvectors v = u+iw and v = u — iw, where u, w € R2. Then the general
complex solution of dx/dt = Ax is

x (1) = 1T (4 + iw) + e (u — dw)
where ¢y = ay + iby, ¢ = ag + iby are two arbitrary complex constants. Note that

1T (4 4 iw) + e (4 — w)
= (a1 +iby) e (u 4 iw) + (ag + iby) e @ (u — jw)
= e (ay + iby) (cos Bt + isin Bt) (u + iw) +e* (ag + iby) (cos Bt — isin Bt) (u — iw)

S N J
-

{ e (ay + iby) {[(cos Bt) u — (sin St) w] + @ [(sin St) u + (cos ft) w]}
+e (ag + iby) {[(cos ft) u — (sin Bt) w] — i [(sin Bt) u + (cos Bt) w]}

17



The real part of the above complex solution is given by
{ e® {ay [(cos Bt) u — (sin Bt) w] — by [(sin 5t) u + (cos St) w]}

+e {ag [(cos Bt) u — (sin ft) w] + by [(sin St) u + (cos ft) w]}
= (ay + ay) €™ [(cos Bt) u — (sin Bt) w] + (ba — by) €™ [(sin Bt) u + (cos Ft) w]

and since ay, ag, by, by are all arbitrary, we obtain the general real solution
c1e® [(cos Bt) u — (sin Bt) w] + ce™ [(sin Bt) u + (cos 5t) w] (47)
for arbitrary real constants ¢y, cs. Note that (47) is same as (46) if we replace u by vy and w by vy.

Example 0.51 (See Example 0.39 first.) Consider the linear system
) (t) = x1 — @9 _
' A= < 1 5 1 > . (48)
23/2 (t) =+ 31‘2,
We have A\ = Ay = 2 and the canonical form
o (0 1N/ —1N\[(1 -1\ (21 (A1
rrar= (0 T () (S 0 )=(8 ) =(00).

P = (Ul,vg) = < 1_1 0_1 > with AUl = 21)17 AUQ = U +2U2.

where

The general solution is given by (in vector form)

x (t) = c1eMvy + ¢ (teMvy + M)

e () e (e (1) e ().

2t

1.€.

z1(t) = cre® ey (t—1)e*, x4 (t) = —cre* — cote®,

where ¢y, co are arbitrary constants.
Example 0.52 (See Example 0.40 first.) Consider the linear system
o) (t) = 3z — 29 _
¥ (1 7)
xh (t) = x1 + o,

We have Ay =2 + 1, Ao =2 — 1, and the canonical form
145 (1 -1 3 =2 11\ (2 -1\ (oo =p
rar= (o ) (T (01)=(12)=(527)

P = (vy,v9) = ( (1) 1 ) with  Avy = avy + fvg, Avy = — vy + avs.

where

The general solution is given by (in vector form)

x (t) = ¢ [e* cos (Bt) - vy + €™ sin (Bt) - va] + ¢ [~ sin (Bt) - v1 + € cos (Bt) - vs]

1 1 1 1
_ 2t 2 2t 2t
—cl[e Cost(o)—i-e smt(l)]—i-@[ e smt<0)+e cost(l)],

where ¢y, co are arbitrary constants.

18



0.3 Some fact from linear algebra.

Lemma 0.53 Let A, B be two n xn real matrices with B = (by, ..., b,) where each b; is a column
vector. Then

det (Aby, by, ..., b,) +det (by, Abs, ..., b,) +---+det(by, by, ..., Ab,) =TrA-det B, (50)
where TrA denotes the trace of A.
Proof. Define the map F': R" x - -- x R" — R by

F(by, by, ..., b,)

= det (Aby, by, ..., b,) +det (by, Aby, ..., b,) +---+det (b1, by, ..., Ab,).
One can check that F'is an alternating multilinear map. In particular, we have F' (b, by, ..., b,) =
0 if b; = b; for some i # j.

In view of this, it suffices to check that (50) holds for the case B = (e, ..., e,), where {e;, ..., €,}is
the standard basis of R"™. But that is obvious. The proof is done. O

Lemma 0.54 Let A (t) be a time-dependent n X n real matriz which is invertible for allt € I (some
interval). Then we have the identity

%detA(t):Tr(A1(t)%)~detz4(t), Vitel, (51)

where we note that Tr (A7 (t) &) = Tr (2 A7 (1)).

Proof. This is a consequence of the previous lemma. Write A (t) = (ai (t), a2 (), ..., a, (1)),
where a; (t) are column vectors. Then

d
—det A
o det A (t)

=det (a] (t), az(t), ..., a,(t)) +det(as (), a5 (t), ..., a, (t)) +---+det(a; (t), ax(t), ..., a, ()

and we note that
A'(t) = (ay (1), ag (1), ..., & (1))
and if we let P (t) = 1A~ (¢), then

P(t)a (t) = (%Al (t)) a; (t) = % (A7 () as (1) = % (1,0,...,0)" = a) (1)

and similarly

P(t)ay(t) = (%A‘l (t)> ay (t) = % (A (t)ay (1)) = % (0,1,0,..,0)" = a} (1), ete.

