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Material from the Instructor (based on Logan (3rd edition)
and Boyce-DiPrima�s book (10th edition))

Chapter 4: Linear Systems of Equations

0.1 Linear system in Rn with constant coe¢ cients
De�nition 0.1 Let A be an n� n real matrix. The system of equation

dx

dt
= Ax; x = x (t) = (x1 (t) ; ::: ; xn (t))

T 2 Rn (1)

is called a �rst order n� n linear system of ODE with constant coe¢ cients (since A is a
constant matrix).

Remark 0.2 If there is no confusion, we will just write x (t) = (x1 (t) ; ::: ; xn (t))
T as x (t) =

(x1 (t) ; ::: ; xn (t)) :

Remark 0.3 For a given initial condition x (t0) = x0 2 Rn; we have existence and uniqueness
theorem for (1). Also, any solution is de�ned on t 2 (�1;1) :

Example 0.4 Consider the 2� 2 linear system of equations with constant coe¢ cients(
x01 (t) = 3x1 � 4x2

x02 (t) = �x1 + 5x2:

One can write it as

dx

dt
= Ax; x = x (t) = (x1 (t) ; x2 (t)) ; where A =

�
3 �4
�1 5

�
:

Example 0.5 Consider the second order linear equation

x00 (t) + x (t) = 0; t 2 (�1;1) : (2)

We know that its general solution is given by

x (t) = c1 cos t+ c2 sin t; t 2 (�1;1) ; c1; c2 are constants.

If we let y (t) = x0 (t) (view y as a new variable), (2) gives

dx

dt
= y;

dy

dt
= �x;

i.e. the vector-valued function x (t) = (x (t) ; y (t)) satis�es the system of equations

dx

dt
=

�
0 1
�1 0

�
x; i.e.

d

dt

�
x
y

�
=

�
0 1
�1 0

��
x
y

�
: (3)

One can check that (2) is equivalent to (3). The same observation applies to higher order linear
equations with constant coe¢ cients. The upshot is that a n-th order linear equation with constant
coe¢ cients is equivalent to a �rst order n� n linear system of ODE with constant coe¢ cients.
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Lemma 0.6 If x (t) and y (t) are both solutions to (1) on some interval I; then their linear com-
bination

z (t) = c1x (t) + c2y (t) ; t 2 I
is also a solution of (1) on I: Here c1; c2 are arbitrary constants.

Remark 0.7 This says that the solution space of (1) has the structure of a vector space.

Proof. This is obvious. �

We �rst need some results from linear algebra:

Lemma 0.8 If an n� n matrix A has n distinct real eigenvalues �1; :::; �n with corresponding
eigenvectors v1; :::; vn; then v1; :::; vn are linearly independent in Rn:

Proof. We �rst claim that v1 and v2 are independent. Otherwise, we would have v1 = cv2 for some
constant c 6= 0: Hence we get (applying A onto it) �1v1 = c�2v2: But we also have �1v1 = c�1v2 and
so c�2v2 = c�1v2: This will force �1 = �2; impossible. Hence v1 and v2 are independent. Similarly
if we have v3 = �v1 + �v2 with �2 + �2 6= 0; then(

�3v3 = ��1v1 + ��2v2

�3v3 = ��3v1 + ��3v2

which implies � (�1 � �3) v1+� (�2 � �3) v2 = 0 and so � = � = 0; a contradiction. Thus v1; v2; v3
are independent. Keep going. One can see that v1; :::; vn are linearly independent. �

Lemma 0.9 If an n � n matrix A has n distinct real eigenvalues �1; :::; �n with corresponding
eigenvectors v1; :::; vn; then

P�1AP = diag (�1; :::; �n) ; (4)

where P = (v1; :::; vn) (each vi is a column eigenvector). Here diag (�1; :::; �n) means the diag-
onal matrix with diagonal elements �1; :::; �n:

Proof. Note that
AP = P � diag (�1; :::; �n)

and the proof is done. �

Remark 0.10 Compare the di¤erence between P �diag (�1; :::; �n) (the i-th column of P is mul-
tiplied by �i) and diag (�1; :::; �n)P (the i-th row of P is multiplied by �i).

Lemma 0.11 If � is a real eigenvalue of A with corresponding eigenvector v 2 Rn (note that
v 6= 0), then the function

x (t) = e�tv; t 2 (�1;1)
is a solution of (1) on (�1;1) :

Proof. We have Av = �v: Hence

dx

dt
(t) = �e�tv = A

�
e�tv

�
= Ax (t) :

�
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Lemma 0.12 (First version.) If A has n distinct real eigenvalues �1; :::; �n with corresponding
eigenvectors v1; :::; vn; then if x (t) 2 Rn is a solution of (1) on (�1;1) ; it can be expressed as

x (t) = c1e
�1tv1 + � � �+ cne�ntvn; t 2 (�1;1) (5)

for some constants c1; :::; cn: Therefore, the general solution of the linear system dx=dt = Ax in
this case (i.e., A has n distinct real eigenvalues) is given by (5).

Proof. At any time t 2 (�1;1) one can decompose x (t) as

x (t) = a1 (t) v1 + � � �+ an (t) vn

for some coe¢ cient functions a1 (t) ; :::; an (t) : We now have

dx

dt
(t) = a01 (t) v1 + � � �+ a0n (t) vn = Ax (t) = �1a1 (t) v1 + � � �+ �nan (t) vn:

This implies a01 (t) = �1a1 (t) ; :::; a
0
n (t) = �nan (t) : Hence there exist constants c1; :::; cn such that

a1 (t) = c1e
�1t; ::::; an (t) = cne

�nt; t 2 (�1;1) :

The proof is done. �

Remark 0.13 (Matrix representation of the solution.) One can express (5) as

x (t) = PD (t)C; t 2 (�1;1) (6)

where P = (v1; :::; vn) (each vi is a column eigenvector of �i), D = diag
�
e�1t; :::; e�nt

�
; and C is

an arbitrary constant (column) vector.

Remark 0.14 (Matrix representation of the solution.) In case there is a initial condition
x (0) = x0; then one just solve for C = (c1; :::; cn) so that

c1v1 + � � �+ cnvn = x0: (7)

In matrix form we have PC = x0 (column vector), where P = (v1; :::; vn) (each vi is a column
eigenvector of �i) and C = (c1; :::cn) (column vector) is to be solved. Hence we get C = P�1x0 and
so

x (t) = c1e
�1tv1 + � � �+ cne�ntvn

= PD (t)

0B@ c1
...
cn

1CA = PD (t)P�1x0; x (0) = x0; (8)

where D (t) is the diagonal matrix diag
�
e�1t; :::; e�nt

�
: Since the solution for c1; :::; cn in the

equation (7) is unique, we know that there is a unique solution to the initial value problem

dx

dt
= Ax; x (0) = x0 (9)

and the solution is de�ned on t 2 (�1;1) :

We can summarize the conclusion in the above remark as:
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Lemma 0.15 (Second version.) Assume A has n distinct real eigenvalues �1; :::; �n with
corresponding eigenvectors v1; :::; vn and let P = (v1; :::; vn) : Then the general solution to the
equation dx=dt = Ax is given by

x (t) = PD (t)C; where C is an arbitrary constant vector, t 2 (�1;1) (10)

and the unique solution to the initial value problem (9) is given by

x (t) = PD (t)P�1x0; t 2 (�1;1) (11)

where D (t) is the diagonal matrix diag
�
e�1t; :::; e�nt

�
:

Remark 0.16 (Important.) If we choose di¤erent eigenvectors w1; :::; wn for �1; :::; �n; then
there are numbers a1; :::; an (all are nonzero) so that

w1 = a1v1; ::::; wn = anvn:

Hence the matrix Q = (w1; :::; wn) (each wi is a column eigenvector) satis�es the identity

Q = PM; where M = diag (a1; :::; an)

and so

QD (t)Q�1x0 = PMD (t) (PM)
�1 x0 = P

�
MD (t)M�1�P�1x0 = PD (t)P�1x0:

Therefore, the solution formula (11) is independent of the choice of eigenvectors for the eigenvalues
�1; :::; �n:

Proof. The proof is already done due to Remark 0.13 and Remark 0.14. Here we shall give a
di¤erent proof revealing the importance of eigenvalues and eigenvectors. Suppose we want to solve
the initial value problem

dx

dt
= Ax; x (0) = x0; (12)

where the n variables x1; :::xn are coupled in each equation of the system. The idea is to decouple
the variables x1; :::xn by a linear change of variables. Let x (t) = Py (t) ; where P is some constant
nonsingular n�nmatrix and y (t) = (y1 (t) ; ::: ; yn (t)) is the new variable. If we plug x (t) = Py (t)
into (12), we get

P
dy

dt
= APy; Py (0) = x0:

Hence the new equation for the new variable y (t) is

dy

dt
= P�1APy; y (0) = P�1x0:

Therefore, if P�1AP is a diagonal matrix diag (�1; :::; �n) (in such a case, �1; :::; �n must be
eigenvalues of A and the column vectors v1; :::; vn of P must be eigenvectors of A) we will have

dy1
dt
= �1y1;

dy2
dt
= �2y2; � � �; dyn

dt
= �nyn; y (0) = P�1x0

and the solution y (t) is (note that now the system has been decoupled)

y (t) = diag
�
e�1t; :::; e�nt

�
y (0) = diag

�
e�1t; :::; e�nt

� �
P�1x0

�
= D (t)P�1x0:

Thus
x (t) = Py (t) = PD (t)P�1x0

and the proof is done. �
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Example 0.17 Consider the linear system(
x01 (t) = 3x1 � x2

x02 (t) = 4x1 � 2x2:
(13)

We have

A =

�
3 �1
4 �2

�
and �1 = 2; �2 = �1; v1 = (1; 1) ; v2 = (1; 4) : Thus

P =

�
1 1
1 4

�
and P�1 =

1

3

�
4 �1
�1 1

�
and

x (t) =
1

3

�
1 1
1 4

��
e2t 0
0 e�t

��
4 �1
�1 1

�
x0

=
1

3

�
4e2t � e�t �e2t + e�t
4e2t � 4e�t �e2t + 4e�t

�
x0

is the solution of (13) with initial data x0: One can also use the formula

x (t) = c1e
2t

�
1
1

�
+ c2e

�t
�
1
4

�
and solve for c1; c2 satisfying the system

x (0) = c1

�
1
1

�
+ c2

�
1
4

�
= x0:

In general, the n � n real matrix A may have repeated or complex eigenvalues. To discuss the
general solution of the linear system dx=dt = Ax; we need to introduce the following concept of
the exponential of a real matrix A :

De�nition 0.18 Let A be an n� n real matrix. We de�ne its exponential eA to be the n� n real
matrix

eA = I + A+
A2

2!
+
A3

3!
+ � � �: (14)

Remark 0.19 By de�nition, we have e0 = I; where 0 is the zero n� n matrix.

