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Theorem 3.6.1

• Exponential Martingale

• Let 𝑊 𝑡 , 𝑡 ≥ 0, be a Brownain motion with a filtration 

𝐹 𝑡 , 𝑡 ≥ 0, and let 𝜎 be a constant. The process 𝑍 𝑡 , 𝑡 ≥ 0,

is a martingale.

𝑍 𝑡 = 𝑒𝜎𝑊 𝑡 −
1

2
𝜎2𝑡



Theorem 3.6.1 Proof (1)

• For 0 ≤ 𝑠 ≤ 𝑡, we have

𝐸 𝑍 𝑡 𝐹 𝑠 = 𝐸 𝑒𝜎𝑊 𝑡 −
1
2𝜎

2𝑡 𝐹 𝑠

= 𝐸 𝑒𝜎𝑊 𝑡 −𝜎𝑊 𝑠 +𝜎𝑊(𝑠)−
1

2
𝜎2𝑡 𝐹 𝑠

= 𝐸 𝑒𝜎(𝑊 𝑡 −𝑊 𝑠 ) ∙ 𝑒𝜎𝑊(𝑠)−
1

2
𝜎2𝑡 𝐹 𝑠

= 𝑒𝜎𝑊(𝑠)−
1

2
𝜎2𝑡 ∙ 𝐸 𝑒𝜎(𝑊 𝑡 −𝑊 𝑠 ) 𝐹 𝑠

= 𝑒𝜎𝑊 𝑠 −
1

2
𝜎2𝑡 ∙ 𝐸 𝑒𝜎(𝑊 𝑡 −𝑊 𝑠 )



Theorem 3.6.1 Proof (2)

• Next we know 𝑊 𝑡 −𝑊(𝑠) is normally destibution with mean E[𝑊 𝑡

−𝑊(𝑠)] = 0 and variance 𝜎2 = 𝑡 − 𝑠

• By 3.2.13 

The moment generating function of a normal distribution 𝑁(0, 𝑡)

𝜙 𝑢 = 𝐸[𝑒𝑢𝑿] = න
−∞

∞

𝑒𝑢𝑥𝑓 𝑥 𝑑𝑥 = 𝑒
1
2𝑢

2𝑡

𝐸 𝑒𝜎 𝑊 𝑡 −𝑊 𝑠 = 𝑒
1
2𝜎

2(𝑡−𝑠)

• Such that 𝐸 𝑍 𝑡 𝐹 𝑠 = 𝑒𝜎𝑊 𝑠 −
1

2
𝜎2𝑡 ∙ 𝐸 𝑒𝜎(𝑊 𝑡 −𝑊 𝑠 )

= 𝑒𝜎𝑊 𝑠 −
1

2
𝜎2𝑡 ∙ 𝑒

1

2
𝜎2(𝑡−𝑠)

= 𝑒𝜎𝑊 𝑠 −
1

2
𝜎2𝑠 = 𝑍(𝑠)



Definition of First Passage Time

• Let 𝑚 ∈ 𝑅, and define the first passage time to level m

𝜏𝑚 = min{𝑡 ≥ 0|𝑊(𝑡) = 𝑚}

This is the first time the Brownian motion 𝑊 reaches the level 𝑚.

• If the Brownian motion never reaches the level 𝑚, we set 𝜏𝑚 → ∞

• By Theorem 4.3.2 of volume I (Optional Sampling Thm)

• A martingale that is stopped at a stopping time is still a martingale and thus must have

constant expectation

• 1 = 𝑍 0 = 𝐸 𝑍(𝑡⋀𝜏𝑚) = 𝐸[𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1

2
𝜎2(𝑡⋀𝜏𝑚)]

where the notation 𝑡Λ𝜏𝑚 denotes the minimum of 𝑡 and 𝜏𝑚



Properties of First Passage Time

• Let 𝜎 > 0 and 𝑚 > 0. The Brownian motion is always at or 

below level 𝑚 for 𝑡 < 𝜏𝑚 and so

0 ≤ 𝑒𝜎𝑤 𝑡⋀𝜏𝑚 ≤ 𝑒𝜎𝑚

• The goal is to show that probability to hit = 1

𝑃 𝜏𝑚 < ∞ = 1

And

𝐸 𝑒−
1
2
𝜎2𝜏𝑚 = 𝑒−𝜎𝑚



The Property of 𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1

2
𝜎2(𝑡⋀𝜏𝑚)

𝜏𝑚 < ∞ 𝜏𝑚 = ∞

𝑒−
1
2
𝜎2(𝑡⋀𝜏𝑚) 𝑒−

1
2
𝜎2𝜏𝑚 0

𝑒𝜎𝑊 𝑡⋀𝜏𝑚 𝑒𝜎𝑚 0 ≤ 𝑒𝜎𝑤 𝑡⋀𝜏𝑚 ≤ 𝑒𝜎𝑚

𝑍(𝑡⋀𝜏𝑚) 𝑒𝜎𝑚−
1
2𝜎

2𝜏𝑚 0



The Property of 𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1

2
𝜎2(𝑡⋀𝜏𝑚)