Hence by Lemma 0.53 we have

%detA (1)
_ { det (P (t)as (t), ax(t), ..., a,(t)) +det(a; (t), P(t)ax(t), ..., a,(t))
+---+det(ay(t), ag(t), ..., P(t)a,(t))
=Tr (P(t))-detA(t)=Tr (%Al (t)) det A(t) =Tr (Al (1) d_) det A (t)
The proof is done. O
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Lemma 0.55 Let A be any n X n real matriz, then
det et = ! for all t € (—o00,00). (52)

and when t = 1, we get
det e = T4, (53)

Remark 0.56 Note that we always have
det 't > 0
for all t € (—o0,00) and all real matrices A.

Proof. Compute

dB
—) ~dete', B (t) = e

d
—dete"t =Tr ( B7' (t
ete r( ()dt

dt

Since B~! (t) = e and 22 = Ae'! = ¢4 A, we have

dB
Tr <Bl (t) %) =Tr (e e A) = TrA.

Hence d
pr dete® =TrA-dete, Vte (—o0,00)
and so
det et = CeT™M v t € (—o00, 00)
for some constant C. Letting ¢t = 0, we see that C' = 1. The proof is done. O

Corollary 0.57 For any n x n real matrices A, B, we have the following:

(

(1). ()
@). (e ) 5
(3). deted = T4
| (4). e B =edeB =eBet =Pt if AB = BA.
In general, there is no identity for T'r (eA) . However, if A hasn distinct real eigenvalues \q, ..., \,, then
dete? = eM Tt and Tret =eM 4. e

Remark 0.58 We also have the following elementary fact: if B = P AP, where A, B, P are
n X n real matrices, then

det B=detA, TrB=TrA, e®=Pe’P7! dete? =dete?, TreP = Tre. (55)
Proof. This is now clear. ]

Corollary 0.59 If an n x n real matriz A satisfies AT = —A (i.e., A is anti-symmetric), then

e? is an orthogonal matriz.
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Remark 0.60 If A is anti-symmetric, then all of its diagonal elements are zero. In particular, we
have TrA = 0. We also have

det A = det AT = det (—A) = (—1)" det A.
Hence if n is odd, we have det A = 0.

Proof. Let M = e”. Then, by definition, M is an orthogonal matrix if and only if it satisfies
MT = M~'. We now have
MT = (eA)T =t == M

The proof is done. O

Lemma 0.61 Assume that A is an n X n anti-symmetric real matriz. Then for any two solutions
x (t), x® (t) € R™ to the linear system of equations

dx
24
i~ "
their inner product (x) (t),x® (t)) is independent of time.

Proof. By

d

- (xM (1), x? 1)) = (AxD (), x@ (#))+(xV (t), Ax® (t)) = ((A+ A")xV (¢), xXP (1)) =0
the conclusion is proved. O]

Remark 0.62 Another proof is: Since e is an orthogonal matriz, we have
(x0 (1), x® (1) = (% (0), "% (0)) = ()" % (0), x? (0)) = (xV (0), x2(0))

for allt € R. In particular, we see that if A is an n X n anti-symmetric real matriz, the orthogonal
linear transformation e'* : R" — R™ preserves length and volume for each fized time t € R. We
call the map €4 : R" — R", t € (=00, 00), the flow generated by the ODE dx/dt = Ax.

Lemma 0.63 Assume that A is a real n X n anti-symmetric matrix. Then its eigenvalues are either
0 or pure tmaginary.

Remark 0.64 Compare with the well-known fact: if A is a real n X n symmetric matriz, then all
of its eigenvalues are real.

Proof. Let A € R be a real eigenvalue. Then there exists some nonzero v € R"™ such that
Av = M. Hence

A ]v]Z = (v, v) = (Av, v) = <v, ATU> = (v, —Av) = (v, = v) = — (v, \v) = =\ \0\2,

which implies that A = 0.
On the other hand, if A is a complex eigenvalue, then there exists some nonzero complex
eigenvector v € C" such that Av = Av. Using complex inner product (, ). we have

(Av, v)e = <v, FU>C

and so (note that A is a real matrix)

Aol = (A, v)e = (Ao, v)e = (v, ATv) = (v, =Av), = = (v, Av)e = — (v, Ao)g = =X Jol?

C

and so A + A = 0. Thus ) is pure imaginary. 0
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0.4 Nonhomogeneous 2 x 2 linear system.