Remark 0.20 The de�nition is motivated by the Taylor series for ex :

ex = 1 + x+
x2

2!
+
x3

3!
+ � � �; x 2 (�1;1) :

Example 0.21 If A = diag (�1; :::; �n) ; then eA = diag
�
e�1 ; :::; e�n

�
.

Of course, we need to check the following:

Lemma 0.22 Let A = (aij) be an n� n real matrix. Then the series

I + A+
A2

2!
+
A3

3!
+ � � � (15)

converges absolutely. In particular, the above series converges and is a well-de�ned matrix, denoted
as eA.
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Proof. Let M = max1�i;j�n jaijj and for convenience, look at the (1; 1) term a
(k)
11 in each A

k: We
have ���a(1)11 ��� �M; ���a(2)11 ��� � nM2;

���a(3)11 ��� � n2M3;
���a(4)11 ��� � n3M4; :::; etc:

Hence the series at the (1; 1) position in etA, which is

1 + a
(1)
11 +

a
(2)
11

2!
+
a
(3)
11

3!
+ � � �;

satis�es

1 +
���a(1)11 ���+

���a(2)11 ���
2!

+

���a(3)11 ���
3!

+

���a(4)11 ���
4!

+ � � �

� 1 +M +
nM2

2!
+
n2M3

3!
+
n3M4

4!
+ � � � � enM :

That is, the partial sum of the positive series

1 +
���a(1)11 ���+

���a(2)11 ���
2!

+

���a(3)11 ���
3!

+

���a(4)11 ���
4!

+ � � �

has upper bound. Hence it must converge. The same argument applies to other components and
the proof is done. �

Lemma 0.23 Let A; B be two n� n real matrices such that B = P�1AP (in such a case we say
B is similar to A), where P is an invertible n� n matrix. Then

eB = P�1eAP: (16)

In particular, if B = diag (�1; :::; �n) ; then eA = Pdiag
�
e�1 ; :::; e�n

�
P�1:

Remark 0.24 (Important.) The above says that, to compute eA; it su¢ ces to diagonalize the
matrix A (if this can be done).

Proof. By de�nition we have

eB = eP
�1AP = I + P�1AP +

(P�1AP )
2

2!
+
(P�1AP )

3

3!
+ � � �

= P�1IP + P�1AP +
(P�1AP )

2

2!
+
(P�1AP )

3

3!
+ � � �

= P�1
�
I + A+

A2

2!
+
A3

3!
+ � � �

�
P;

which means that the n-th partial sum (denote it as sn) in the series for eB is given by

sn = P
�1
�
I + A+

A2

2!
+
A3

3!
+ � � �+ A

n

n!

�
P:

Since we have

lim
n!1

�
I + A+

A2

2!
+
A3

3!
+ � � �+ A

n

n!

�
= eA;

we get
lim
n!1

sn = P
�1eAP:

The proof is done. �
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Lemma 0.25 If � 2 R is an eigenvalue of an n� n real matrix A with corresponding eigenvector
v 6= 0 2 Rn; then eAv = e�v.

Proof. We have

eAv =

�
I + A+

A2

2!
+
A3

3!
+ � � �

�
v

= Iv + Av +
A2

2!
v +

A3

3!
v + � � � = v + �v + �

2

2!
v +

�3

3!
v + � � �

=

�
1 + �+

�2

2!
+
�3

3!
+ � � �

�
v = e�v:

�

Lemma 0.26 If B is an n� n real matrix satisfying AB = BA; then we have

BeA = eAB (17)

and
eA+B = eAeB = eBeA: (18)

In particular, for any n� n real matrix A the matrix eA is always invertible with�
eA
��1

= e�A: (19)

Remark 0.27 (Interesting) The condition AB = BA in (17) and (18) are necessary. There exist
two 2� 2 real matrices A; B such that AB 6= BA and

eAeB 6= eBeA:

For example, take

A =

�
0 1
0 0

�
; B =

�
1 0
0 0

�
; AB =

�
0 0
0 0

�
; BA =

�
0 1
0 0

�
:

We have

eA =

�
1 1
0 1

�
; eB =

�
e 0
0 1

�
; eAeB =

�
e 1
0 1

�
; eBeA =

�
e e
0 1

�
and

eA+B = eB+A =

�
e e� 1
0 1

�
:

Thus eA+B = eB+A; eAeB and eBeA are all di¤erent.

Proof. (Omit in class. See Remark 0.32 also.) For (17), we have

BeA = B

�
lim
j!1

sj

�
; sj = I + A+

A2

2!
+
A3

3!
+ � � �+ A

j

j!

= lim
j!1

(Bsj) = lim
j!1

(sjB) =

�
lim
j!1

sj

�
B = eAB:

The proof of (18) is more delicate. For convenience we look at the case n = 2. For given " > 0; we
can write eA as

eA =

�
I + A+

A2

2!
+
A3

3!
+ � � �+ A

j

j!

�
+ � � � =

�
aj bj
cj dj

�
+

�
� �
� �

�
;
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where each term � in the second matrix satis�es j�j < " (if j is large enough). Similar we have

eB =

�
I +B +

B2

2!
+
B3

3!
+ � � �+ B

j

j!

�
+ � � � =

�
~aj ~bj
~cj ~dj

�
+

�
� �
� �

�
;

where j�j < ": Now

eAeB =

��
aj bj
cj dj

�
+

�
� �
� �

����
~aj ~bj
~cj ~dj

�
+

�
� �
� �

��
=

�
aj bj
cj dj

��
~aj ~bj
~cj ~dj

�
+

�
� �
� �

�
and (here we use the assumption AB = BA)�

aj bj
cj dj

��
~aj ~bj
~cj ~dj

�
=

�
I + A+

A2

2!
+
A3

3!
+ � � �+ A

j

j!

��
I +B +

B2

2!
+
B3

3!
+ � � �+ B

j

j!

�
= I + (A+B) +

(A+B)2

2!
+
(A+B)3

3!
+ � � �

(this is not same as I + (A+B) +
(A+B)2

2!
+ � � �+ (A+B)

j

j!
).

However, in the limit we can get

lim
j!1

0@ �
I + A+ A2

2!
+ A3

3!
+ � � �+ Aj

j!

��
I +B + B2

2!
+ B3

3!
+ � � �+ Bj

j!

�
�
�
I + (A+B) + (A+B)2

2!
+ � � �+ (A+B)j

j!

� 1A = 0;

which implies

lim
j!1

��
aj bj
cj dj

��
~aj ~bj
~cj ~dj

��
= eA+B

and then
eAeB = eA+B

The proof is done.
To prove the last identity, note that A and �A are commutable, which implies

eAe�A = eA+(�A) = e0 = I (similarly, we have e�AeA = I).

Therefore
�
eA
��1

= e�A: �

Lemma 0.28 Let A = (aij) be an n � n real matrix and let I � R be a bounded interval. Then
the series

etA := I + tA+
t2A2

2!
+
t3A3

3!
+ � � � (20)

converges absolutely and uniformly for all t 2 I: In particular, etA is de�ned on t 2 (�1;1) :

Proof. Since the interval I is bounded, each component of the matrix tA = (taij) is bounded. Let
M = maxt2I;1�i;j�n jtaijj and for convenience, look at the (1; 1) term a(k)11 (t) in each (tA)

k :We have���a(1)11 (t)��� �M; ���a(2)11 (t)��� � nM2;
���a(3)11 (t)��� � n2M3;

���a(4)11 (t)��� � n3M4; :::; etc:
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Hence the series at the (1; 1) position in etA, which is

1 + a
(1)
11 (t) +

a
(2)
11 (t)

2!
+
a
(3)
11 (t)

3!
+ � � �; t 2 I (21)

satis�es

1 +
���a(1)11 (t)���+

���a(2)11 (t)���
2!

+

���a(3)11 (t)���
3!

+

���a(4)11 (t)���
4!

+ � � �

� 1 +M +
nM2

2!
+
n2M3

3!
+
n3M4

4!
+ � � � � enM for all t 2 I:

By the Weierstrass M-test in Advanced Calculus (see Rudin, p. 148), the series (21) converges
uniformly on I: The same argument applies to other components and the proof is done. �

As a consequence of Lemma 0.28, we have:

Lemma 0.29 Let A = (aij) be an n� n real matrix. We have

d

dt
etA = AetA = etAA for all t 2 (�1;1) : (22)

Proof. We already know that the series

sj (t) = I + tA+
t2A2

2!
+
t3A3

3!
+ � � �+ t

jAj

j!

converges uniformly (as j !1) on any �nite interval t 2 (a; b) to etA. Similarly the series

d

dt
sj (t) = A+

2tA2

2!
+
3t2A3

3!
+ � � �+ jt

j�1Aj

j!
= A

�
I + tA+

t2A2

2!
+ � � �+ t

j�1Aj�1

(j � 1)!

�
(23)

also converges uniformly (as j ! 1) on t 2 (a; b) to AetA: Hence (see Rudin�s book "Principles
of Mathematical Analysis", p. 152, Theorem 7.17) one can change the order of di¤erentiation and
limit, and get

d

dt
etA =

d

dt

�
lim
j!1

sj (t)

�
= lim

j!1

�
d

dt
sj (t)

�
= lim

j!1

�
A

�
I + tA+

t2A2

2!
+ � � �+ t

j�1Aj�1

(j � 1)!