• As 𝑡 become large enough, if 𝜏𝑚 < ∞, then the term

𝑒−
1
2𝜎

2(𝑡⋀𝜏𝑚) = 𝑒−
1
2𝜎

2𝜏𝑚

• If 𝜏𝑚 = ∞, the term

𝑒−
1
2𝜎

2(𝑡⋀𝜏𝑚) = 𝑒−
1
2𝜎

2𝑡

and as 𝑡 → ∞, this converge to zero

• We capture these two cases by writing

lim
𝑡→∞

𝑒−
1
2𝜎

2(𝑡⋀𝜏𝑚) = 𝐼(𝜏𝑚<∞)𝑒
−
1
2𝜎

2𝜏𝑚



The Property of 𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1

2
𝜎2(𝑡⋀𝜏𝑚)

• As 𝑡 become large enough, if 𝜏𝑚 < ∞, then the term

𝑒𝜎𝑊(𝑡⋀𝜏𝑚) = 𝑒𝜎𝑊(𝜏𝑚) = 𝑒𝜎𝑚

• If 𝜏𝑚 = ∞, 𝑒𝜎𝑊(𝑡Λ𝜏𝑚) is bounded because of

0 ≤ 𝑒𝜎𝑤 𝑡⋀𝜏𝑚 ≤ 𝑒𝜎𝑚

that is enough to ensure that

0 ≤ lim
𝑡→∞

𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1
2𝜎

2(𝑡⋀𝜏𝑚)

≤ 𝑒𝜎𝑚 lim
𝑡→∞

𝑒−
1
2𝜎

2𝑡 = 0



Derivation from lim
𝑡→∞

𝐸[𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1

2
𝜎2 𝑡⋀𝜏𝑚 ]

• In conclusion, we have

lim
𝑡→∞

𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1
2
𝜎2(𝑡⋀𝜏𝑚) = 𝐼(𝜏𝑚<∞)𝑒

𝜎𝑚−
1
2
𝜎2𝜏𝑚

• Recall the martingale property:

1 = 𝑍 0 = 𝐸 𝑍(𝑡⋀𝜏𝑚) = 𝐸[𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1
2𝜎

2(𝑡⋀𝜏𝑚)]

• Take 𝑡 → ∞(interchange of limit and expectation, by 

Dominated Convergence Theorem: Dominated by 𝑒𝜎𝑚)

1 = 𝐸 lim
𝑡→∞

𝑒𝜎𝑊 𝑡⋀𝜏𝑚 −
1
2𝜎

2(𝑡⋀𝜏𝑚) = E 𝐼(𝜏𝑚<∞)𝑒
𝜎𝑚−

1
2𝜎

2𝜏𝑚

or, equivalently,

𝐸 𝐼 𝜏𝑚<∞ 𝑒−
1
2𝜎

2𝜏𝑚 = 𝑒−𝜎𝑚

hold when 𝑚 > 0 and 𝜎 > 0.



Obtain the Result : 𝑃 𝜏𝑚 < ∞ = 1

• The below holds for every positive 𝜎, take the limit 𝜎 → 0

because 𝑊(𝑡) is not relative on 𝜎

𝐸 𝐼 𝜏𝑚<∞ 𝑒−
1
2𝜎

2𝜏𝑚 = 𝑒−𝜎𝑚

• This yields 𝐸 𝐼 𝜏𝑚<∞ = 1 (using the Monotone Convergence 

Theorem), or equivalently,

𝑃 𝜏𝑚 < ∞ = 1

• We can think this equation from 𝐸 𝑓 𝑋 𝑒𝑡𝑋 = 𝑔(𝑡)

Our target is 𝐸 𝑓 𝑋 , so we assume 𝑡 = 0

𝐸 𝑓 𝑋 = 𝑔(0)



Obtain the Result : 𝐸 𝑒−
1

2
𝜎2𝜏𝑚 = 𝑒−𝜎𝑚

• Because 𝜏𝑚 is finite with probability 1 almost surely, we 

may drop the indicator of this event

𝐸 𝐼 𝜏𝑚<∞ 𝑒−
1
2𝜎

2𝜏𝑚 = 𝑒−𝜎𝑚

and obtain

𝐸 𝑒−
1
2
𝜎2𝜏𝑚 = 𝑒−𝜎𝑚



Thm 3.6.2 Laplace Transform of First Passage 
Time Distribution

• For 𝑚 ∈ 𝑅, the first passage time of Brownian motion to 

level 𝑚 is finite almost surely.

• The Laplace transform of its distribution is given by 

𝐸 𝑒−𝛼𝜏𝑚 = 𝑒−|𝑚| 2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 > 0



Proof of Theorem 3.6.2

• Recall 𝐸 𝑒−
1

2
𝜎2𝜏𝑚 = 𝑒−𝜎𝑚

• When 𝑚 is positive. Set 𝜎 = 2𝛼, so that 
1

2
𝜎2 = 𝛼.

