3.3 Brownian Motion

$$\bullet \ W^{(n)}(t) = \frac{1}{\sqrt{n}} M_{nt}$$

• When $n \to \infty \Rightarrow$ Brownian motion

Def. 3.3.1

- Let (Ω, \mathcal{F}, P) be a probability space
- For each $\omega \in \Omega$, there is a cont. function $W(t), t \ge 0$, W(0) = 0 and that depends on ω .
- $W(t), t \geq 0$, is a Brownian motion if for all $0 = t_0 < t_1 < \cdots < t_m$ the increments $W(t_1) = W(t_1) W(t_0), W(t_2) W(t_1), \dots, W(t_m) W(t_{m-t})$ are independent and each of these is normally distributed with

 $E[W(t_{i+1}) - W(t_i)] = 0,$ $Var[W(t_{i+1}) - W(t_i)] = t_{i+1} - t_i$

Distribution of Brownian Motion

• $W(t_1), W(t_2), ..., W(t_m)$ are jointly normally distributed.

$$1. E[W(t_i)] = 0$$

2. For $0 \le s < t$, cov[W(s), W(t)] = s.

$$E[W(s), W(t)] = E[W(s)(W(t) - W(s)) + W^{2}(s)]$$

$$= E[W(s)]E[(W(t) - W(s))] + E[W^{2}(s)]$$

$$= 0 + Var[W(s)] = s.$$

Covariance Matrix

 the covariance matrix for Brownian motion (i.e., for the m-dimensional random vector (W(t1), W(t2), ..., W(tm))) is

$$\begin{bmatrix} \mathbf{E}[W^{2}(t_{1})] & \mathbf{E}[W(t_{1})W(t_{2})] & \cdots & \mathbf{E}[W(t_{1})W(t_{m})] \\ \mathbf{E}[W(t_{2})W(t_{1})] & \mathbf{E}[W^{2}(t_{2})] & \cdots & \mathbf{E}[W(t_{2})W(t_{m})] \\ \vdots & \vdots & & \vdots \\ \mathbf{E}[W(t_{m})W(t_{1})] & \mathbf{E}[W(t_{m})W(t_{2})] & \cdots & \mathbf{E}[W^{2}(t_{m})] \end{bmatrix} = \begin{bmatrix} t_{1} & t_{1} & \cdots & t_{1} \\ t_{1} & t_{2} & \cdots & t_{2} \\ \vdots & \vdots & & \vdots \\ t_{1} & t_{2} & \cdots & t_{m} \end{bmatrix}$$

Prepare for m.g.f

• Recall the MGF of 1-dim normal r.v. $X \sim N(0, t)$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2t}}, \varphi(u) = e^{\frac{1}{2}tu^2}$$

For Brownian motion

$$u_{m}W(t_{m}) + u_{m-1}W(t_{m-1}) + \dots + u_{1}W(t_{1})$$

$$= u_{m}(W(t_{m}) - W(t_{m-1})) + (u_{m-1} + u_{m})(W(t_{m-1}) - W(t_{m-2}))$$

$$+ \dots + (u_{1} + u_{2} + \dots + u_{m})W(t_{1})$$

moment-generating function

```
\varphi(u_1,u_2,\ldots,u_m)
= Eexp\{u_mW(t_m) + u_{m-1}W(t_{m-1}) + \dots + u_1W(t_1)\}\
= Eexp\{u_m(W(t_m) - W(t_{m-1})) + (u_{m-1} + u_m)(W(t_{m-1}) - W(t_{m-2}))\}
+\cdots+(u_1+u_2+\cdots+u_m)W(t_1)
= Eexp\{u_m(W(t_m) - W(t_{m-1}))\}
* Eexp\{(u_{m-1}+u_m)(W(t_{m-1})-W(t_{m-2}))\}
* Eexp\{(u_1 + u_2 + \cdots + u_m)W(t_1)\}
= exp\left\{\frac{1}{2}(u_m)^2(t_m - t_{m-1})\right\} * exp\left\{\frac{1}{2}(u_{m-1} + u_m)^2(t_{m-1} - t_{m-2})\right\} * \cdots
* exp\left\{\frac{1}{2}(u_1 + u_2 + \dots + u_m)^2(t_1)\right\}
```

Alternative characterizations of Brownian motion

- Let (Ω, \mathcal{F}, P) be a probability space
- For each $\omega \in \Omega$, there is a cont. function $W(t), t \geq 0, W(0) = 0$ and that depends on ω . The following three properties are equivalent.

For all
$$0=t_0 < t_1 < \cdots < t_m$$
 (1) the increments
$$W(t_1)=W(t_1)-W(t_0), W(t_2)-W(t_1), \ldots, W(t_m)-W(t_{m-t})$$
 are independent and each of these is normally distributed with
$$E[W(t_{i+1})-W(t_i)]=0,$$

$$Var[W(t_{i+1})-W(t_i)]=t_{i+1}-t_i$$

Alternative characterizations of Brownian motion

(2) The random variables $W(t_1)$, $W(t_2)$, ..., $W(t_m)$ are jointly normally distributed with means equal to zero and covariance matrix. $\begin{bmatrix} t & t \\ \end{bmatrix}$

matrix.
$$\begin{bmatrix} t_1 & t_1 & \cdots & t_1 \\ t_1 & t_2 & \cdots & t_2 \\ \vdots & \vdots & & \vdots \\ t_1 & t_2 & \cdots & t_m \end{bmatrix}$$

(3) The random variables $W(t_1)$, $W(t_2)$, ..., $W(t_m)$ have the joint moment-generating function

$$exp\left\{\frac{1}{2}(u_m)^2(t_m-t_{m-1})\right\}*exp\left\{\frac{1}{2}(u_{m-1}+u_m)^2(t_{m-1}-t_{m-2})\right\}$$

$$*\cdots*exp\left\{\frac{1}{2}(u_1+u_2+\cdots+u_m)^2(t_1)\right\}$$

Filtration for Brownian Motion

Def. 3.3.3

Let (Ω, \mathcal{F}, P) be a prob. space defined on a Brownian motion $W(t), t \geq 0$.