��
= AetA for all t 2 (a; b) :

Since the interval (a; b) can be arbitrary, the identity is valid for all t 2 (�1;1) : This proves the
�rst identity. For the second identity, we can also write (23) as

d

dt
sj (t) =

�
I + tA+

t2A2

2!
+ � � �+ t

j�1Aj�1

(j � 1)!

�
A

and get d
dt
etA = etAA; t 2 (�1;1) : One can also use the fact that A and tA commute and by

Lemma 0.26 we obtain AetA = etAA for all t 2 (�1;1) : �

We are ready to state the following fundamental theorem for a linear system:
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Theorem 0.30 (Fundamental theorem for linear system.) For a given x0 2 Rn; the initial
value problem 8<:

dx

dt
= Ax

x (0) = x0

(24)

has a unique solution x (t) 2 Rn de�ned on (�1;1) and is given by

x (t) = etAx0; t 2 (�1;1) : (25)

Here etA is the exponential matrix of the matrix tA:

Remark 0.31 In case A is diagonalizable with P�1AP = diag (�1; :::; �n) (call it D), we have

etAx0 = e
t(PDP�1)x0 = e

P (tD)P�1x0 = Pe
tDP�1x0 = PD (t)P

�1x0; (26)

where D (t) is the diagonal matrix diag
�
e�1t; :::; e�nt

�
: This is the same as (11).

Proof. We �rst have x (0) = e0x0 = Ix0 = x0 and

dx

dt
=
d

dt

�
etAx0

�
=

�
d

dt
etA
�
x0 =

�
AetA

�
x0 = A

�
etAx0

�
= Ax (t) ; 8 t 2 (�1;1) :

Thus it is a solution of (24) on (�1;1) :
If y (t) is another solution on some interval I; 0 2 I; with y (0) = x0, we look at

d

dt

�
e�tAy (t)

�
=
d

dt

�
et(�A)y (t)

�
= (�A) et(�A)y (t) + et(�A)dy

dt
(t)

= (�A) et(�A)y (t) + et(�A)Ay (t) = 0; 8 t 2 I;

where we have used the identity Aet(�A) = et(�A)A: Hence e�tAy (t) = const: on I and by y (0) = x0;
we obtain y (t) = etAx0; t 2 I: The proof is done. �

Remark 0.32 As an application of the fundamental theorem, we can use it to prove that if AB =
BA; then

eA+B = eAeB; (27)

where A; B are two n� n real matrices. We consider the ODE8<:
dx

dt
= (A+B)x

x (0) = x0:

(28)

The unique solution is given by x (t) = et(A+B)x0: On the other hand, we also have

d

dt

�
etAetBx0

�
=

�
d

dt
etA
�
etBx0 + e

tA

�
d

dt
etBx0

�
=
�
AetA

�
etBx0 + e

tA
�
BetBx0

�
= AetAetBx0 +Be

tAetBx0 = (A+B) e
tAetBx0;

where we have used the identity etAB = BetA (this is much easier to check than (27)). Thus etAetBx0
is also a solution of (28) (note that etAetBx0

��
t=0
= x0) and uniqueness implies

etAetBx0 = e
t(A+B)x0

for all t 2 (�1;1) and all x0 2 Rn: In particular, we have

etAetB = et(A+B); 8 t 2 (�1;1) :

Letting t = 1; we have proved (27).

10



Exercise 0.33 As an interesting application of Lemma 0.29, we can do the following:

1. Let A; B be two n� n real matrices and we have

etA = etB; 8 t 2 (�1;1) :

Prove or disprove that A = B:

2. Let A; B be two n� n real matrices and we have

eA = eB:

Prove or disprove that A = B:

Solution:

(1) : The answer is YES, i.e. A = B: To see this, apply d=dt to both sides and get

AetA = BetB; 8 t 2 (�1;1) :

Letting t = 0; we get A = B:

(2) : The answer is NO. It is possible to have A 6= B; but we still get eA = eB: As a simple
example, choose

A =

�
0 0
0 0

�
; B =

�
0 �2�
2� 0

�
=

�
� ��
� �

�
; � = 0; � = 2�:

Then

eA = I; eB =

�
e� cos � �e� sin �
e� sin � e� cos �

�
=

�
1 0
0 1

�
= I:

Similarly, we also have

eB = I for any B =

�
0 �2k�
2k� 0

�
; k 2 N:

�

0.2 2� 2 linear system with constant coe¢ cients.

The key point in the fundamental theorem is to compute the matrix etA: This is not easy when A
is not diagonalizable. However, if A is a 2� 2 matrix, then etA is not di¢ cult to compute. We �rst
have:

Lemma 0.34 If A is a 2 � 2 real matrix, then there is an invertible real matrix P such that
P�1AP has one of the forms�

� 0
0 �

�
;

�
� 1
0 �

�
;

�
� ��
� �

�
; (29)

for some real numbers �; �; �; �:

Remark 0.35 We call (29) the Jordan canonical forms of A:
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Proof. Let �1; �2 2 C be the two eigenvalues of A: If �1; �2 are real and distinct, we have the �rst
form. If �1; �2 are real and equal (call them �), then there exists a nonzero vector v1 2 R2 such
that Av1 = �v1: Let W be the subspace of R2 given by

W =
�
v 2 R2 : Av = �v

	
= ker (A� �I) :

If W = R2; then A = �I and we are in the �rst case again. Hence we assume that dimW = 1 and
choose any nonzero vector w 2 R2 which is independent to v: Then we have

Aw = �v1 + �w for some number � 6= 0; �:

Note that if � = 0; then we have Aw = �w; w 6= 0; and so � is an eigenvalue (which must be
the same as �) and then we have two independent eigenvectors v1; w of �; a contradiction. Hence
� 6= 0 and the two equation (

Av1 = �v1

Aw = �v + �w

can be expressed as

A (v1; w) = (v1; w)

�
� �
0 �

�
; � 6= 0;

which is the same as

(v1; w)
�1A (v1; w) =

�
� �
0 �

�
; � 6= 0: (30)

Since the matrix in (30) is upper triangular, the number � must be an eigenvalue and is equal to
�: As a conclusion, we have (

Av1 = �v1;

Aw = �v1 + �w; � 6= 0
(31)

and so (
Av1 = �v1;

Av2 = v1 + �v2; where v2 =
1
�
w:

(32)

This gives the second case if we choose P = (v1; v2) :

Remark 0.36 Another argument to derive (31): we already have Av1 = �v1: Since A 6= �I; there
is a vector w 6= 0; independent to v1; such that Aw � �w 6= 0: Let � = Aw � �w 6= 0: By the
Cayley-Hamilton Theorem in Linear Algebra, we know that

(A� �I)� = (A� �I) (A� �I)w = (A� �I)2w = 0:

Hence the nonzero vector � must lie in the eigenspace of the eigenvalue � and so � = �v1 for some
� 2 R; � 6= 0: Thus we have (

Av1 = �v1;

Aw = �v1 + �w; � 6= 0;
which is the same as (31).

If �1 = �+ i�; �2 = �� i�; � > 0; then let v1 = u+ iw; v2 = u� iw; w 6= 0; be corresponding
complex eigenvectors of �1 = �+ i� and �2 = �� i� respectively. We have u; w 2 R2 and by

Av1 = Au+ iAw = (�+ i�) (u+ iw) = (�u� �w) + i (�w + �u)

we have
Au = �u� �w; Aw = �u+ �w; (33)
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which also implies that u; w are linearly independent in R2 (why? we �rst see that u 6= 0; then if
u is a multiple of w; A will have a real eigenvalue, a contradiction).
Now choose P = (w; u) (note that here we change the order of u; w) and the above implies

A (w; u) = (w; u)

�
� ��
� �

�
;

which gives the third case. Note that here we have changed the order of u and w: �

Remark 0.37 (Important.) If we do not change order of u and w; we get

P�1AP =

�
� �
�� �

�
where now P = (u;w) and u + iw is the complex eigenvector of � + i�: The reason that we prefer
the form �

� ��
� �

�
instead of the form �

� �
�� �

�
is that the we have the correspondence�

� ��
� �

��
x
y

�
() (�+ i�) (x+ iy) : (34)

Remark 0.38 (Interesting.) Let fu;wg be a basis of R2: If we have(
Au = �u� �w

Aw = �u+ �w;
(35)

which is same as A (u+ iw) = (�+ i�) (u+ iw) or

(w; u)�1A (w; u) =

�
� ��
� �

�
;

then we have (see Lemma 0.41 below)

(w; u)�1 eA (w; u) =

�
e� cos � �e� sin �
e� sin � e� cos �

�
:

Hence we get

eA (w; u) = (w; u)

�
e� cos � �e� sin �
e� sin � e� cos �

�
;

i.e. we can conclude the following identities:(
eAu = (e� cos �)u� (e� sin �)w

eAw = (e� sin �)u+ (e� cos �)w:
(36)

Example 0.39 Reduce the matrix

A =

�
1 �1
1 3

�
to canonical form.
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Solution: The matrix has two repeated eigenvalue � = 2: Solve(
x� y = 2x

x+ 3y = 2y

to get one eigenvector v1 = (1;�1) : Choose w = (1; 0) and get (note that one can choose any
nonzero vector w 2 R2 which is independent to v). Then we have

Aw = A

�
1
0

�
=

�
1
1

�
= �

�
1
�1

�
+ 2

�
1
0

�
= �v1 + 2w; � = �1;

where we note that the coe¢ cient in front of w is 2; which is an eigenvalue (this must be the case
as claimed in our proof).
According to the proof, if we choose v2 = 1

�
w = �w = (�1; 0) ; we will have

Av2 =

�
�1
�1

�
=

�
1
�1

�
+ 2

�
�1
0

�
= v1 + 2v2:

Hence

P =

�
1 �1
�1 0

�
; P�1 =

�
0 �1
�1 �1

�
and

P�1AP =

�
0 �1
�1 �1

��
1 �1
1 3

��
1 �1
�1 0

�
=

�
0 �1
�1 �1

��
2 �1
�2 �1

�
=

�
2 1
0 2

�
is the canonical form. �

Example 0.40 Reduce the matrix

A =

�
3 �2
1 1

�
to canonical form.