• If 𝑚 is negative, then because Brownian motion is 

symmetric, the first passage times 𝜏𝑚 and 𝜏|𝑚|have same 

distribution.

• Equation

𝐸 𝑒−𝛼𝜏𝑚 = 𝑒−|𝑚| 2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 > 0

for negative 𝑚 follows.



Remark: 𝑃 𝜏𝑚 < ∞ = 1 , but 𝐸 𝜏𝑚 = ∞

• Differentiation of

𝐸 𝑒−𝛼𝜏𝑚 = 𝑒−|𝑚| 2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 > 0

with repect to 𝛼 results in

𝐸 𝜏𝑚𝑒
−𝛼𝜏𝑚 =

|𝑚|

2𝛼
𝑒−|𝑚| 2𝛼 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 > 0

• Letting 𝛼 → 0, we obtain 𝐸 𝜏𝑚 = ∞ so long as 𝑚 ≠ 0.

• Using Monotone Convergence Theorem



Laplace Transform

𝑓(𝑡) 𝑔(𝑡)

• Laplace Transform usually be used to solve some difficult 

integration problem or differential equation.

𝐹 𝑠 = 𝐿(𝑓) = න
0

∞

𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡

𝐹(𝑠) 𝐺(𝑠)

𝐿−1(𝐺) =
1

2𝜋𝑖
lim
T→∞

න
𝛾−𝑖𝑇

𝛾+𝑖𝑇

𝑒𝑠𝑡𝐺 𝑠 𝑑𝑠



Laplace Transform : Example of Application

• Moment generating function

𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋 = න

−∞

∞

𝑒𝑡𝑋𝑓𝑋 𝑥 𝑑𝑥

• Cumulative distribution function

𝑃 𝑋 ≤ 𝑥 = න

−∞

𝑥

𝑓𝑋 𝑦 𝑑𝑦 = 𝐿−1
1

𝑠
𝐿𝑓 (𝑠)



Cumulative distribution function

proof:

𝐿 𝑓 = න
−∞

∞

𝑒−𝑠𝑡𝑓 𝑡 𝑑𝑡 = න
−∞

∞

𝑒−𝑠𝑡𝑑𝐹(𝑡)

= 𝑒−𝑠𝑡𝐹 𝑡 ฬ
𝑡 = ∞

𝑡 = −∞
+ 𝑠න

−∞

∞

𝑒−𝑠𝑡𝐹 𝑡 𝑑𝑡 = 𝑠න
−∞

∞

𝑒−𝑠𝑡𝐹 𝑡 𝑑𝑡

𝑠. 𝑡.
1

𝑠
𝐿𝑓 𝑡 = න

−∞

∞

𝑒−𝑠𝑡𝐹 𝑡 𝑑𝑡 = 𝐿(𝐹)

𝐿−1
1

𝑠
𝐿 𝑓 = 𝐹 𝑡 = න

−∞

𝑡

𝑓𝑋 𝑥 𝑑𝑥



Example of Laplace transform

• Let 𝑓 𝑡 = 1 and its Laplace transform is :

𝐿(𝑓) = න
0

∞

𝑒−𝑠𝑡 ∙ 1𝑑𝑡 =
1

𝑠

• Now, we use Laplace inverse transform and the integral 

path is shown by upon figture.

𝐿−1
1

𝑠
=

1

2𝜋𝑖
lim
𝑇→∞

න
𝛼−𝑖𝑇

𝛼+𝑖𝑇

𝑒𝑠𝑡 ∙
1

𝑠
𝑑𝑠

=
1

2𝜋𝑖
ර𝑒𝑠𝑡 ∙

1

𝑠
𝑑𝑠 − න

𝐶𝑅→∞

𝑒𝑠𝑡 ∙
1

𝑠
𝑑𝑠

𝑦

𝑥

𝑅

𝑥 = 𝛼



Example of Laplace transform

𝐴𝑛𝑑 න
𝐶𝑅→∞

𝑒𝑠𝑡 ∙
1

𝑠
𝑑𝑠 𝑤𝑜𝑢𝑙𝑑 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑡𝑜 0 𝑏𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛

𝑠. 𝑡. 𝐿−1
1

𝑠
=

1

2𝜋𝑖
ර𝑒𝑠𝑡 ∙

1

𝑠
𝑑𝑠

𝑁𝑒𝑥𝑡 𝑤𝑒 𝑢𝑠𝑒 𝐶𝑎𝑢𝑐ℎ𝑦′𝑠 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

𝐿−1
1

𝑠
=

1

2𝜋𝑖
ර𝑒𝑠𝑡 ∙

1

𝑠
𝑑𝑠 =

1

2𝜋𝑖
∙ 2𝜋𝑖 ∙ 𝑒𝑠𝑡 ቚ

𝑠=0
= 1 𝐷𝑜𝑛𝑒‼



THE END