Let A be an n x n real matrix. We now consider the equation

d—X:Aerb(t), tel, 0€l
dt (56)
X(O):XoeRn

where b () € R" is a continuous function defined on some interval [ with 0 € I.

Theorem 0.65 The solution to (56) is unique and is defined on I, given by the following "general
solution formula’:

t
x (t) = %o + etA/O e *b(s)ds, tel. (57)

Remark 0.66 (57) is the same as the general solution formula in the one-dimensional case. It is
good only for theoretical purpose.

Proof. We have

d t
d_)t( = Aet%q + AetA/ e b (s) ds + e e b (1)
0

t
—A<etAxo+etA/eSAb(s)ds)—i—b(t)—Ax—i—b(t), tel.
0

As for uniqueness, if we have two solutions to (56) on I, their difference w (¢) will satisfy

d
d_\;v =Aw, w(0)=0.
Hence, by uniqueness, we must have w (t) = 0. The proof is done. 0]

In practice, we will prefer to use "diagonalization method (decoupled method)" if A has
2 distinct real eigenvalues or 2 repeated real eigenvalues. However, if A has 2 complex conjugate
eigenvalues, the method is slightly different.

Example 0.67 (2 different real eigenvalues.) Find the general solution of the equation

d_X_ 3 —1 n 2et Le (- )
il WP B . , 00, 00) .

Solution:
We have —
(1 2)
with eigenvalues \; = 2, Ay = —1 and corresponding eigenvectors v; = (1,1), vy = (1,4). Thus
pe(1a) =g (B t) e (00
and if we let
x = Py
we would have ix dy oot oot
E:Pd—:Ax+< 2t ) :APy—|—< 3 )
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and so J . .
ay 5 1 ( 2e” (20 1 ( 2e”
a ~ oA EE ( 3t )_(0 ) TP s )

which gives (the system becomes decoupled)

dy, _
%:2y1+%(8€t—3t>
dyo _
%:—y2+%(—2e t+3t).

The solution of the above is
y1 (1) = Che® — Bet + 2t + 1
ya (1) = Coe™" — 2te™" + ¢ — 1.

Finally we get the general solution
_ (11 Cre® +let —1t+1
x(t) =Py () = < 1 4) ( Coe™t+tet+3t—-3 |-

Example 0.68 (2 different real eigenvalues.) Find the general solution of the equation

d_X_ -2 1 n 2et Le (- )
7= Lo )x g0 , 00, 00) .

The two eigenvalues of the coefficients matrix A are \; = —3, Ay = —1, with corresponding

Solution:

eigenvectors
B 1 (1
U1 = -1 ) Vg = 1
and so .
(1 1 a1 /1 -1 1 (-3 0
(1) e (D) pare(50))
If we let
x = Py
we would have p p . .
X _pdy 2e” B 2e”
a ~Fa =4 +< 3t )‘APY+< 3t >

and so

dt

which gives (the system becomes decoupled)

d —1
& plaPy + P! < 2 ) ,

dy _

E = —Syl + % (26 t_ ?)t)
dyo _

o —yo + 1 (2¢7" + 3t)

we get
{ g () = Cre ™ 4 Let — Lt 4 1,

Yo () = Coe ™t +te ™ + 3t — 2.

2 2
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Finally we get the general solution
3t 1t _ 1y, 1
x(t) = ! ! Cre —t N 26_1: 32t +36 .
-1 1 026 +te™" + §t -3
Example 0.69 (2 repeated real eigenvalues.) Find the general solution of the equation

(L) i (27 te (moo00)
da \1 3 3t ) 00,00/

See Example 0.39also. We have \; = Ay = 2 with v; = (1,—1), vy = (=1,0), where

Solution:

A’Ul = 2'01, AU2 = + 2U2.

p:<1_1 51), P‘lz((ll j) P‘%Pz(éé) (58)

Let x = Py to get

dy 4 a2t (21 Y1 0 -1 2et
a - TAy R r (St “lo2)\y )L 3t

and then (the system becomes "semi-decoupled")

Hence

dy:

/=2 — 3t
I Y1+ Yo

dys

22 = Qyy — 2e~t — 3t.
ar e

One can solve the second equation first and then plug into the first equation to solve it (one
can always do so, as guaranteed by the canonical form (58)). Finally we have

x(t):(l_l 81>(1328>

Example 0.70 (2 complex conjugate eigenvalues.) Find the general solution of the equation

dx 3 =2 2e~t
w11 ) g ) el

We leave the details to you. ([l

Solution:

See Example 0.40 also. The matrix has eigenvalues 2 4+ . A complex eigenvector for 2 + 7 is

(1) ()3 e

Now
B (11 4 (1 -1 1 (2 -1
P—(w,u)—(o 1), P _(O 1 ), P AP—<1 5 )
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and the system in terms of y (t) (x = Py) is given by

dy:

