Shreve 4.5 Black-Scholes-Merton Equation

郭志福

交大財金所

Derive the Black-Scholes-Merton partial differential equation for the price of an option on an asset modeled as a geometric Brownian motion.

Portfolio Value

Portfolio X(t)

Consider a portfolio at time t valued at X(t), which invests in:

Money market:

Pay a constant rate of interest r

Stock:

Stock price modeled by the geometric Brownian motion

$$dS(t) = \alpha S(t)dt + \sigma S(t)dW(t)$$

Portfolio Value 00000

$$dX(t) = \Delta(t)dS(t) + r(X(t) - \Delta(t)S(t))dt$$

$$= \Delta(t)(\alpha S(t)dt + \sigma S(t)dW(t))$$

$$+ r(X(t) - \Delta(t)S(t))dt$$

$$= rX(t)dt + \Delta(t)(\alpha - r)S(t)dt$$

$$+ \Delta(t)\sigma S(t)dW(t)$$

The 3 terms appearing in dX(t) can be understood as follows:

- an average underlying rate of return r on the portfolio.
- a risk premium αr for investing in the stock.
- a volatility term proportional to the size of the stock investment.

$$dX(t) = rX(t)dt + \Delta(t)(\alpha - r)S(t)dt + \Delta(t)\sigma S(t)dW(t)$$

The discounted stock price $e^{-rt}S(t)$

According to the Itô-Doeblin formula with

$$f(t,x) = e^{-rt}x$$
:

Portfolio Value

$$de^{-rt}S(t) = df(t, S(t))$$

$$= f_t(t, S(t))dt + f_x(t, S(t))dS(t)$$

$$+ \frac{1}{2}f_{xx}(t, S(t))dS(t)^2$$

$$= -re^{-rt}S(t)dt + e^{-rt}dS(t)$$

$$= (\alpha - r)e^{-rt}dt + \sigma e^{-rt}S(t)dW(t)$$

The discounted portfolio value $e^{-rt}X(t)$

$$\begin{split} de^{-rt}X(t) &= df(t,X(t)) \\ &= f_t(t,X(t))dt + f_x(t,X(t))dX(t) \\ &+ \frac{1}{2}f_{xx}(t,X(t))dX(t)^2 \\ &= -re^{-rt}X(t)dt + e^{-rt}dX(t) \\ &= \Delta(t)(\alpha - r)e^{-rt}S(t)dt + \Delta(t)\sigma e^{-rt}S(t)dW(t) \\ &= \Delta(t)d(e^{-rt}S(t)) \end{split}$$

The change in the discounted portfolio value is solely due to change in the discounted stock price.

Option Value

- Consider a European call option that pays $(S(T) K)^+$ at time T.
- we let c(t,x) denote the value of the call at time t if the stock price at that time is S(t)=x

The differential of c(t, S(t))

$$\begin{split} &dc(t,S(t)) \\ &= c_t(t,S(t))dt + c_x(t,S(t))dS(t) \\ &\quad + \frac{1}{2}c_{xx}(t,S(t))dS(t)^2 \\ &= c_t(t,S(t))dt + c_x(t,S(t))(\alpha S(t)dt + \sigma S(t)dW(t)) \\ &\quad + \frac{1}{2}c_{xx}(t,S(t))\sigma^2 S^2(t)dt \\ &= \left[c_t(t,S(t)) + \alpha S(t)c_x(t,S(t)) + \frac{1}{2}c_{xx}(t,S(t))\sigma^2 S^2(t)\right]dt \\ &\quad + \sigma S(t)c_x(t,S(t))dW(t) \end{split}$$

The differential of discounted option price c(t, S(t))

$$\begin{split} d(e^{-rt}c(t,S(t))) &= df(t,c(t,S(t))) \\ &= f_t(t,c(t,S(t)))dt + f_x(t,c(t,S(t)))dc(t,S(t)) \\ &+ \frac{1}{2}f_{xx}(t,c(t,S(t)))dc(t,S(t))^2 \\ &= -re^{-rt}c(t,S(t))dt + e^{-rt}dc(t,S(t)) \\ &= e^{-rt} \left[-rc(t,S(t)) + c_t(t,S(t)) + \alpha S(t)c_x(t,S(t)) \right. \\ &+ \frac{1}{2}c_{xx}(t,S(t))\sigma^2 S^2(t) \right] dt + e^{-rt}\sigma S(t)c_x(t,S(t))dW(t) \end{split}$$