Solution: The matrix has two complex conjugate eigenvalues � = 2�i (= �� i�; � > 0) : Solve(
3x� 2y = (2 + i)x

x+ y = (2 + i) y

to get x = (1 + i) y: Hence a complex eigenvector for 2 + i is (we take y = 1)

v =

�
1 + i
1

�
=

�
1
1

�
+ i

�
1
0

�
= u+ iw:

If we let

P = (w; u) =

�
1 1
0 1

�
then

P�1AP =

�
1 �1
0 1

��
3 �2
1 1

��
1 1
0 1

�
=

�
2 �3
1 1

��
1 1
0 1

�
=

�
2 �1
1 2

�
=

�
� ��
� �

�
;

which is a canonical form. �
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Lemma 0.41 If

B =

�
� 0
0 �

�
or

�
� 1
0 �

�
or

�
� ��
� �

�
;

where �; �; �; � are real numbers, then we have

etB =

�
e�t 0
0 e�t

�
or

�
e�t te�t

0 e�t

�
or

�
e�t cos �t �e�t sin �t
e�t sin �t e�t cos �t

�
for all t 2 (�1;1) :

Remark 0.42 If

B =

�
a b
0 a

�
then

eB = eA+C = eAeC =

�
ea 0
0 ea

��
I + C +

C2

2!
+ � � �

�
; A =

�
a 0
0 a

�
; C =

�
0 b
0 0

�
=

�
ea 0
0 ea

���
1 0
0 1

�
+

�
0 b
0 0

��
=

�
ea 0
0 ea

��
1 b
0 1

�
=

�
ea bea

0 ea

�
:

Proof. The �rst case is trivial. For the second case, we have

tB = (�t) I + C; C =

�
0 t
0 0

�
; where (�t) I and C commute.

Hence

etB = e(�t)IeC =

�
e�t 0
0 e�t

��
I + C +

C2

2!
+ � � �

�
=

�
e�t 0
0 e�t

��
1 t
0 1

�
=

�
e�t te�t

0 e�t

�
:

For the third case, we have

tB = (�t) I + C; C =

�
0 ��t
�t 0

�
and

etB =

�
e�t 0
0 e�t

��
I + C +

C2

2!
+
C3

3!
+ � � �

�
;

where

I + C +
C2

2!
+
C3

3!
+ � � �

=

�
1 0
0 1

�
+

�
0 ��t
�t 0

�
+
1

2!

�
� (�t)2 0

0 � (�t)2
�

+
1

3!

�
0 (�t)3

� (�t)3 0

�
+
1

4!

�
(�t)4 0

0 (�t)4

�
+
1

5!

�
0 � (�t)5
(�t)5 0

�
+ � � �

=

 
1� (�t)2

2!
+ (�t)4

4!
+ � � � � (�t) + (�t)3

3!
� (�t)5

5!
+ � � �

(�t)� (�t)3

3!
+ (�t)5

5!
+ � � � 1� (�t)2

2!
+ (�t)4

4!
+ � � �

!
=

�
cos (�t) � sin (�t)
sin (�t) cos (�t)

�
:

Hence �
e�t 0
0 e�t

��
cos (�t) � sin (�t)
sin (�t) cos (�t)

�
=

�
e�t cos (�t) �e�t sin (�t)
e�t sin (�t) e�t cos (�t)

�
:

The proof is done. �
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Corollary 0.43 For any 2� 2 real matrix A we have

det eA = eTrA; (37)

where TrA denotes the trace of A: In particular, we have

det etA = et(TrA) for all t 2 (�1;1) : (38)

Remark 0.44 The above corollary is actually valid for any n � n real matrix A. We shall prove
this later on.

Proof. Choose P such that P�1AP = B has one of the forms in (29). Then eA = PeBP�1; where

eB =

�
e� 0
0 e�

�
or

�
e� e�

0 e�

�
or

�
e� cos � �e� sin �
e� sin � e� cos �

�
and we also know that TrA = TrB; detA = detB; TreA = TreB; det eA = det eB: Now, in any
case, we have det eB = eTrB; and so

det eA = eTrA:

The proof is done. �

Example 0.45 Assume that A is a 2� 2 matrix. Is it possible to have

etA =

�
0 et

e2t 0

�
for some t 2 R ? Give your reasons.

Solution:

By the identity det etA = e(Tr A)t we must have det etA > 0 for any matrix A and any t 2 R: But
now

det etA = �e3t < 0:
Hence it is impossible. �

By the previous lemmas, we have:

Corollary 0.46 Consider the 2� 2 linear system8<:
dx

dt
= Ax

x (0) = x0 2 R2;
(39)

where A has 2 repeated eigenvalue � and A 6= �I: Then the solution (in matrix form) is given by

x (t) = etAx0 = P

�
e�t te�t

0 e�t

�
P�1x0 (40)

where P is any 2� 2 invertible matrix satisfying

P�1AP =

�
� 1
0 �

�
:

In particular, if P = (v1; v2) ; then Av1 = �v1; Av2 = v1 + �v2; and x (t) can also be written (in
vector form) as

x (t) = c1e
�tv1 + c2

�
te�tv1 + e

�tv2
�
; (41)

where c1; c2 solves

c1v1 + c2v2 = x0 (this is same as P�1x0 =
�
c1
c2

�
:
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Remark 0.47 Note that the coe¢ cient of te�t is the eigenvector v1:

Remark 0.48 In the above corollary we have

(A� �I) v1 = 0 and (A� �I) v2 = v1: (42)

In Linear Algebra book, the vector v2 is also called a generalized eigenvector.

We also have:

Corollary 0.49 Consider the 2� 2 linear system8<:
dx

dt
= Ax

x (0) = x0 2 R2;
(43)

where A has 2 complex conjugate eigenvalues � + i�; �� i�; � > 0: Then the solution (in matrix
form) is given by

x (t) = etAx0 = P

�
e�t cos (�t) �e�t sin (�t)
e�t sin (�t) e�t cos (�t)

�
P�1x0 (44)

where P is any 2� 2 invertible matrix satisfying

P�1AP =

�
� ��
� �

�
:

In particular, if P = (v1; v2) (note that now the eigenvector of � = �+ i� is v2 + iv1); then

Av1 = �v1 + �v2; Av2 = ��v1 + �v2; (45)

and x (t) can also be written (in vector form) as

x (t) = c1
�
e�t cos (�t) � v1 + e�t sin (�t) � v2

�
+ c2

�
�e�t sin (�t) � v1 + e�t cos (�t) � v2

�
; (46)

where c1; c2 solves
c1v1 + c2v2 = x0:

Remark 0.50 (another method) This is to use complex solutions and take its real part to
get real solutions. Assume A has 2 complex conjugate eigenvalues � + i�; � � i�; � > 0; with
corresponding complex eigenvectors v = u+ iw and �v = u� iw; where u; w 2 R2: Then the general
complex solution of dx=dt = Ax is

x (t) = c1e
(�+i�)t (u+ iw) + c2e

(��i�)t (u� iw) ;

where c1 = a1 + ib1; c2 = a2 + ib2 are two arbitrary complex constants. Note that

c1e
(�+i�)t (u+ iw) + c2e

(��i�)t (u� iw)
= (a1 + ib1) e

(�+i�)t (u+ iw) + (a2 + ib2) e
(��i�)t (u� iw)

= e�t (a1 + ib1) (cos �t+ i sin �t) (u+ iw)| {z }+e�t (a2 + ib2) (cos �t� i sin �t) (u� iw)| {z }
=

(
e�t (a1 + ib1) f[(cos �t)u� (sin �t)w] + i [(sin �t)u+ (cos �t)w]g

+e�t (a2 + ib2) f[(cos �t)u� (sin �t)w]� i [(sin �t)u+ (cos �t)w]g
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The real part of the above complex solution is given by(
e�t fa1 [(cos �t)u� (sin �t)w]� b1 [(sin �t)u+ (cos �t)w]g

+e�t fa2 [(cos �t)u� (sin �t)w] + b2 [(sin �t)u+ (cos �t)w]g
= (a1 + a2) e

�t [(cos �t)u� (sin �t)w] + (b2 � b1) e�t [(sin �t)u+ (cos �t)w]

and since a1; a2; b1; b2 are all arbitrary, we obtain the general real solution

c1e
�t [(cos �t)u� (sin �t)w] + c2e�t [(sin �t)u+ (cos �t)w] (47)

for arbitrary real constants c1; c2: Note that (47) is same as (46) if we replace u by v2 and w by v1:

Example 0.51 (See Example 0.39 �rst.) Consider the linear system(
x01 (t) = x1 � x2

x02 (t) = x1 + 3x2;
A =

�
1 �1
1 3

�
: (48)

We have �1 = �2 = 2 and the canonical form

P�1AP =

�
0 �1
�1 �1

��
1 �1
1 3

��
1 �1
�1 0

�
=

�
2 1
0 2

�
=

�
� 1
0 �

�
;

where

P = (v1; v2) =

�
1 �1
�1 0

�
with Av1 = 2v1; Av2 = v1 + 2v2:

The general solution is given by (in vector form)

x (t) = c1e
�tv1 + c2

�
te�tv1 + e

�tv2
�

= c1e
2t

�
1
�1

�
+ c2

�
te2t

�
1
�1

�
+ e2t

�
�1
0

��
;

i.e.
x1 (t) = c1e

2t + c2 (t� 1) e2t; x2 (t) = �c1e2t � c2te2t;
where c1; c2 are arbitrary constants.

Example 0.52 (See Example 0.40 �rst.) Consider the linear system(
x01 (t) = 3x1 � 2x2

x02 (t) = x1 + x2;
A =

�
3 �2
1 1

�
(49)

We have �1 = 2 + i; �2 = 2� i; and the canonical form

P�1AP =

�
1 �1
0 1

��
3 �2
1 1

��
1 1
0 1

�
=

�
2 �1
1 2

�
=

�
� ��
� �

�
;

where

P = (v1; v2) =

�
1 1
0 1

�
with Av1 = �v1 + �v2; Av2 = ��v1 + �v2:

The general solution is given by (in vector form)

x (t) = c1
�
e�t cos (�t) � v1 + e�t sin (�t) � v2

�
+ c2

�
�e�t sin (�t) � v1 + e�t cos (�t) � v2

�
= c1

�
e2t cos t

�
1
0

�
+ e2t sin t

�
1
1

��
+ c2

�
�e2t sin t

�
1
0

�
+ e2t cos t

�
1
1

��
;

where c1; c2 are arbitrary constants.
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0.3 Some fact from linear algebra.