— = 2y — et — 3t
i Y1 — Y2 1+ 2e

dys

— = 2 3t.

dt 1+ 2y2 +

Unfortunately this system is not decoupled (however, after change of variables, it has a better
symmetric form to work on). There is one way to avoid the use of formula (57), but we still have

to do a lot of computation. Rewrite the above as
(D—2)y1+y2 = 2€_t—3t
(59)
—y1+ (D —2)y2 = 3L,

where the operator D means %, and if apply the operator (D — 2) to the second equation and add

it to the first equation, we would get
(D—2)2yp+1y=2e"t —3t+ (D —2)3t =2 — 9t + 3,
ie.,
vy (t) — dysy (t) + By (t) = 2e™" — 9t + 3.
From it we can solve ys (t) (use undetermined coefficient method or variation of parameters
method) and plug it into the second equation of (59) to solve y; (t) (be careful: it will be too

much trouble if we plug y, (¢) into the first equation of (59) to solve y; (t)). We leave the details to
you ... 0

0.5 3 x 3 linear system with constant coefficients.

The ODE to be solved now is the following 3 x 3 linear system with constant coefficients:

d
d_)t( = Ax, where A is a 3 X 3 constant real matrix. (60)

By theory, we know that the solution is given by
x (1) = "%, t € (—00,00), (61)

where xg is the initial condition.
In the following, we want to use the "diagonalization method (decoupled method)" to
solve it. Denote the three eigenvalues of A by Ay, Ay and A\3. We have several cases to consider.
Before going on, we recall two important facts from Linear Algebra:

Lemma 0.71 Let A be an n X n real matrix with characteristic polynomial
P, (\) =det (A—AI), degP,(\) =n.

If X = X\ is a root of P, (\) = 0 with multiplicity m (i.e. Ny is a root which appears m times), m €
{1,2,...,n}, then we have
dimker (A — X\oJ) < m, (62)

where ker (A — A\ol) :={v € R" : (A — X\o) v = 0} is the eigenspace of A¢.
Remark 0.72 The above is also known as: "geometric multiplicity” < "algebraic multiplicity".

Lemma 0.73 (Rank Theorem.) Let T : R" — R™ be a linear transformation (n, m can be any
two positive integers). Then we have

dimIm7T + dimker T = n. (63)

To solve (60), we divide our discussions into several cases.
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0.5.1 Case 1: A\, Ay, A3 are real and distinct.

This is the easiest case. Let vy, vy, v3 be the corresponding eigenvectors of A\, Ay, A3. Then they
are independent. If we let

P = (v1,v9,v3) (each v; is a column vector),

then P is invertible with

A 000
P'AP=|( 0 X 0
0 0 X3
Now let x = Py (change of variables) to get
dx dy
APy = Ax = — = P—
Y= T T

and obtain the equation for y (t) = (yi (t),y2 (t),ys (t)), which is

; MO0
%:P*lAPy: 0 X 0 |y
0 0 X

Thus one can easily solve y (t) to get y (t) = (c1eMt, cpe??!, c3e™") . By the relation x = Py, one
can get the general solution x (¢) of (60), i.e.,

x (t) = cre™vy 4 cpe™uy + cze?tog, (64)
where 1, ¢y and c3 are arbitrary constants.
Remark 0.74 We also have
x (t) = e"xg = PD (t) P"'x9, D (t) = diag (e™',e™",e¥") | x(0) =% (65)
and if we write P~'xy as P7'x¢ = (c1, ¢, c3), we get the same solution as in (64).

0.5.2 Case2: \{ =\ M=X3=0, \#0, A\ cgeR.
For this case, we have two subcases: either dimker (A — o) = 2 or dimker (A — o) = 1.
Case 2A: dimker (A —ol) = 2. In this case we can find two linearly independent eigenvectors

vg, wg for the repeated eigenvalue o. Let v; be the corresponding eigenvector of A\, then we can
diagonalize A as (it is easy to see that vi, vy, v3 are linearly independent in R3)

A

00
PAP=| 0 o 0 |, P=(v,v,03).
0 0 o

Then we are in the previous easy case.

Case 2B: dimker (A — o) = 1. In this case we can find only one independent eigenvector for
the repeated eigenvalue o. In this case we cannot diagonalize the matrix A. However, we have the
following:
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Lemma 0.75 Assume that we can find only one independent eigenvector for the repeated eigenvalue
0. Then there exist three linearly independent vectors vy, vy, v3 (where vy, vo are eigenvectors of
A and o respectively, and vs is a generalized eigenvector of o) such that

A0 0

A(U1,U27U3) = (U17U2703) 0 (66)
0

o 1
0 o
where (vy,ve,v3) 18 the 3 X 3 matrix with column vectors vy, v, V3.