Equating the Evolutions

- A (short option) hedging portfolio starts with some initial capital X(0) and invests in the stock and money market account.
- The portfolio value X(t), $\forall t \in [0,T]$ agrees with c(t, S(t)) if and only if $e^{-rt}X(t) = e^{-rt}c(t, S(t)), \quad \forall t \in [0, T].$

 To ensure this equality we should make sure that

$$d(e^{-rt}X(t)) = d(e^{-rt}c(t,S(t))), \quad \forall t \in [0,T)$$
 and $X(0) = c(0,S(0)).$

Integration of above function from 0 to t

$$e^{-rt}X(t) - X(0) = e^{-rt}c(t, S(t)) - c(0, S(0))$$

 $\Rightarrow e^{-rt}X(t) = e^{-rt}c(t, S(t)), \quad \forall t \in [0, T)$

Comparing $de^{-rt}X(t)$ and $de^{-rt}c(t,S(t))$

$$\Delta(t)(\alpha - r)e^{-rt}S(t)dt + \Delta(t)\sigma e^{-rt}S(t)dW(t)$$

$$= e^{-rt} \left[-rc(t, S(t)) + c_t(t, S(t)) + \alpha S(t)c_x(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t)c_{xx}(t, S(t)) \right] dt + e^{-rt}\sigma S(t)c_x(t, S(t))dW(t)$$

We first equate the dW(t) terms, which gives :

$$\Delta(t) = c_x(t, S(t)), \quad \forall t \in [0, T)$$

This is called the delta-hedging rule.

Comparing $de^{-rt}X(t)$ and $de^{-rt}c(t,S(t))$

$$\Delta(t)(\alpha - r)e^{-rt}S(t)dt + \Delta(t)\sigma e^{-rt}S(t)dW(t)$$

$$= e^{-rt} \left[-rc(t, S(t)) + c_t(t, S(t)) + \alpha S(t)c_x(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t)c_{xx}(t, S(t)) \right] dt + e^{-rt}\sigma S(t)c_x(t, S(t))dW(t)$$

Next equate the dt terms

$$\Delta(t)(\alpha - r)e^{-rt}S(t) = e^{-rt} \left[-rc(t, S(t)) + c_t(t, S(t)) + \alpha S(t)c_x(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t)c_{xx}(t, S(t)) \right]$$

$$\Delta(t)(\alpha - r)S(t) = \left[-rc(t, S(t)) + c_t(t, S(t)) + \alpha S(t)c_x(t, S(t)) + \frac{1}{2}\sigma^2 S^2(t)c_{xx}(t, S(t)) \right]$$

where
$$\Delta(t)\alpha S(t) = \alpha S(t)c_x(t,S(t))$$

$$\Rightarrow rc(t,S(t)) = c_t(t,S(t)) + rS(t)c_x(t,S(t)) + \frac{1}{2}\sigma^2 S^2(t)c_{xx}(t,S(t))$$

In conclusion, we should seek a continuous function c(t,x) that is a solution to the Black-Scholes-Merton partial differential equation.

$$c_t(t,x) + rxc_x(t,x) + \frac{1}{2}\sigma^2 x^2 c_{xx}(t,x) = rc(t,x)$$

$$\forall t \in [0,T), \quad x \ge 0$$

and that satisfies the terminal condition

$$c(T, x) = (x - K)^+$$

- If an investor starts with initial capital X(0) and uses the hedge $\Delta(t) = c_r(t, S(t))$
- then $d(e^{-rt}X(t)) = d(e^{-rt}c(t, S(t)))$ will hold.
- We see that X(t) = c(t, S(t)) for all $t \in [0, T)$
- Taking the limit as $t \to T$ and using the fact that both X(t) and c(t, S(t)) are continuous, we conclude that $X(T) = c(T, S(T)) = (S(T) - K)^{+}$
- This means that the short position has been successfully hedged.

Solution of B-S-M Equation

$$c_t(t,x) + rxc_x(t,x) + \frac{1}{2}\sigma^2 x^2 c_{xx}(t,x) = rc(t,x)$$

$$\forall t \in [0,T), \quad x \ge 0$$

• The Black-Scholes-Merton equation doesn't involve probability, it is a partial differential equation.