Lemma 0.53 Let A; B be two n�n real matrices with B = (b1; :::; bn) where each bi is a column
vector. Then

det (Ab1; b2; :::; bn) + det (b1; Ab2; :::; bn) + � � �+ det (b1; b2; :::; Abn) = TrA � detB; (50)

where TrA denotes the trace of A:

Proof. De�ne the map F : Rn � � � � � Rn ! R by

F (b1; b2; :::; bn)

= det (Ab1; b2; :::; bn) + det (b1; Ab2; :::; bn) + � � �+ det (b1; b2; :::; Abn) :

One can check that F is an alternating multilinear map. In particular, we have F (b1; b2; :::; bn) =
0 if bi = bj for some i 6= j:
In view of this, it su¢ ces to check that (50) holds for the caseB = (e1; :::; en) ; where fe1; :::; eng is

the standard basis of Rn: But that is obvious. The proof is done. �

Lemma 0.54 Let A (t) be a time-dependent n�n real matrix which is invertible for all t 2 I (some
interval). Then we have the identity

d

dt
detA (t) = Tr

�
A�1 (t)

dA

dt

�
� detA (t) ; 8 t 2 I; (51)

where we note that Tr
�
A�1 (t) dA

dt

�
= Tr

�
dA
dt
A�1 (t)

�
:

Proof. This is a consequence of the previous lemma. Write A (t) = (a1 (t) ; a2 (t) ; :::; an (t)) ;
where ai (t) are column vectors. Then

d

dt
detA (t)

= det (a01 (t) ; a2 (t) ; :::; an (t)) + det (a1 (t) ; a
0
2 (t) ; :::; an (t)) + � � �+ det (a1 (t) ; a2 (t) ; :::; a0n (t))

and we note that
A0 (t) = (a01 (t) ; a

0
2 (t) ; :::; a

0
n (t))

and if we let P (t) = dA
dt
A�1 (t) ; then

P (t) a1 (t) =

�
dA

dt
A�1 (t)

�
a1 (t) =

dA

dt

�
A�1 (t) a1 (t)

�
=
dA

dt
(1; 0; :::; 0)T = a01 (t)

and similarly

P (t) a2 (t) =

�
dA

dt
A�1 (t)

�
a2 (t) =

dA

dt

�
A�1 (t) a2 (t)

�
=
dA

dt
(0; 1; 0; :::; 0)T = a02 (t) ; etc:

Hence by Lemma 0.53 we have

d

dt
detA (t)

=

(
det (P (t) a1 (t) ; a2 (t) ; :::; an (t)) + det (a1 (t) ; P (t) a2 (t) ; :::; an (t))

+ � � �+det (a1 (t) ; a2 (t) ; :::; P (t) an (t))

= Tr (P (t)) � detA (t) = Tr
�
dA

dt
A�1 (t)

�
� detA (t) = Tr

�
A�1 (t)

dA

dt

�
� detA (t) :

The proof is done. �
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Lemma 0.55 Let A be any n� n real matrix, then

det etA = et(TrA) for all t 2 (�1;1) : (52)

and when t = 1; we get
det eA = eTrA: (53)

Remark 0.56 Note that we always have

det etA > 0

for all t 2 (�1;1) and all real matrices A:

Proof. Compute
d

dt
det etA = Tr

�
B�1 (t)

dB

dt

�
� det etA; B (t) = etA:

Since B�1 (t) = e�tA and dB
dt
= AetA = etAA; we have

Tr

�
B�1 (t)

dB

dt

�
= Tr

�
e�tAetAA

�
= TrA:

Hence
d

dt
det etA = TrA � det etA; 8 t 2 (�1;1)

and so
det etA = Ce(TrA)t; 8 t 2 (�1;1)

for some constant C: Letting t = 0; we see that C = 1: The proof is done. �

Corollary 0.57 For any n� n real matrices A; B; we have the following:8>>>>>><>>>>>>:

(1) :
�
eA
��1

= e�A:

(2) :
�
eA
�T
= eA

T
:

(3) : det eA = eTrA:

(4) : eA+B = eAeB = eBeA = eB+A if AB = BA:

(54)

In general, there is no identity for Tr
�
eA
�
: However, if A has n distinct real eigenvalues �1; :::; �n; then

det eA = e�1+���+�n and TreA = e�1 + � � �+ e�n :

Remark 0.58 We also have the following elementary fact: if B = P�1AP; where A; B; P are
n� n real matrices, then

detB = detA; TrB = TrA; eB = PeAP�1; det eB = det eA; T reB = TreA: (55)

Proof. This is now clear. �

Corollary 0.59 If an n � n real matrix A satis�es AT = �A (i.e., A is anti-symmetric), then
eA is an orthogonal matrix.
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Remark 0.60 If A is anti-symmetric, then all of its diagonal elements are zero. In particular, we
have TrA = 0: We also have

detA = detAT = det (�A) = (�1)n detA:

Hence if n is odd, we have detA = 0:

Proof. Let M = eA: Then, by de�nition, M is an orthogonal matrix if and only if it satis�es
MT =M�1: We now have

MT =
�
eA
�T
= eA

T

= e�A =M�1:

The proof is done. �

Lemma 0.61 Assume that A is an n� n anti-symmetric real matrix. Then for any two solutions
x(1) (t) ; x(2) (t) 2 Rn to the linear system of equations

dx

dt
= Ax

their inner product


x(1) (t) ;x(2) (t)

�
is independent of time.

Proof. By

d

dt



x(1) (t) ; x(2) (t)

�
=


Ax(1) (t) ; x(2) (t)

�
+


x(1) (t) ; Ax(2) (t)

�
=

�
A+ AT

�
x(1) (t) ; x(2) (t)

�
= 0

the conclusion is proved. �

Remark 0.62 Another proof is: Since etA is an orthogonal matrix, we have

x(1) (t) ; x(2) (t)

�
=


etAx(1) (0) ; etAx(2) (0)

�
=
D�
etA
�T
etAx(1) (0) ; x(2) (0)

E
=


x(1) (0) ; x(2) (0)

�
for all t 2 R: In particular, we see that if A is an n�n anti-symmetric real matrix, the orthogonal
linear transformation etA : Rn ! Rn preserves length and volume for each �xed time t 2 R: We
call the map etA : Rn ! Rn; t 2 (�1;1) ; the �ow generated by the ODE dx=dt = Ax:

Lemma 0.63 Assume that A is a real n�n anti-symmetric matrix. Then its eigenvalues are either
0 or pure imaginary.

Remark 0.64 Compare with the well-known fact: if A is a real n� n symmetric matrix, then all
of its eigenvalues are real.

Proof. Let � 2 R be a real eigenvalue. Then there exists some nonzero v 2 Rn such that
Av = �v: Hence

� jvj2 = h�v; vi = hAv; vi =


v; ATv

�
= hv; �Avi = hv; ��vi = �hv; �vi = �� jvj2 ;

which implies that � = 0:
On the other hand, if � is a complex eigenvalue, then there exists some nonzero complex

eigenvector v 2 Cn such that Av = �v: Using complex inner product h; iC we have

hAv; viC =
D
v; ATv

E
C

and so (note that A is a real matrix)

� jvj2 = h�v; viC = hAv; viC =
D
v; ATv

E
C
=


v; �Av

�
C = �hv; AviC = �hv; �viC = ��� jvj

2

and so �+ �� = 0: Thus � is pure imaginary. �
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0.4 Nonhomogeneous 2� 2 linear system.
Let A be an n� n real matrix. We now consider the equation8<:

dx

dt
= Ax+ b (t) ; t 2 I; 0 2 I

x (0) = x0 2 Rn
(56)

where b (t) 2 Rn is a continuous function de�ned on some interval I with 0 2 I:

Theorem 0.65 The solution to (56) is unique and is de�ned on I; given by the following "general
solution formula":

x (t) = etAx0 + e
tA

Z t

0

e�sAb (s) ds; t 2 I: (57)

Remark 0.66 (57) is the same as the general solution formula in the one-dimensional case. It is
good only for theoretical purpose.

Proof. We have

dx

dt
= AetAx0 + Ae

tA

Z t

0

e�sAb (s) ds+ etAe�tAb (t)

= A

�
etAx0 + e

tA

Z t

0

e�sAb (s) ds

�
+ b (t) = Ax+ b (t) ; t 2 I:

As for uniqueness, if we have two solutions to (56) on I; their di¤erence w (t) will satisfy

dw

dt
= Aw; w (0) = 0:

Hence, by uniqueness, we must have w (t) � 0: The proof is done. �

In practice, we will prefer to use "diagonalization method (decoupled method)" if A has
2 distinct real eigenvalues or 2 repeated real eigenvalues. However, if A has 2 complex conjugate
eigenvalues, the method is slightly di¤erent.