Proof. Let v;, vy be two independent eigenvectors vy, ve with Av; = Avy, Avy = ovg, \ #
0. Consider the map
A—ol R — RS (67)

Let R =Im(A—ol), K = ker(A—ol) (K is the eigenspace of o), dim K = 1. By the Rank
Theorem in Linear Algebra (applied to the linear transformation A — oI : R?* — R3), we know
that dim R = 2.

We claim: K C R (note that K is a line and R is a plane).

If K ¢ R, then the operator A—ol : R — R (now we restrict A— o onto the subspace R C R?)
has zero kernel and thus 7-1. By Rank Theorem again, it is also onto. Hence for any v € R there
exists some w € R such that (A — ol)w = v, which gives

Av=A(A—ol)w=(A—ol)(Aw) (note that R is the image of A — oI : R* — R?)
This says that Av € R also. Hence
A:R— R (Ais a linear map from R to R, dim R = 2) (68)

and on it we have two eigenvalues (31, (2 (regardless of what they are). Since we assume K =
ker (A —ol) ¢ R, both eigenvalues of A on R must be different from o. This will force (note that
A has two eigenvalues A\ and o only)

ﬁl = 52 = >\7
which contradicts the fact that the eigenvalues of A are A\, o, ¢. Hence K C R and the claim is

proved.
As K C R, we have v, € K C R. Hence there exists some vector v3 # 0 € R? such that

(A—olvs=v,€ K (i.e. Avz = v+ ov3) (69)

We called v3 a generalized eigenvector of o corresponding to vs. It is independent to vs.
We then claim that vy, v, vs are linearly independent. If not, then (we already know that
v1, v are independent)
v3 = avy + Svy  for some «, f.

Applying A — ol onto it to get
vo=(A—0clvs=(A—0cl)(avy + pvy) =a(A—0cl)v; =a (A — o)y,
a contradiction. Therefore we have (66) and the proof is done. O

Remark 0.76 (See Remark 0.48 first.) In the 2x2 case, we have K = R (now both have dimension
1) due to (42). Moreover, we have (A — A\I)* = 0 (now X is the repeated eigenvalue). This can also
be seen from its canonical form since

(A_AI)Z:[p‘l(A—M)P]QZ(g (1))2:(8 8)

However, this is not the case in R3.
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Remark 0.77 (Summary.) In conclusion, we need to solve vy (eigenvector of \), vy (eigenvector
of o, vg € K), v3 (generalized eigenvector of o corresponding to vy) satisfying the system:

Avy = Ay, Avy = ovy, Avs = vy + o3, (70)
where in the third equation of (70), we need to use the fact
K=%er(A—ol)CR=Im(A—ol), K isa line and R is a plane. (71)
Since vo € K C R, the equation Avs = vy + ovs must have a solution for vs.

Let P = (v1,v2,v3). In this case the ODE for y (¢) (we let x = Py) becomes the following
"semi-decoupled system":

dy A0 O
% (t) = (PilAP) y = 0 o 1 Yy, y = (y17y27y3) (72)
0 0 ¢
and the general solution to the ODE is given by
creM
x (t) = Py (t) = (v1,v9,v3) y (t) = (v1,v9,v3) | (c2 + c3t) e
C3€Jt
= 1My + (3 + cst) ety + c3e”vg. (73)
—_——
Note that in the above v; and vy are eigenvalue vectors.
Example 0.78 Find the general solution of the system
d T 1 00 T
O -4 1 0 y |. (74)
3 6 2 z

Solution:

The eigenvalues of the coefficient matrix are \; = 2, Ay = A\3 = 1. To find the eigenvector for
A = 2, we solve
T =2

—4x +y =2y
3x + 6y + 2z =22
and we obtain v; = (0,0,1). To find the eigenvector for the repeated o = 1, we solve
rT=x
—Adr+y=y
3r+6y+22==2

and we obtain one eigenvector v, = (0,1,—6). As it is impossible to find another independent
eigenvector, we have to find generalized eigenvector. We solve

r=0+ux
—dr+y=1+y
3r+6y+22=—-6+z2
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and obtain x = —1/4, —3/4+6y+2z = —6. Hence a generalized eigenvector is vs = (—1/4,—1,3/4) (or
other possible answers). We see that vy, ve, v3 are linearly independent.
The general solution is given by

x (t) 0 0 -2
y() | =cie® | 0 | 4+ (co+cst)el 1 +ezel | —1 (75)
z (t) 1 v —6 3

O

Remark 0.79 Another method: Since the matriz in (74) is lower triangular, one can solve x (t)
first and then use it to solve y (t), and then use z (t) and y (t) to solve z (t) .
0.5.3 )\ = )Xy = A3 = )\ (the most difficult case).

Case 1: The eigenspace ker (A — AI) has dimension 2.