Backward parabolic

Black-Scholes-Merton PDE is a PDE of the type called Backward parabolic

$$Au_{xx} + 2Bu_{xt} + Cu_{tt} + Du_x + Eu_t + F = 0$$

and this function needs.

- $B^2 AC = 0$
- $\Omega \times \{T\}$ terminal condition

For such an equation, in addition to the terminal condition $c(T,x) = (S(T) - K)^+$, one needs boundary conditions at x=0 and $x=\infty$ in order to determine the solution.

• Substituting x=0 into Black-Scholes-Merton PDE, which then becomes

$$c_t(t,0) = rc(t,0)$$

and the solution is

$$c(t,0) = e^{rt}c(0,0)$$

Substituting t=T into this equation and using the fact that $c(T,0)=(0-K)^+=0$, we see that c(0,0)=0 and hence

$$c(t,0) = 0, \quad \forall t \in [0,T]$$

this is the boundary condition at x=0.

2 As $x \to \infty$, the function c(t, x) grows without bound. One way to specify a boundary condition at $x = \infty$ for the European call is

$$\lim_{x \to \infty} \left[c(t, x) - (x - e^{-r(T-t)}K) \right] = 0, \quad \forall t \in [0, T]$$

For large x, this call is deep in the money and very likely to end in the money.

Black-Scholes-Merton function

The solution to the Black-Scholes-Merton equation with terminal condition and boundary conditions is

$$c(t,x) = xN(d_{+}(T-t,x)) - Ke^{-r(T-t)}N(d_{-}(T-t,x))$$

$$\forall t \in [0,T), \quad x > 0$$

where

$$d_{\pm}(\tau, x) = \frac{\ln(\frac{x}{K}) + (r \pm \frac{\sigma^2}{2})\tau}{\sigma\sqrt{\tau}}$$

and N is the cumulative standard normal distribution

$$N(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-\frac{z^2}{2}} dz = \frac{1}{\sqrt{2\pi}} \int_{-y}^{y} e^{-\frac{z^2}{2}} dz$$

but above function does not define c(t,x) when t = T, nor dose it define c(t, x) when x = 0.

$$\lim_{t \to T} c(t, x) = (x - K)^+$$
$$\lim_{x \to 0} c(t, x) = 0$$

Black-Scholes-Merton function

We shall sometimes use the notation

$$BSM(\tau, x; K, r, \sigma) = xN(d_{+}(\tau, x)) - Ke^{-r(T-t)}N(d_{-}(\tau, x))$$

The Greeks

• The derivatives of the function c(t,x) with respect to various variables are called the Greeks.

Delta	Δ	$\partial c/\partial x$
Gamma	γ	$\partial^2 c/\partial x^2$
Theta	θ	$\partial c/\partial t$
Vega	ν	$\partial c/\partial \sigma$
Rho	ρ	$\partial c/\partial r$

$$\Delta = c_x(t, x) = N(d_+(T - t, x))$$

Gamma is always positive

$$\gamma = c_{xx}(t, x) = \frac{N'(d_{+}(T - t, x))}{\sigma x \sqrt{T - t}}$$

Theta is always negative

$$\theta = c_t(t, x) = -rKe^{-r(T-t)}N(d_{-}(T-t, x)) - \frac{\sigma x}{2\sqrt{T-t}}N'(d_{+}(T-t, x))$$

Because delta and gamma are positive, for fixed t , the function c(t,x) is increasing and convex in the variable x.

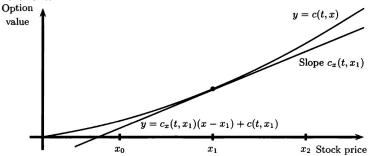


Fig. 4.5.1. Delta-neutral position.

The hedging portfolio value is

$$c = xN[d_{+}] - Ke^{-r(T-t)}N[d_{-}]$$

The amount invested in the money market is

$$c(t,x) - xc_x(t,x) = -Ke^{-r(T-t)}N[d_-] < 0$$

The Greeks 000000000

Consider a portfolio when stock price is x_1 and we wish to take a long position in the option and hedge it.

