3.6 First Passage Time
Distribution
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Theorem 3.6.1

« Exponential Martingale

« Let W(t),t = 0, be a Brownain motion with a filtration
F(t),t =0, and let ¢ be a constant. The process Z(t),t = 0,
IS @ martingale.

Z(t) — eO‘W(t)—%O'Zt



Theorem 3.6.1 Proof (1)

e For0 < s < t,we have
1 5
E[ZOIF(s)] = E |7 ©27¢|p(s)]

_F eaW(t)—aW(s)+aW(s)—%02t‘F(S)]

— E |er©-ws) | e“W(s)_%azt‘F (s)]

— W97 | plooWO-W(s) F(s)]

_ OW(—30%L | L a(W(E)-W(s))



Theorem 3.6.1 Proof (2)

« Next we know W (t) — W (s) is normally destibution with mean E[W (¢t)

— W(s)] = 0andvariancesg? =t —s
« By 3.2.13

The moment generating function of a normal dlstrlbutlon N(0,t)

p(u) = E[e™] = f e f(x)dx = o7t
E [ea(W(t)—W(s))] _ e%UZ(t 5)

1
+ Such that E[Z(D)|F(s)] = eV 27"t . f[ecW@-W ()]

a2 (t-s)

oW(s) —%a t . o2
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_ eO'W(S)—%O'ZS — Z(S)



Definition of First Passage Time

 Let m € R, and define the first passage time to level m
Ty, = min{t = 0|W(t) = m}

This is the first time the Brownian motion W reaches the level m.
« If the Brownian motion never reaches the level m, we set 7,,, -

« By Theorem 4.3.2 of volume | (Optional Sampling Thm)

« A martingale that is stopped at a stopping time is still a martingale and thus must have

constant expectation
1
+ 1 = 2(0) = E[Z(tA1,)] = E[e" ENtm) =307 (tNtm))

where the notation tAr,, denotes the minimum of t and t,,,



Properties of First Passage Time

* Let ¢ > 0 and m > 0. The Brownian motion is always at or
below level m for t < 7,,, and so

0 < eWATH) < gom
« The goal is to show that probability to hit =1
P(t,, <o) =1
And

E[e 29 Tm] gom



oW (tATy) —%02 (tATy)

The Property of e
Tm < © Tm = O
0 —%02 (tATm) 0 —%azrm 0
eaW(t/\rm) edm 0< eaw(t/\rm) < eom
Z(tAT,) L TM—50%Tm 0




The Property of e“W(tATm)_%”Z(tATm)

 As t become large enough, if 7,,, < o, then the term

1
—Eaz(t/\rm) _ —lazrm

e e 2

e If 7, = o, the term

1
—502 (tATm) _ 152

e e 2

and as t —» o, this converge to zero

« We capture these two cases by wr|t|ng

_1,2 _1 2
lim e 2% (tATm) — Iz, <o0)€ 20%Tm

t—o oo



The Property of eGW(tArm)_%az(t/\T’")

 As t become large enough, if 7,,, < o, then the term

oW (tAtm) oW (tm)

e =e = ™

e If r,, = 00, e9W(tATm) js bounded because of
0< eaw(t/\rm) < gom

that is enough to ensure that
0 < lim eaW(t/\Tm)——az (tATm)

t—o oo 1

< e'Mlime 2

t— oo

O't_o



1
Derivation from lim E [e”W(t/\T"”)_EJZ(tAT’")]

t— o0

 In conclusion, we have

oW (tATy) —%02 (tATm) 152

. om——=o0°-T
lim e 29 Tm

t—oo

« Recall the martingale property:
1 = 2(0) = E[Z(tAty)] = E[e" Ntm) 30" €At
* Take t - oo(interchange of limit and expectation, by
Dominated Convergence Theorem: Dominated by e™)

1 1
1=E|lim eaw(t/\rm)_iaz(t/\rm)] =E ll(rm<oo)eam_iazfm]

t— o0

= l(z,p<0)€

or, equivalently,

hold whenm > 0and o > 0.



Obtain the Result : P{t,,, < 0} =1

 The below holds for every positive g, take the limit o - 0

because W (t) is not relative ono
=2
E [1 (tm<o)€ 2 T’"] =e

» This yields E[I(;, <w)] = 1 (using the Monotone Convergence
Theorem), or equivalently,
P{t, < oo} =1

« We can think this equation from E[f(X)e®*] = g(t)

Our target is E[f(X)], so we assume t = 0

E[f(X)] = g(0)



1
Obtain the Result : Ele™2° T””] = e~ oM

* Because 1,, is finite with probability 1 almost surely, we
may drop the indicator of thls event

[’ (tm <oo>€__azrm]

— p—om

and obtain

E[e_%azrm] = g~ om



Thm 3.6.2 Laplace Transform of First Passage
Time Distribution

« For m € R, the first passage time of Brownian motion to
level m is finite almost surely.

 The Laplace transform of its distribution is given by
E[e~%™m] = g~ImhV2a foralla >0



Proof of Theorem 3.6.2

1
. Recall Ele 27" ] = g=om
« When m is positive. Set 0 = v2a, so that %02 = Q.

« If m is negative, then because Brownian motion is
symmetric, the first passage times 7, and t;,,, have same

distribution.

« Equation
Ele %™m] = e~ ImiV2a foralla >0

for negative m follows.



Remark: P(t,, < ©) =1, but E[t1,,] = o

« Differentiation of
E[e~%™m] = g~Imh2a foralla >0

with repect to a results in

m
Elt,,e *'m] = ue"”’"\/ﬁ, foralla >0

V2a

« Letting a - 0, we obtain E[t,,] = « so long as m # 0.

« Using Monotone Convergence Theorem



Laplace Transform

f(®) - 9()
00 ) 1 . Y+iT .
PO =L = | et @de @ =glim | e6(o)ds
0
FES) > G(5)

« Laplace Transform usually be used to solve some difficult
integration problem or differential equation.



Laplace Transform : Example of Application

« Moment generating function

0.0)

My (£) = E[e¥] = j et £ (x)dx

— 00

« Cumulative distribution function

. 1
Pr <) = [ fuoay =17 (517 )



Cumulative distribution function

proof:

oo

L(f) =fooe‘5tf(t)dt=j e StdF (1)

— 00
0.0)

=e S F@)| " +s J e SLF(t)dt = s f e StF(t)dt

— 00

s.t 1Lf(t) = fooe‘StF(t)dt = L(F)
b =] =

1 t
L (;L(f)) =F(t) = fo(x)dx



Example of Laplace transform

* Let f(t) = 1 and its Laplace transform is :

0.0)

L(f) = f e St. 1dt = -

0 S

X

a

N

—al

« Now, we use Laplace inverse transform and the integral

path is shown by upon figture.

» 1 1 | a+iT . 1
L='|—-|==—1Iim e’ -Eds

S 2T T ) .

1 st . 1 st 1
=—®e” -—ds — e’ -—ds
2101 S c S

R—o00



Example of Laplace transform

And est . S ds would approach to 0 by complex integration

s.t. L1 1 =ife“-lds
S 211 S

Next we use Cauchy's integral formula

1 1 1
L_1<_>:2_T[i eSt.—ds = —-2mi - eSt

CR—)OO

S 211 s=0



THE END