Remark 0.80 Unless A = M\, otherwise the case dimker (A — A\I) = 3 cannot happen.

Assume A\ = Ay = A3 = X and dimker (A — AI) = 2. This means that we can find two linearly
independent eigenvectors of \.
We claim the following:

Lemma 0.81 Assume that dimker (A — A\) = 2. Then there exist three linearly independent vec-
tors vy, vy, vs (where vy, vy are eigenvectors) such that

A (Ula V2, US) = (Ul7 V2, UB)

o O >
o > O

0
1 (76)
A

where (v1,va,v3) s the 3 X 3 matriz with column vectors vy, vg, vs.

Proof. Consider the map A — A : R?> - R3. Let R=Im(A—\), K =ker(A— M), dmK =
2. By the Rank Theorem, we know dim R = 1. We claim that R C K (note that now K is a
plane and R is a line). To see this, choose a nonzero vector v € R, then (A — A\l)v € R also (note
that now A — Al : R — R with dim R = 1). Since dim R = 1, we must have

(A= X)v=pv forsome pe€R.

If i # 0, then A has eigenvalue \ + p, a contradiction. Hence (A — AI)v = 0 for all v € R and this
implies R C K.

Now we choose two linearly independent vectors vy, vy in K with v; ¢ R, vy € R. Then there
exists some nonzero vector vs such that

(A= X)vg=vs € R. (77)
Such vector vz ¢ K and so it is independent to vy, ve. We now have identity (76). O

Remark 0.82 (Summary.) In conclusion, we need to solve vy (eigenvector of \, v1 € K, v; ¢ R),
vy (eigenvector of A\, vo € R C K ), vs (generalized eigenvector of \ corresponding to ve, vs ¢ K)
satisfying the system:
A'Ul = )\Ul, A’U2 = )\’02, AUg = V2 + )\Ug. (78)
This is similar to (70). In the third equation of (78), we need to use the fact
R=Im(A—-X)CK =%ker(A—Xl), R isalineand K is a plane (79
79
V1, UQGK, U1¢R, UQGR, 03€R3.

Since v € R, the equation Avs = vy + \vs must have a solution for vs.
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Remark 0.83 Note that we have
(A= X)?v=0 forall veR> (80)

That 1s:
AN
) =

R M R(RC K 0. (81)

Let P = (v1,v2,v3). In this case the ODE for y (t) (we let x = Py) becomes the "semi-
decoupled system":

W 1y = (PaP)y =

_ 2
y7 Y, Y= (y1,y2,93) (82)

o O >
[ )
> = O

and, similar to (73), the general solution to the ODE is given by

At

c1€e
X (t) = (v1,v2,03)y (t) = (v1,v2,03) | (c2+ cst) e
At
Cc3e
= c1eMvy + (e + cst) €My + czeMug. (83)
—_——
Note that in the above v; and vy are eigenvectors.
Example 0.84 Find the general solution of the system
d T 5 -3 -2 x
7 y | = 8 -5 —4 Yy
z —4 3 3 z

Solution:

The characteristic polynomial of the coefficient matrix is

5—A -3 -2
8 —-5—-X -4
—4 3 3—A

=(B-AN)(-5-AN)(B—-A)—48—48+8(5+A) +12(5—A) +24(3 - \)
=N =2 +1)4-N)+4-3A=—-(1—1)".

Hence we have \; = Ay = A3 = 1. To find the eigenvector for A = 1, we solve
or — 3y — 2z ==z
8r —by—4z=y
—4r+3y+3z2==z2

and obtain 4x — 3y — 2z = 0. Thus one can find two linearly independent eigenvectors vy, vs. The
space K = ker (A — I) is given by the plane 4x — 3y — 2z = 0.
The image of the matrix

4 -3 -2
A—1T= 8 —6 —4 | :R*—>R?
-4 3 2
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is a line R given by {t(1,2,—1) : ¢t € (—00,00)}. We note that R C K.

According to the proof, we must choose two linearly independent vectors vy, vy in K with
vy ¢ R, vy € R. Thus we choose v; = (3,4,0), vy = (1,2, —1) . Finally, we solve Avz = vy + v3 to
get

or—3y—2z=1+4+ux

8r —bdy—4z=2+y
—dr+3y+3z=—-1+4+=2

and get 4 — 3y — 22z = 1. So we choose vz = (0,1,—2). We see that vy, vy, vs are linearly
independent.
The general solution is given by

3 1 0
x(t)=cie' | 4 | +(co+cst)e 2 + cget 1 _ (84)
0 —— \ .1 9

O

Remark 0.85 (important) If we do not choose vy € R, then the system Avs = vy + vz may not
have a solution. For example, choose vy = (3,4,0) € K, vy & R. Then we solve

or —3y —2z=3+x
8r —bdy—4z=4+y
—4r+3y+32=0+=2

and see that there is no solution at all (see the first equation and the third equation,).

