3.3 Brownian Motion

1
° W(n)(t) — \/_ﬁ nt

e Whenn —» o = Brownian motion



Def. 3.3.1

e Let (1, F, P) be a probability space
* Foreach w € (), there is a cont. function W(t),t =
0,W(0) = 0 and that depends on w.

e W(t),t = 0,is aBrownian motion if for all
0=ty <t; <--<t,,theincrements
W(ty) =W(t) —W(to) W(ty) —W(ty),..., W(ty) — W(tn—)
are independent and each of these is normally
distributed with
E(W(t;,1) —W(t)] =0,
Var[W(ti.1) —W(Et)] = tiy1 — ¢



Distribution of Brownian Motion

e W(ty), W(ty),..., W(t,,) are jointly normally
distributed.
1.E[W(t)] =0
2.For0 <s <t cov|W(s),W(t)| =s.

E[W(s),W(©)] =E[W(s)(W() —W(s)) + W2(s)]

= E[W(S)E[(W () —W(s))] + E[WZ(s)]
=04+ Var|[W(s)]| =s.



Covariance Matrix

e the covariance matrix for Brownian motion
(i.e., for the m-dimensional random vector
(W(t1), W(t2), ..., W(tm))) is
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Prepare for m.g.f

e Recall the MGF of 1-dim normal rv. X~N (0, t)

For Brownian motion
umW(tm) + um—lw(tm—l) Tt u1W(t1)

= um(W(tm) _ W(tm—l)) + (um—l +um)(W(tm—1) _ W(tm—Z))
+od (U Fuy o Fu ) W(ty)



moment-generating function

(p(ul, U, ,um)
= Eexp{u,,W(t,,) + uy_W(t,,—1) + -+ uW(ty)}

= Eexp{um(w(tm) _ W(tm—l)) + (um—l +um)(W(tm—1) _ W(tm—z))
+ot (U +up + o u) Wt}
=Eexp{um(W(tm) — W(tm—l))
* Eexp{(um—l +um)(W(tm—1) _ W(tm—z))}
* Eexp{(u; + up, + -+ u, ) W(ty)}
1 2 1 2
=exp {E (um) (tm _ tm—l)} * exp {E (um—l + um) (tm—l _ tm—z)} Koo

1
* exp {5 (ug +up + -+ um)z(tl)}



Alternative characterizations of

Brownian motion
e Let (1, F, P) be a probability space

 Foreach w € Q, there is a cont. function W(¢t),t = 0,W(0) =0
and that depends on w. The following three properties are
equivalent.

Forall 0 =ty <t; < - <ty
(1) the increments
W(ty) =W(t) —W(to) W(ty) —W(ty), ..., W(ty) — W(ty—)
are independent and each of these is normally distributed with
E[W(tir 1) —W(t)] =0,
Var[W(ti.1) —W(E)] =tiy1 — t;



Alternative characterizations of
Brownian motion

(2)The random variables W(ty), W(t,), ..., W(t,,) are jointly
normally distributed with means equal to zero and covariance

matrix. ot t,
[P S r,
h L 1,

(3)The random variables W(t4), W(t,), ..., W(t,,) have the joint
moment-generating function

exp {% (Upn)? (tm — tm—l)} * exp {% (Um—1 + Up) (g — tm—z)}

1
s exp o (uy + 1 + o ) (8)]



Filtration for Brownian Motion

e Def.3.3.3

Let (), F, P) be a prob. space defined on a Brownian motion
W(t),t = 0.

A filtration for the Brownian motion is a

collection of 0 — algebras F(t),t = 0, satisfying:

(1) (Information accumulates)

ForO0<s <t F(s) €F(t)

(2) (Adaptivity)

Foreacht = 0, W(t) is F(t) msb.

(3) (Independence of future increments)

For 0 <t < u, theincrement W(u) — W(t) is indep. of F(t)



Def. Adaptivity

e Let A (t), t = 0, be a stochastic process. We
say that A (t) is adapted to the filtration F(t)
if for each t = 0 the random variable A (t) is

F(t) -measurable.



Martingale Property for Brownian

Motion
e Theorem 3.3.4.

Brownian motion is a martingale.
proof:

Let 0 < s < t be given. Then
E[W®)IF(s)] = E[(W(t) — W(s)) + W(s)

= E[(W(®) — W(s))|F(s)] + E[W(s)|F(s).
= W(s).

F(s)|



3.4 Quadratic Variation

e First-Order Variation

Choose a partition [| = {tg, t1, ..., t;;} of [O,T]
whichisasetoftimes0 =ty <t; <--<t, =T
The maximum step size of the partition:

Il = _max_ (41— 1)
Then we define f|rst-order variation:
n—1
FVr(f) = lim f(ti41) — F(@&)

1T11-0 £ =g



Mean Value Theorem

e Let f'(t) is defined everywhere
Vtj, tjp1 3t € [t t44] st

f(t+1) — (@)

v — Y

= £'(¢))



Mean Value Theorem

Fig. 3.4.2. Mean Value Theorem.



Mean Value Theorem

f(tj+1) — f(t)

=f'(t/) = (1) — F(&) = £/ (¢]) a1 — 1)

b1~ Y
n-—1
= FVp(f) = lim > |f(tje1) = F @)
ITT11-0 £ j=g
n-—1
= lim |f’(tj‘)|(tj+1 — t;) (Riemann sum)
ITT11-0 £ j=0

T
- fo £(¢)] e



Quadratic Variation

e Definition 3.4.1.
e Let f(t) be afunction definedfor0 <t <T.
The quadratic variation of f up totime T is

n—1

£, FI(T) = lim [f (tj41) — F(E)]

IITTI-0 £ =0
where][] = {tg, t1, ... tp}and 0=t < t; < - <t, =T



Quadratic Variation

e Remark 3.4.2.

e Suppose the function f has a continuous derivative. By
mean value theorem

n-—1
Z (t141) = F))? Z O[f'(t;)]2<t,-+1—t,->2
n-—1
<UMY, 176,



Quadratic Variation

and thus

£.01) = Jim U Y (F(6) = )
= dim T+ lim :[f'(tf)]z(tjﬂ 1)
= lim |ITTI] + jo PP =0

In the last step of this argument, we use the fact that f'(t)
. . T o
is continuous to ensure that [ [f'(¢)]%dt is finite.
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