Example 0.67 (2 di¤erent real eigenvalues.) Find the general solution of the equation

dx

dt
=

�
3 �1
4 �2

�
x+

�
2e�t

3t

�
; t 2 (�1;1) :

Solution:

We have

A =

�
3 �1
4 �2

�
with eigenvalues �1 = 2; �2 = �1 and corresponding eigenvectors v1 = (1; 1) ; v2 = (1; 4) : Thus

P =

�
1 1
1 4

�
; P�1 =

1

3

�
4 �1
�1 1

�
; P�1AP =

�
2 0
0 �1

�
and if we let

x = Py

we would have
dx

dt
= P

dy

dt
= Ax+

�
2e�t

3t

�
= APy +

�
2e�t

3t

�
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and so
dy

dt
= P�1APy + P�1

�
2e�t

3t

�
=

�
2 0
0 �1

�
+ P�1

�
2e�t

3t

�
;

which gives (the system becomes decoupled)8>><>>:
dy1
dt

= 2y1 +
1
3
(8e�t � 3t)

dy2
dt

= �y2 + 1
3
(�2e�t + 3t) :

The solution of the above is (
y1 (t) = C1e

2t � 8
9
e�t + 1

2
t+ 1

4

y2 (t) = C2e
�t � 2

3
te�t + t� 1:

Finally we get the general solution

x (t) = Py (t) =

�
1 1
1 4

��
C1e

�3t + 1
2
e�t � 1

2
t+ 1

6

C2e
�t + te�t + 3

2
t� 3

2

�
:

�

Example 0.68 (2 di¤erent real eigenvalues.) Find the general solution of the equation

dx

dt
=

�
�2 1
1 �2

�
x+

�
2e�t

3t

�
; t 2 (�1;1) :

Solution:

The two eigenvalues of the coe¢ cients matrix A are �1 = �3; �2 = �1; with corresponding
eigenvectors

v1 =

�
1
�1

�
; v2 =

�
1
1

�
and so

P =

�
1 1
�1 1

�
; P�1 =

1

2

�
1 �1
1 1

�
; P�1AP =

�
�3 0
0 �1

�
:

If we let
x = Py

we would have
dx

dt
= P

dy

dt
= Ax+

�
2e�t

3t

�
= APy +

�
2e�t

3t

�
and so

dy

dt
= P�1APy + P�1

�
2e�t

3t

�
;

which gives (the system becomes decoupled)8>><>>:
dy1
dt
= �3y1 + 1

2
(2e�t � 3t)

dy2
dt
= �y2 + 1

2
(2e�t + 3t)

we get (
y1 (t) = C1e

�3t + 1
2
e�t � 1

2
t+ 1

6
;

y2 (t) = C2e
�t + te�t + 3

2
t� 3

2
:
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Finally we get the general solution

x (t) =

�
1 1
�1 1

��
C1e

�3t + 1
2
e�t � 1

2
t+ 1

6

C2e
�t + te�t + 3

2
t� 3

2

�
:

�

Example 0.69 (2 repeated real eigenvalues.) Find the general solution of the equation

dx

dt
=

�
1 �1
1 3

�
x+

�
2e�t

3t

�
; t 2 (�1;1) :

Solution:

See Example 0.39also. We have �1 = �2 = 2 with v1 = (1;�1) ; v2 = (�1; 0) ; where

Av1 = 2v1; Av2 = v1 + 2v2:

Hence

P =

�
1 �1
�1 0

�
; P�1 =

�
0 �1
�1 �1

�
; P�1AP =

�
2 1
0 2

�
: (58)

Let x = Py to get

dy

dt
= P�1APy + P�1

�
2e�t

3t

�
=

�
2 1
0 2

��
y1
y2

�
+

�
0 �1
�1 �1

��
2e�t

3t

�
and then (the system becomes "semi-decoupled")8>><>>:

dy1
dt

= 2y1 + y2 � 3t

dy2
dt

= 2y2 � 2e�t � 3t:

One can solve the second equation �rst and then plug into the �rst equation to solve it (one
can always do so, as guaranteed by the canonical form (58)). Finally we have

x (t) =

�
1 �1
�1 0

��
y1 (t)
y2 (t)

�
:

We leave the details to you. �

Example 0.70 (2 complex conjugate eigenvalues.) Find the general solution of the equation

dx

dt
=

�
3 �2
1 1

�
x+

�
2e�t

3t

�
; t 2 (�1;1) :

Solution:

See Example 0.40 also. The matrix has eigenvalues 2� i: A complex eigenvector for 2 + i is

v =

�
1 + i
1

�
=

�
1
1

�
+ i

�
1
0

�
= u+ iw:

Now

P = (w; u) =

�
1 1
0 1

�
; P�1 =

�
1 �1
0 1

�
; P�1AP =

�
2 �1
1 2

�
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and the system in terms of y (t) (x = Py) is given by8>><>>:
dy1
dt

= 2y1 � y2 + 2e�t � 3t

dy2
dt

= y1 + 2y2 + 3t:

Unfortunately this system is not decoupled (however, after change of variables, it has a better
symmetric form to work on). There is one way to avoid the use of formula (57), but we still have
to do a lot of computation. Rewrite the above as(

(D � 2) y1 + y2 = 2e�t � 3t

�y1 + (D � 2) y2 = 3t;
(59)

where the operator D means d
dt
; and if apply the operator (D � 2) to the second equation and add

it to the �rst equation, we would get

(D � 2)2 y2 + y2 = 2e�t � 3t+ (D � 2) 3t = 2e�t � 9t+ 3;

i.e.,
y002 (t)� 4y02 (t) + 5y2 (t) = 2e�t � 9t+ 3:

From it we can solve y2 (t) (use undetermined coe¢ cient method or variation of parameters
method) and plug it into the second equation of (59) to solve y1 (t) (be careful: it will be too
much trouble if we plug y2 (t) into the �rst equation of (59) to solve y1 (t)): We leave the details to
you ... �

0.5 3� 3 linear system with constant coe¢ cients.

The ODE to be solved now is the following 3� 3 linear system with constant coe¢ cients:

dx

dt
= Ax; where A is a 3� 3 constant real matrix. (60)

By theory, we know that the solution is given by

x (t) = etAx0; t 2 (�1;1) ; (61)

where x0 is the initial condition.
In the following, we want to use the "diagonalization method (decoupled method)" to

solve it. Denote the three eigenvalues of A by �1; �2 and �3: We have several cases to consider.
Before going on, we recall two important facts from Linear Algebra:

Lemma 0.71 Let A be an n� n real matrix with characteristic polynomial

Pn (�) = det (A� �I) ; degPn (�) = n:

If � = �0 is a root of Pn (�) = 0 with multiplicity m (i.e. �0 is a root which appears m times), m 2
f1; 2; :::; ng ; then we have

dimker (A� �0I) � m; (62)

where ker (A� �0I) := fv 2 Rn : (A� �0I) v = 0g is the eigenspace of �0:

Remark 0.72 The above is also known as: "geometric multiplicity" � "algebraic multiplicity".

Lemma 0.73 (Rank Theorem.) Let T : Rn ! Rm be a linear transformation (n; m can be any
two positive integers). Then we have

dim ImT + dimkerT = n: (63)

To solve (60), we divide our discussions into several cases.
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0.5.1 Case 1: �1; �2; �3 are real and distinct.

This is the easiest case. Let v1; v2; v3 be the corresponding eigenvectors of �1; �2; �3: Then they
are independent. If we let

P = (v1; v2; v3) (each vi is a column vector),

then P is invertible with

P�1AP =

0@ �1 0 0
0 �2 0
0 0 �3

1A :
Now let x = Py (change of variables) to get

APy = Ax =
dx

dt
= P

dy

dt

and obtain the equation for y (t) = (y1 (t) ; y2 (t) ; y3 (t)) ; which is

dy

dt
= P�1APy =

0@ �1 0 0
0 �2 0
0 0 �3

1Ay:
Thus one can easily solve y (t) to get y (t) =

�
c1e

�1t; c2e
�2t; c3e

�3t
�
: By the relation x = Py; one

can get the general solution x (t) of (60), i.e.,

x (t) = c1e
�1tv1 + c2e

�2tv2 + c3e
�3tv3; (64)

where c1; c2 and c3 are arbitrary constants.

Remark 0.74 We also have

x (t) = etAx0 = PD (t)P
�1x0; D (t) = diag

�
e�1t; e�2t; e�3t

�
; x (0) = x0 (65)

and if we write P�1x0 as P�1x0 = (c1; c2; c3) ; we get the same solution as in (64).

0.5.2 Case 2: �1 = �; �2 = �3 = �; � 6= �; �; � 2 R.

For this case, we have two subcases: either dimker (A� �I) = 2 or dimker (A� �I) = 1:

Case 2A: dimker (A� �I) = 2: In this case we can �nd two linearly independent eigenvectors
v2; v3 for the repeated eigenvalue �: Let v1 be the corresponding eigenvector of �; then we can
diagonalize A as (it is easy to see that v1; v2; v3 are linearly independent in R3)

P�1AP =

0@ � 0 0
0 � 0
0 0 �

1A ; P = (v1; v2; v3) :

Then we are in the previous easy case.

Case 2B: dimker (A� �I) = 1: In this case we can �nd only one independent eigenvector for
the repeated eigenvalue �: In this case we cannot diagonalize the matrix A: However, we have the
following:

26



Lemma 0.75 Assume that we can �nd only one independent eigenvector for the repeated eigenvalue
�: Then there exist three linearly independent vectors v1; v2; v3 (where v1; v2 are eigenvectors of
� and � respectively, and v3 is a generalized eigenvector of �) such that

A (v1; v2; v3) = (v1; v2; v3)

0@ � 0 0
0 � 1
0 0 �

1A (66)

where (v1; v2; v3) is the 3� 3 matrix with column vectors v1; v2; v3:

Proof. Let v1; v2 be two independent eigenvectors v1; v2 with Av1 = �v1; Av2 = �v2; � 6=
�: Consider the map

A� �I : R3 ! R3: (67)

Let R = Im (A� �I) ; K = ker (A� �I) (K is the eigenspace of �), dimK = 1: By the Rank
Theorem in Linear Algebra (applied to the linear transformation A � �I : R3 ! R3), we know
that dimR = 2:

We claim: K � R (note that K is a line and R is a plane).