Case 2: The eigenspace ker (A — AI) has dimension 1.

Assume Ay = Ay = A3 = A and dimker (A — A\I) = 1. This means that we can find only one
independent eigenvector of \.
In this case Lemma 0.81 becomes the following:

Lemma 0.86 Assume dimker (A — AI) = 1. Then there exist three linearly independent vectors

vy, Vg, v3 (where vy is eigenvector) such that

A(U1?U27U3) = (U17U27U3) (85)

o O >
S >
> = O

where (v1,va,v3) s the 3 X 3 matriz with column vectors vy, vg, vs.

Proof. Consider the map A — A\ : R® — R3. Let R =Im (A —AI), K =ker(A—\), dimR =
2, dim K = 1. We claim that K C R (now K is a line and R is a plane). If not, then the operator
A — Al : R — R has zero kernel and thus 7-7. By Rank Theorem again, it is also onto. Hence for
any v € R there exists some w € R such that

(A= A)w =,
which gives

Av=A(A—X)w = (A— \)(Aw) (note that R is the image of A — oI : R* — R?)
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This says that Av € R also. Hence
A:R— R, dmR=2

is a linear map and on it we have two eigenvalues (i, [ (regardless of what they are). Since
we assume K ¢ R, both eigenvalues of A on R must be different from A, a contradiction. This
contradiction implies that K C R.

Next we claim that (A — ) R = K. To see this, note that (A — AI) R is one-dimensional
(it cannot be zero-dimensional since dimker (A — M) = 1) due to K C R and the Rank Theorem
(applied to the map A — A : R — R). If (A— M) R # K, there exists some nonzero vector
v ¢ K, ve R, such that (A — )R = {tv:t € R}. But then we have

(A= AX)v=tv forsome teR, t#O0.

This will yield a new eigenvalue A + ¢, impossible. Hence (A — M) R = K.
Now let v; € K be an eigenvector of A. By above there exists some nonzero vector vy € R, vy ¢
K, with (note that (A — A\I) R = K; see also Remark 0.88 below)

(A= A) vy = ;.
Since vy € R, there exists some nonzero vector vs € R3 such that
(A—X)wvs =wv, (note that now (A — \)%vs = vy).

We then claim that vy, vq, vs are linearly independent. If not, then (we already know that vy, vy are
independent)
v3 = avy + Puy  for some «a, (.

Applying A — Al onto it to get
ve = (A= A)v3 = (A=) (av; + Bvg) = B (A — ) vy = Sy,
a contradiction. Therefore we have (66) and the proof is done. U
Remark 0.87 We have the picture for the above proof:
R? 2 R (K c R) 2 K20, (36)
Remark 0.88 (Important) We claim that it is impossible to have vy € R?, vy € R, such that
(A= M)vy =vy, where vy € K, vy #0.

To see this, assume possible (note that vy # 0). Then for any v € R? there exists some vector o € R
(note that dim R = 2) such that

v=ve+o0, vy¢ R, o€R.

This implies
(A= X)v=(A=X)(vpy+0) e K

due to (A — M) vy =v; € K and the identity (A — X\) R = K. The above implies R = K (we know
dim R =2, dim K = 1), a contradiction. In view of this, if we solve the equation

(A= X)vy =v1, where v €K, wv; #0.
then automatically we have vy, € R. Then one can go directly to find v € R® such that

(A= M)vs =1y € R.
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Remark 0.89 (Summary.) In conclusion, we need to solve vy (eigenvector of \, v1 € K ), vy (generalized
eigenvector of \ corresponding to vy, vo € R, vy ¢ K ), vz (generalized eigenvector of A\ cor-
responding to v, vs & R) satisfying the system:

Avy = My, Avy = v1 + Avg, Avs = vy + \vs. (87)
In the third equation of (78), we need to use the fact
K=ker(A—X)CR=Im(A—- ), K isaline and R is a plane
(A—AX)R=K (88)
v € K, vo € K, vy € R, v € R3.
Since vy € R, the equation Avs = vy + Avs must have a solution for vs.

Remark 0.90 In summary, we have the following: Assume A is a 3 X 3 real matriz with Ay =
Ay = A3 = A\, then if ker (A — AI) has three independent eigenvectors (this can happen only when
A= Ml), then

and if ker (A — AI) has two independent eigenvectors, then
A 0O

PTTAP=( 0 X 1

0 0 A

and if ker (A — M) has only one independent eigenvector, then

PlAP =

o O >

1
A
0

> = O

Let P = (v1,v2,v3). In this case the ODE for y (¢) (we let x = Py) becomes the following
"'semi-decoupled system":

dy A1 0
n (t) = (PilAP) y=10 X1 |y, y=iv21s3) (89)
0 0 X
and so p
4 yl
A
i Y1+ Y2
dyo
292
It Y2 + Y3
dys
—= = A\ys.
it Ys

We get (solve ys (t) first, and then ys (), and then y; (t))

C
y1 (t) = (Cl + cot + 53152> My (t) = (ca+est) e, ys(t) = czeM
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and, similar to (83), the general solution to the ODE is given by

(c1 + ot + $t2) €M

x (1) = (v1,v9,03) y () = (v1, V2, v3) (co + cst) et
caeM
c
= <cl + cot + §t2> Moy + (e + cst) Mg + cseMus. (90)

Note that in the above only v; is eigenvector.