- Long the option for $c(t, x_1)$
- 2 Short $c_x(t, x_1)$ shares of stock
- lacktriangle Invest in money market account M

$$M = x_1 c_x(t, x_1) - c(t, x_1)$$

The initial portfolio value

$$c(t, x_1) - x_1 c_x(t, x_1) + M = 0$$

- If the stock price were to instantaneously fall to x_0 and we do not change our portfolio.
- Total portfolio value would be

$$c(t,x_0) - x_0 c_x(t,x_1) + M$$

= $c(t,x_0) - c_x(t,x_1)(x_0 - x_1) - c(t,x_1)$

 This is the difference at x₀ between the curve y = c(t, x) and the straight line $y = c_r(t, x_1)(x - x_1) + c(t, x_1)$

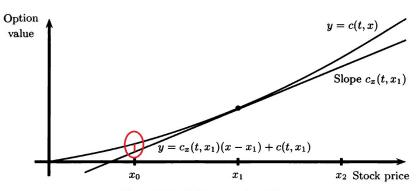


Fig. 4.5.1. Delta-neutral position.

The Greeks 000000000

Long Gamma

The portfolio is long gamma because it benefits from the convexity of c(t, x)

- If the stock price instantaneously falls or rises
- The value of the portfolio increases
- A long gamma portfolio is profitable in times of high stock volatility

- The portfolio described above may at first appear to offer an arbitrage opportunity. Is above argument correct?
- When we let time move forward, the curve c(t,x) is shifts downward because theta θ is negative.
- To keep the portfolio delta-neutral, we have to continuously rebalance our portfolio.

- Actually, assets are not really geometric Brownian motions with constant volatility.
- The derivative of the option price with respect to the volatility σ is called Vega.
- Vega is positive, as volatility increases, option prices in the Black-Scholes-Merton model would increase.

Put-Call Parity

- A forward contract with delivery price K obligates its holder to buy one share of the stock at the expiration time T in exchange for payment K
- At expiration, the value of the forward contract is $S(T)-{\cal K}$
- The value of the forward contract :

$$f(t, S(t)) = E^{Q} \left[e^{-r(T-t)} (S(T) - K) | F_t \right]$$
$$= S(t) - e^{-r(T-t)} K, \quad \forall t \in [0, T]$$

- The agent sells this forward contract at t=0 for $f(t,S(0))=S(0)-e^{-rT}K$
- He can set up a static hedge, in order to protect himself.

Static Hedge

A hedge that does not trade except at the initial time

• He should purchase one share of stock by initial capital from the sale of the forward contract $S(0) - e^{-rT}K$ and the money $e^{-rT}K$ borrow from money market account.

Forward price of S(t)

- The forward price of a stock at time t is defined to be the value of K that cause the forward contract at time t to have value zero
- The forward price at time t :

$$For(t) = e^{r(T-t)}S(t)$$

 The forward price at time t is the price one can lock in at time t for the purchase of one share of stock at time T, paying the price at time T

- Consider a situation at t=0, one can lock in a price $For(0) = e^{rT}S(0)$ for buying a stock at time T
- The value of the forward contract would be rewritten as

$$f(t, S(t)) = S(t) - e^{rT}S(0)$$

We observe that for any number x, the equation

$$x - K = (x - K)^{+} - (K - x)^{+}$$

The payoff of European Options at t=T

- European call c(T, S(T)) : $(S(T) K)^+$
- 2 European put $p(T, S(T)) : (K S(T))^+$
- **Solution** Forward contract f(T, S(T)) : S(T) K

$$f(T, S(T)) = c(T, S(T)) - p(T, S(T))$$

- The payoff of the forward contract agrees with the payoff of a portfolio that is long a call and short a put.
- These values must agree at all previous times

$$f(t,x) = c(t,x) - p(t,x), \quad \forall x \ge 0, 0 \le t \le T$$

Put-Call Parity

The relationship of equation

$$f(t,x) = c(t,x) - p(t,x)$$

is called Put-Call Parity.

The equation could also be denoted as

$$S - e^{-rT}K = C - P$$

Black-Scholes-Merton put option formula

Finally, we can use Put-Call Parity and Black-Scholes-Merton call option formula to obtain the put option formula.

$$p(t,x) = xN(d_{+}(T-t,x)) - x$$

$$-Ke^{-r(T-t)}N(d_{-}(T-t,x)) + e^{-r(T-t)}K$$

$$=Ke^{-r(T-t)}N(-d_{-}(T-t,x))$$

$$-xN(-d_{+}(T-t,x))$$

Thank you!