If K 6� R; then the operator A��I : R! R (now we restrict A��I onto the subspace R � R3)
has zero kernel and thus 1-1. By Rank Theorem again, it is also onto. Hence for any v 2 R there
exists some w 2 R such that (A� �I)w = v; which gives

Av = A (A� �I)w = (A� �I) (Aw) (note that R is the image of A� �I : R3 ! R3)

This says that Av 2 R also. Hence

A : R! R (A is a linear map from R to R; dimR = 2) (68)

and on it we have two eigenvalues �1; �2 (regardless of what they are). Since we assume K =
ker (A� �I) 6� R; both eigenvalues of A on R must be di¤erent from �: This will force (note that
A has two eigenvalues � and � only)

�1 = �2 = �;

which contradicts the fact that the eigenvalues of A are �; �; �. Hence K � R and the claim is
proved.
As K � R; we have v2 2 K � R: Hence there exists some vector v3 6= 0 2 R3 such that

(A� �I) v3 = v2 2 K (i.e. Av3 = v2 + �v3) (69)

We called v3 a generalized eigenvector of � corresponding to v2: It is independent to v2:
We then claim that v1; v2; v3 are linearly independent. If not, then (we already know that

v1; v2 are independent)
v3 = �v1 + �v2 for some �; �:

Applying A� �I onto it to get

v2 = (A� �I) v3 = (A� �I) (�v1 + �v2) = � (A� �I) v1 = � (�� �) v1;

a contradiction. Therefore we have (66) and the proof is done. �

Remark 0.76 (See Remark 0.48 �rst.) In the 2�2 case, we have K = R (now both have dimension
1) due to (42). Moreover, we have (A� �I)2 = 0 (now � is the repeated eigenvalue): This can also
be seen from its canonical form since

(A� �I)2 =
�
p�1 (A� �I)P

�2
=

�
0 1
0 0

�2
=

�
0 0
0 0

�
:

However, this is not the case in R3.
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Remark 0.77 (Summary.) In conclusion, we need to solve v1 (eigenvector of �), v2 (eigenvector
of �; v2 2 K), v3 (generalized eigenvector of � corresponding to v2) satisfying the system:

Av1 = �v1; Av2 = �v2; Av3 = v2 + �v3; (70)

where in the third equation of (70), we need to use the fact

K = ker (A� �I) � R = Im (A� �I) ; K is a line and R is a plane: (71)

Since v2 2 K � R; the equation Av3 = v2 + �v3 must have a solution for v3:

Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the following
"semi-decoupled system":

dy

dt
(t) =

�
P�1AP

�
y =

0@ � 0 0
0 � 1
0 0 �

1Ay; y = (y1; y2; y3) (72)

and the general solution to the ODE is given by

x (t) = Py (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ c1e
�t

(c2 + c3t) e
�t

c3e
�t

1A
= c1e

�tv1 + (c2 + c3t)| {z } e�tv2 + c3e�tv3: (73)

Note that in the above v1 and v2 are eigenvalue vectors.

Example 0.78 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ 1 0 0
�4 1 0
3 6 2

1A0@ x
y
z

1A : (74)

Solution:

The eigenvalues of the coe¢ cient matrix are �1 = 2; �2 = �3 = 1: To �nd the eigenvector for
� = 2, we solve 8>><>>:

x = 2x

�4x+ y = 2y

3x+ 6y + 2z = 2z

and we obtain v1 = (0; 0; 1) : To �nd the eigenvector for the repeated � = 1, we solve8>><>>:
x = x

�4x+ y = y

3x+ 6y + 2z = z

and we obtain one eigenvector v2 = (0; 1;�6) : As it is impossible to �nd another independent
eigenvector, we have to �nd generalized eigenvector. We solve8>><>>:

x = 0 + x

�4x+ y = 1 + y

3x+ 6y + 2z = �6 + z
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and obtain x = �1=4; �3=4+6y+z = �6:Hence a generalized eigenvector is v3 = (�1=4;�1; 3=4) (or
other possible answers). We see that v1; v2; v3 are linearly independent.
The general solution is given by0@ x (t)

y (t)
z (t)

1A = c1e
2t

0@ 0
0
1

1A+ (c2 + c3t)| {z } et
0@ 0

1
�6

1A+ c3et
0@ �1

4

�1
3
4

1A : (75)

�

Remark 0.79 Another method: Since the matrix in (74) is lower triangular, one can solve x (t)
�rst and then use it to solve y (t) ; and then use x (t) and y (t) to solve z (t) :

0.5.3 �1 = �2 = �3 = � (the most di¢ cult case).

Case 1: The eigenspace ker (A� �I) has dimension 2:

Remark 0.80 Unless A = �I; otherwise the case dimker (A� �I) = 3 cannot happen.

Assume �1 = �2 = �3 = � and dimker (A� �I) = 2: This means that we can �nd two linearly
independent eigenvectors of �:
We claim the following:

Lemma 0.81 Assume that dimker (A� �I) = 2: Then there exist three linearly independent vec-
tors v1; v2; v3 (where v1; v2 are eigenvectors) such that

A (v1; v2; v3) = (v1; v2; v3)

0@ � 0 0
0 � 1
0 0 �

1A (76)

where (v1; v2; v3) is the 3� 3 matrix with column vectors v1; v2; v3:

Proof. Consider the map A� �I : R3 ! R3: Let R = Im (A� �I) ; K = ker (A� �I) ; dimK =
2: By the Rank Theorem, we know dimR = 1: We claim that R � K (note that now K is a
plane and R is a line). To see this, choose a nonzero vector v 2 R; then (A� �I) v 2 R also (note
that now A� �I : R! R with dimR = 1). Since dimR = 1; we must have

(A� �I) v = �v for some � 2 R:

If � 6= 0; then A has eigenvalue �+ �; a contradiction. Hence (A� �I) v = 0 for all v 2 R and this
implies R � K:
Now we choose two linearly independent vectors v1; v2 in K with v1 =2 R; v2 2 R: Then there

exists some nonzero vector v3 such that

(A� �I) v3 = v2 2 R: (77)

Such vector v3 =2 K and so it is independent to v1; v2: We now have identity (76). �

Remark 0.82 (Summary.) In conclusion, we need to solve v1 (eigenvector of �; v1 2 K; v1 =2 R),
v2 (eigenvector of �; v2 2 R � K), v3 (generalized eigenvector of � corresponding to v2; v3 =2 K)
satisfying the system:

Av1 = �v1; Av2 = �v2; Av3 = v2 + �v3: (78)

This is similar to (70). In the third equation of (78), we need to use the fact(
R = Im (A� �I) � K = ker (A� �I) ; R is a line and K is a plane

v1; v2 2 K; v1 =2 R; v2 2 R; v3 2 R3:
(79)

Since v2 2 R; the equation Av3 = v2 + �v3 must have a solution for v3:

29



Remark 0.83 Note that we have

(A� �I)2 v = 0 for all v 2 R3: (80)

That is:
R3 A��I! R (R � K) A��I! 0: (81)

Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the "semi-
decoupled system":

dy

dt
(t) =

�
P�1AP

�
y =

0@ � 0 0
0 � 1
0 0 �

1Ay; y = (y1; y2; y3) (82)

and, similar to (73), the general solution to the ODE is given by

x (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ c1e
�t

(c2 + c3t) e
�t

c3e
�t

1A
= c1e

�tv1 + (c2 + c3t)| {z } e�tv2 + c3e�tv3: (83)

Note that in the above v1 and v2 are eigenvectors.

Example 0.84 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ 5 �3 �2
8 �5 �4
�4 3 3

1A0@ x
y
z

1A :

Solution:

The characteristic polynomial of the coe¢ cient matrix is������
5� � �3 �2
8 �5� � �4
�4 3 3� �

������
= (5� �) (�5� �) (3� �)� 48� 48 + 8 (5 + �) + 12 (5� �) + 24 (3� �)
=
�
�2 � 2�+ 1

�
(4� �) + 4� 3� = � (�� 1)3 :

Hence we have �1 = �2 = �3 = 1: To �nd the eigenvector for � = 1, we solve8>><>>:
5x� 3y � 2z = x

8x� 5y � 4z = y

�4x+ 3y + 3z = z

and obtain 4x� 3y � 2z = 0: Thus one can �nd two linearly independent eigenvectors v1; v2: The
space K = ker (A� I) is given by the plane 4x� 3y � 2z = 0:
The image of the matrix

A� I =

0@ 4 �3 �2
8 �6 �4
�4 3 2

1A : R3 ! R3
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is a line R given by ft (1; 2;�1) : t 2 (�1;1)g. We note that R � K:
According to the proof, we must choose two linearly independent vectors v1; v2 in K with

v1 =2 R; v2 2 R: Thus we choose v1 = (3; 4; 0) ; v2 = (1; 2;�1) : Finally, we solve Av3 = v2 + v3 to
get 8>><>>:

5x� 3y � 2z = 1 + x

8x� 5y � 4z = 2 + y

�4x+ 3y + 3z = �1 + z
and get 4x � 3y � 2z = 1: So we choose v3 = (0; 1;�2) : We see that v1; v2; v3 are linearly
independent.
The general solution is given by

x (t) = c1e
t

0@ 3
4
0

1A+ (c2 + c3t)| {z } et
0@ 1

2
�1

1A+ c3et
0@ 0

1
�2

1A : (84)

�

Remark 0.85 (important) If we do not choose v2 2 R; then the system Av3 = v2 + v3 may not
have a solution. For example, choose v2 = (3; 4; 0) 2 K; v2 62 R: Then we solve8>><>>:

5x� 3y � 2z = 3 + x

8x� 5y � 4z = 4 + y

�4x+ 3y + 3z = 0 + z

and see that there is no solution at all (see the �rst equation and the third equation).