Example 0.91 Find the general solution of the system

d T 1 1 1 T
7 y | = 2 1 -1 Y
-3 2 4 z

Solution:
The characteristic polynomial of the coefficient matrix is

1—A 1 1
2 1-X -1
-3 2 4— )

—(1=A)’ A=A +44+3+31 =N +2(1-XN) 24—\
= (M =2 +1)(4—X) +4-3A
= A 46— 12048 =— (A —2)°.
Hence we have \; = Ay = A3 = 2. To find the eigenvector for A = 2, we solve
T+Yy+z=21
2 +y—2=2y
=37+ 2y + 4z =22

and we obtain z = 0, y + z = 0. Thus we can find only one independent eigenvector v; =
(0,1, —1). The image of the matrix

-1 1 1
A—2] = 2 -1 -1 | :R® > R3
-3 2 2

is the plane R given by z—y—2z = 0 (or the plane spanned by the two vectors (—1,2, —3), (1,—1,2)).
Then we solve Avy = v + 205 to get

rT+y+z=2
2r+y—z2=1+2y
—3r+2y+4z=-1+42z2

and obtain x = 1, y+ 2z = 1. We can pick vy = (1, 1,0) (by Remark 0.88 we must have vo € R, vy ¢
K, or one can check that v, lies in the plane z—y—2z = 0, or vo = 2 (—1,2,—3)+3 (1, —1,2)). Finally,
we solve Avg = vy + 2v3 to get

r+y+z=1+4+22

20 4+y—2z=1+2y
=37+ 2y + 4z = 2z
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and obtain x = 2, y + z = 3. We can pick v3 = (2,3,0). Hence the general solution is given by

c
x (t) = (cl + cot + 53752) e*v) + (ca + cst) vy + cze®vg = ...

0.5.4 )\1:/\, /\2:@+i57 )\3204—7;6.

Assume we have three eigenvalues A € R and a4+ i3, a—if, o, f € R, B # 0. There exists a basis
{v,v1,v9} satisfying (see (45)) (now the eigenvector of o + i3 is vg + ivq)

Av = v, Avy = avy + Pug,  Avg = —fu; + aus,

and so
A0 0
AP=P| 0 a =8 |, P =(v,v1,09).
0  «

In this case the ODE for y (¢) (we let x = Py) becomes the following "semi-decoupled system":

( dyl
Iy
di 1
dy2
bt L _ 91
i ays — Pys (91)
dys o
| g Py tavs
and its general solution is given by
Yy (1) = creM
Yo (1) = €™ (g cos t — c38in 5t) (92)
ys (t) = e (cosin St + c3 cos Ot) .
Hence the general solution x (¢) to the ODE x’ (t) = Ax () is
et
x (t) = Py (t) = (v,v1,v9) | €™ (cqcos St — cgsin ft)
e (g sin Bt + 3 cos Ot)
= c1eMv + cpe® [(cos Bt) vy + (sin Bt) vg] + c3e™ [~ (sin Bt) vy + (cos ft) vy] . (93)

Example 0.92 Find the general solution of the system

d T -3 0 2 T
z -2 -1 0 z

Solution:
The characteristic polynomial of the matrix is of the coefficient matrix are
—3—-A 0 2

I —1=X 0 |=—(A+2)(\?+2)1+3).
—2 -1 =
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Hence the eigenvalues are \; = =2, \y = —1 + \/51', A3 = —1 — v/2i. To find the eigenvector for
A = —2, we solve
=3z + 2z =—2x

T—y=—2y
20 —y= -2z

and we obtain x = 2z, y = —2z. Thus v = (2, —2,1). To find the eigenvector for A = —1 + V2i, we

solve
—3r 422 = (-1+2i)z

x—y:(—l—i-\/z')y
—2x—y:(—1+\/§i)z

and get complex eigenvector

V/2i 0 V2
1 = 1 +1 0

—1 42 ~1 V2

So we get v; = (\/5, 0, \/5) and vy = (0,1, —1) . The general solution is given by

x(t) = cre 2y + coet [(cos \/§t> v + <sin \/515) ’U2:| + czet [— <sin \/§t> v + (cos \/§t> vz} .
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