A filtration for the Brownian motion is a collection of $\sigma - algebras \mathcal{F}(t)$, $t \geq 0$, satisfying:

(1) (Information accumulates)

For $0 \le s < t$, $\mathcal{F}(s) \subseteq \mathcal{F}(t)$

(2) (Adaptivity)

For each $t \geq 0$, W(t) is $\mathcal{F}(t)$ msb.

(3) (Independence of future increments)

For $0 \le t < u$, the increment W(u) - W(t) is indep. of $\mathcal{F}(t)$

Def. Adaptivity

• Let Δ (t), $t \geq 0$, be a stochastic process. We say that Δ (t) is adapted to the filtration $\mathcal{F}(t)$ if for each $t \geq 0$ the random variable Δ (t) is $\mathcal{F}(t)$ -measurable.

Martingale Property for Brownian Motion

• Theorem 3.3.4.

Brownian motion is a martingale.

proof:

```
Let 0 \le s \le t be given. Then E[W(t)|\mathcal{F}(s)] = E[(W(t) - W(s)) + W(s)|\mathcal{F}(s)]= E[(W(t) - W(s))|\mathcal{F}(s)] + E[W(s)|\mathcal{F}(s)]= W(s).
```

3.4 Quadratic Variation

First-Order Variation

Choose a partition
$$\Pi=\{t_0,t_1,\ldots,t_n\}$$
 of [0,T] which is a set of times $0=t_0< t_1<\cdots< t_n=T$ The maximum step size of the partition:

$$||\prod|| = \max_{j=0,\dots,j-1} (t_{j+1} - t_j)$$

Then we define first-order variation:

$$FV_T(f) = \lim_{\|\| \| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)|$$

Mean Value Theorem

• Let f'(t) is defined everywhere

$$\forall t_j, t_{j+1} \ \exists t_j^* \in [t_j, t_{j+1}] \ \text{s.t.}$$

$$\frac{f(t_{j+1}) - f(t_j)}{t_{j+1} - t_j} = f'(t_j^*)$$

Mean Value Theorem

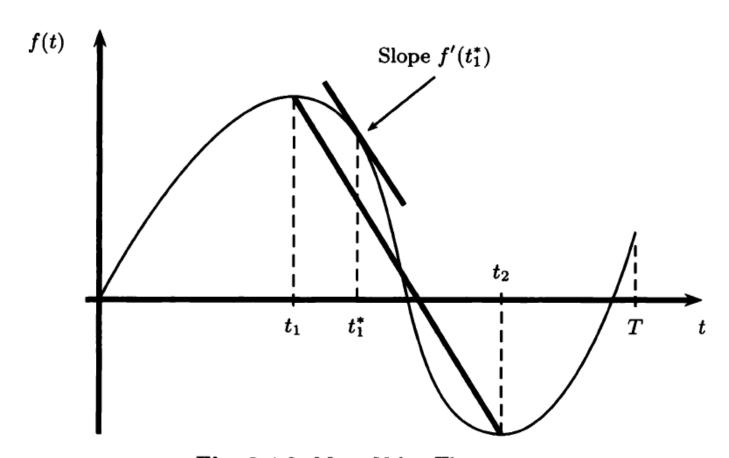


Fig. 3.4.2. Mean Value Theorem.

Mean Value Theorem

$$\frac{f(t_{j+1}) - f(t_j)}{t_{j+1} - t_j} = f'(t_j^*) \Longrightarrow f(t_{j+1}) - f(t_j) = f'(t_j^*)(t_{j+1} - t_j)$$

$$\Rightarrow FV_T(f) = \lim_{\|\|\|\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_j)|$$

$$= \lim_{\|\|\| \to 0} \sum_{j=0}^{n-1} |f'(t_j^*)| (t_{j+1} - t_j) \text{ (Riemann sum)}$$

$$= \int_0^T |f'(t_j^*)| dt$$

Quadratic Variation

- Definition 3.4.1.
- Let f(t) be a function defined for $0 \le t \le T$.

The quadratic variation of f up to time T is

$$[f,f](T) = \lim_{||\Pi|| \to 0} \sum_{j=0}^{n-1} [f(t_{j+1}) - f(t_j)]^2$$
 where $\Pi = \{t_0, t_1, \dots, t_n\}$ and $0 = t_0 < t_1 < \dots < t_n = T$

Quadratic Variation

- Remark 3.4.2.
- Suppose the function f has a continuous derivative. By mean value theorem

$$\sum_{j=0}^{n-1} [f(t_{j+1}) - f(t_j)]^2 = \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)^2$$

$$\leq ||\prod|| \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)$$

Quadratic Variation

and thus

$$[f,f](T) \leq \lim_{\|\|\|\| \to 0} [\|\|\|\| * \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)]$$

$$= \lim_{\|\|\|\| \to 0} \|\|\|\| * \lim_{\|\|\| \to 0} \sum_{j=0}^{n-1} [f'(t_j^*)]^2 (t_{j+1} - t_j)$$

$$= \lim_{\|\|\|\| \to 0} \|\|\|\| * \int_0^T [f'(t)]^2 dt = 0$$

In the last step of this argument, we use the fact that f'(t) is continuous to ensure that $\int_0^T [f'(t)]^2 dt$ is finite.