Case 2: The eigenspace ker (A� �I) has dimension 1:

Assume �1 = �2 = �3 = � and dimker (A� �I) = 1: This means that we can �nd only one
independent eigenvector of �:
In this case Lemma 0.81 becomes the following:

Lemma 0.86 Assume dimker (A� �I) = 1: Then there exist three linearly independent vectors
v1; v2; v3 (where v1 is eigenvector) such that

A (v1; v2; v3) = (v1; v2; v3)

0@ � 1 0
0 � 1
0 0 �

1A (85)

where (v1; v2; v3) is the 3� 3 matrix with column vectors v1; v2; v3:

Proof. Consider the map A � �I : R3 ! R3: Let R = Im (A� �I) ; K = ker (A� �I) ; dimR =
2; dimK = 1: We claim that K � R (now K is a line and R is a plane). If not, then the operator
A� �I : R! R has zero kernel and thus 1-1. By Rank Theorem again, it is also onto. Hence for
any v 2 R there exists some w 2 R such that

(A� �I)w = v;

which gives

Av = A (A� �I)w = (A� �I) (Aw) (note that R is the image of A� �I : R3 ! R3)

31



This says that Av 2 R also. Hence

A : R! R; dimR = 2

is a linear map and on it we have two eigenvalues �1; �2 (regardless of what they are). Since
we assume K 6� R; both eigenvalues of A on R must be di¤erent from �, a contradiction. This
contradiction implies that K � R:
Next we claim that (A� �I)R = K: To see this, note that (A� �I)R is one-dimensional

(it cannot be zero-dimensional since dimker (A� �I) = 1) due to K � R and the Rank Theorem
(applied to the map A � �I : R ! R). If (A� �I)R 6= K; there exists some nonzero vector
v =2 K; v 2 R; such that (A� �I)R = ftv : t 2 Rg : But then we have

(A� �I) v = tv for some t 2 R; t 6= 0:

This will yield a new eigenvalue �+ t; impossible. Hence (A� �I)R = K:
Now let v1 2 K be an eigenvector of A. By above there exists some nonzero vector v2 2 R; v2 =2

K; with (note that (A� �I)R = K; see also Remark 0.88 below)

(A� �I) v2 = v1:

Since v2 2 R; there exists some nonzero vector v3 2 R3 such that

(A� �I) v3 = v2 (note that now (A� �I)2 v3 = v1).

We then claim that v1; v2; v3 are linearly independent. If not, then (we already know that v1; v2 are
independent)

v3 = �v1 + �v2 for some �; �:

Applying A� �I onto it to get

v2 = (A� �I) v3 = (A� �I) (�v1 + �v2) = � (A� �I) v2 = �v1;

a contradiction. Therefore we have (66) and the proof is done. �

Remark 0.87 We have the picture for the above proof:

R3 A��I! R (K � R) A��I! K
A��I! 0: (86)

Remark 0.88 (Important) We claim that it is impossible to have v2 2 R3; v2 =2 R; such that

(A� �I) v2 = v1; where v1 2 K; v1 6= 0:

To see this, assume possible (note that v2 6= 0). Then for any v 2 R3 there exists some vector � 2 R
(note that dimR = 2) such that

v = v2 + �; v2 =2 R; � 2 R:

This implies
(A� �I) v = (A� �I) (v2 + �) 2 K

due to (A� �I) v2 = v1 2 K and the identity (A� �I)R = K: The above implies R = K (we know
dimR = 2; dimK = 1), a contradiction. In view of this, if we solve the equation

(A� �I) v2 = v1; where v1 2 K; v1 6= 0:

then automatically we have v2 2 R: Then one can go directly to �nd v3 2 R3 such that

(A� �I) v3 = v2 2 R:
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Remark 0.89 (Summary.) In conclusion, we need to solve v1 (eigenvector of �; v1 2 K), v2 (generalized
eigenvector of � corresponding to v1; v2 2 R; v2 =2 K), v3 (generalized eigenvector of � cor-
responding to v2; v3 =2 R) satisfying the system:

Av1 = �v1; Av2 = v1 + �v2; Av3 = v2 + �v3: (87)

In the third equation of (78), we need to use the fact8>><>>:
K = ker (A� �I) � R = Im (A� �I) ; K is a line and R is a plane

(A� �I)R = K

v1 2 K; v2 62 K; v2 2 R; v3 2 R3:

(88)

Since v2 2 R; the equation Av3 = v2 + �v3 must have a solution for v3:

Remark 0.90 In summary, we have the following: Assume A is a 3 � 3 real matrix with �1 =
�2 = �3 = �, then if ker (A� �I) has three independent eigenvectors (this can happen only when
A = �I), then

P�1AP =

0@ � 0 0
0 � 0
0 0 �

1A
and if ker (A� �I) has two independent eigenvectors, then

P�1AP =

0@ � 0 0
0 � 1
0 0 �

1A
and if ker (A� �I) has only one independent eigenvector, then

P�1AP =

0@ � 1 0
0 � 1
0 0 �

1A :
Let P = (v1; v2; v3) : In this case the ODE for y (t) (we let x = Py) becomes the following

"semi-decoupled system":

dy

dt
(t) =

�
P�1AP

�
y =

0@ � 1 0
0 � 1
0 0 �

1Ay; y = (y1; y2; y3) (89)

and so 8>>>>>><>>>>>>:

dy1
dt
= �y1 + y2

dy2
dt
= �y2 + y3

dy3
dt
= �y3:

We get (solve y3 (t) �rst, and then y2 (t) ; and then y1 (t))

y1 (t) =
�
c1 + c2t+

c3
2
t2
�
e�t; y2 (t) = (c2 + c3t) e

�t; y3 (t) = c3e
�t
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and, similar to (83), the general solution to the ODE is given by

x (t) = (v1; v2; v3)y (t) = (v1; v2; v3)

0@ �
c1 + c2t+

c3
2
t2
�
e�t

(c2 + c3t) e
�t

c3e
�t

1A
=
�
c1 + c2t+

c3
2
t2
�
e�tv1 + (c2 + c3t) e

�tv2 + c3e
�tv3: (90)

Note that in the above only v1 is eigenvector.

Example 0.91 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ 1 1 1
2 1 �1
�3 2 4

1A0@ x
y
z

1A :
Solution:

The characteristic polynomial of the coe¢ cient matrix is������
1� � 1 1
2 1� � �1
�3 2 4� �

������
= (1� �)2 (4� �) + 4 + 3 + 3 (1� �) + 2 (1� �)� 2 (4� �)
=
�
�2 � 2�+ 1

�
(4� �) + 4� 3�

= ��3 + 6�2 � 12�+ 8 = � (�� 2)3 :

Hence we have �1 = �2 = �3 = 2: To �nd the eigenvector for � = 2, we solve8>><>>:
x+ y + z = 2x

2x+ y � z = 2y

�3x+ 2y + 4z = 2z

and we obtain x = 0; y + z = 0: Thus we can �nd only one independent eigenvector v1 =
(0; 1;�1) : The image of the matrix

A� 2I =

0@ �1 1 1
2 �1 �1
�3 2 2

1A : R3 ! R3

is the planeR given by x�y�z = 0 (or the plane spanned by the two vectors (�1; 2;�3) ; (1;�1; 2)).
Then we solve Av2 = v1 + 2v2 to get8>><>>:

x+ y + z = 2x

2x+ y � z = 1 + 2y

�3x+ 2y + 4z = �1 + 2z

and obtain x = 1; y+ z = 1:We can pick v2 = (1; 1; 0) (by Remark 0.88 we must have v2 2 R; v2 =2
K; or one can check that v2 lies in the plane x�y�z = 0; or v2 = 2 (�1; 2;�3)+3 (1;�1; 2)). Finally,
we solve Av3 = v2 + 2v3 to get 8>><>>:

x+ y + z = 1 + 2x

2x+ y � z = 1 + 2y

�3x+ 2y + 4z = 2z
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and obtain x = 2; y + z = 3: We can pick v3 = (2; 3; 0) : Hence the general solution is given by

x (t) =
�
c1 + c2t+

c3
2
t2
�
e2tv1 + (c2 + c3t) e

2tv2 + c3e
2tv3 = ::::::

�

0.5.4 �1 = �; �2 = �+ i�; �3 = �� i�:

Assume we have three eigenvalues � 2 R and �+ i�; �� i�; �; � 2 R; � 6= 0. There exists a basis
fv; v1; v2g satisfying (see (45)) (now the eigenvector of �+ i� is v2 + iv1)

Av = �v; Av1 = �v1 + �v2; Av2 = ��v1 + �v2;

and so

AP = P

0@ � 0 0
0 � ��
0 � �

1A ; P = (v; v1; v2) :

In this case the ODE for y (t) (we let x = Py) becomes the following "semi-decoupled system":8>>>>>><>>>>>>:

dy1
dt

= �y1

dy2
dt

= �y2 � �y3

dy3
dt

= �y2 + �y3

(91)

and its general solution is given by8>><>>:
y1 (t) = c1e

�t

y2 (t) = e
�t (c2 cos �t� c3 sin �t)

y3 (t) = e
�t (c2 sin �t+ c3 cos �t) :

(92)

Hence the general solution x (t) to the ODE x0 (t) = Ax (t) is

x (t) = Py (t) = (v; v1; v2)

0@ c1e
�t

e�t (c2 cos �t� c3 sin �t)
e�t (c2 sin �t+ c3 cos �t)

1A
= c1e

�tv + c2e
�t [(cos �t) v1 + (sin �t) v2] + c3e

�t [� (sin �t) v1 + (cos �t) v2] : (93)

Example 0.92 Find the general solution of the system

d

dt

0@ x
y
z

1A =

0@ �3 0 2
1 �1 0
�2 �1 0

1A0@ x
y
z

1A :
Solution:

The characteristic polynomial of the matrix is of the coe¢ cient matrix are������
�3� � 0 2
1 �1� � 0
�2 �1 ��

������ = � (�+ 2) ��2 + 2�+ 3� :
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Hence the eigenvalues are �1 = �2; �2 = �1 +
p
2i; �3 = �1 �

p
2i: To �nd the eigenvector for

� = �2, we solve 8>><>>:
�3x+ 2z = �2x

x� y = �2y

�2x� y = �2z

and we obtain x = 2z; y = �2z: Thus v = (2;�2; 1) : To �nd the eigenvector for � = �1+
p
2i, we

solve 8>>><>>>:
�3x+ 2z =

�
�1 +

p
2i
�
x

x� y =
�
�1 +

p
2i
�
y

�2x� y =
�
�1 +

p
2i
�
z

and get complex eigenvector

u =

0@ p
2i
1

�1 +
p
2i

1A =

0@ 0
1
�1

1A+ i
0@ p

2
0p
2

1A :
So we get v1 =

�p
2; 0;

p
2
�
and v2 = (0; 1;�1) : The general solution is given by

x (t) = c1e
�2tv + c2e

�t
h�
cos
p
2t
�
v1 +

�
sin
p
2t
�
v2

i
+ c3e

�t
h
�
�
sin
p
2t
�
v1 +

�
cos
p
2t
�
v2

i
:

�
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