Game options

Yuri Kifer

Abstract

- Player:
seller A, buyer B

Abstract

- Both buyer and seller to stop them at any time
then the buyer can exercise the right
a specified security $\left(\mathrm{S}_{t}\right)$ for certain agreed price (K)

Abstract

- If the contract is terminated by A
then A must pay certain penalty to B

Abstract

- Analysis:
game contingent claims (GCC)
optimal stopping games (Dynkin's games)

Abstract

- Characteristic:
cheaper than usual American options
diversify financial markets

Introduction

-What is the fair price V^{*} for such contract?

Introduction

- Based on hedging
V^{*} should be the minimal capital
invest it into a self-financing portfolio
cover liability

Introduction

- A standard $\left(B_{t}, S_{t}\right)$-securities market
nonrandom (riskless) component B_{t}
random (risky) component S_{t}

Introduction

- A probability space (Ω, \mathcal{F}, P)
with a stochastic process $S_{t} \geq 0$
σ-algebras $\mathcal{F}_{t} \subset \mathcal{F}$,
\mathcal{F}_{t} is generated by all $S_{u}, 0 \leq u \leq t$

Introduction

-Two right continuous with left limits stochastic payoff processes:
$\mathrm{X}_{t} \geq \mathrm{Y}_{t} \geq 0$, adapted to the filtration \mathcal{F}_{t}

Introduction

- A game contingent claim (GCC):

B exercises => payoff $=Y_{t}$
A cancels $=>$ payoff $=X_{t}$
same time $=>$ payoff $=Y_{t}$
$\delta_{t}=X_{t}-Y_{t} \geq 0$

Introduction

Assuming that clairvoyance is not possible A and B have to use only stopping times with respect to the filtration $\left\{\mathscr{F}_{t}\right\}$ as their cancellation and exercise times.

Introduction

- European options:
$Y_{t}=0$ for $t<T$ and $Y_{t}=Y_{T} \geq 0$ for $t=T$
- American options:
if the penalty is chosen large enough

Introduction

- Discrete time: CRR-model
- continuous time: geometric Brownian motion
- Markov case: $Y_{t}=\beta^{t} Y\left(S_{t}\right), X_{t}=\beta^{t} X\left(S_{t}\right), \beta \leq 1$

Discrete time

- Based on CRR-model
- $\Omega=\{1,-1\}^{N}$
$\bullet \omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right), \omega_{i}=1$ or -1

Discrete time

- with the product probability:

$$
\begin{gathered}
P=\{p, q\}^{N}, q=1-p, 0<p<1 \\
\cdot p(\omega)=p^{k} q^{N-k}, k=\frac{1}{2}\left(N+\sum_{i=1}^{N} \omega_{i}\right)
\end{gathered}
$$

Discrete time

- savings account:

$$
B_{n}=(1+r)^{n} B_{0}, B_{0}>0, r>0
$$

- stock price:

$$
S_{n}=S_{0} \prod_{k=1}^{N}\left(1+\rho_{k}\right), S_{0}>0
$$

where $\rho_{k}(\omega)=\frac{1}{2}\left(a+b+\omega_{k}(b-a)\right),-1<a<r<b$

Discrete time

- portfolio strategy π :

$$
Z_{0}^{\pi}=z>0, \pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{N}\right)
$$

- at time n :

$$
\pi_{n}=\left(\beta_{n}, \gamma_{n}\right), Z_{n}^{\pi}=\beta_{n} B_{n}+\gamma_{n} S_{n}
$$

- self-financing:

$$
B_{n-1}\left(\beta_{n}-\beta_{n-1}\right)+S_{n-1}\left(\gamma_{n}-\gamma_{n-1}\right)=0
$$

Discrete time

- cancellation time:

$$
\begin{gathered}
\sigma, \tau \in \mathcal{F}_{0 N} \\
\sigma^{\wedge} \tau \stackrel{\text { def }}{=} \min (\sigma, \tau)
\end{gathered}
$$

- payoff:

$$
\mathrm{R}(\sigma, \tau) \stackrel{\text { def }}{=} X_{\sigma} \mathrm{I}_{\sigma<\tau}+Y_{\tau} \mathrm{I}_{\tau \leq \sigma}
$$

Discrete time

A hedge against a GCC with a maturity date N is a pair (σ, π) of a stopping time $\sigma \in \mathscr{F}_{0 N}$ and a self-financing portfolio strategy π such that $Z_{\sigma \wedge n}^{\pi} \geq R(\sigma, n)$ for all $n=0,1, \ldots, N$.

The fair price V^{*} of a GCC is the infimum of $V \geq 0$ such that there exists a hedge (σ, π) against this GCC with $Z_{0}^{\pi}=V$.

Theorem 2.1

Theorem 2.1 Let $P^{*}=\left\{p^{*}, 1-p^{*}\right\}^{N}$ be the probability on the space Ω with $p^{*}=\frac{r-a}{b-a}, N<\infty$ and E^{*} denotes the corresponding expectation. Then the fair price V^{*} of the above $G C C$ equals $V_{0 N}^{*}$ which can be obtained from the recursive relations $V_{N N}^{*}=(1+r)^{-N} Y_{N}$ and for $n=0,1, \ldots, N-1$

$$
\begin{equation*}
V_{n N}^{*}=\min \left((1+r)^{-n} X_{n}, \max \left((1+r)^{-n} Y_{n}, E^{*}\left(V_{n+1 N}^{*} \mid \mathscr{T}_{n}\right)\right)\right) . \tag{2.7}
\end{equation*}
$$

Theorem 2.1

Moreover, for $n=0,1, \ldots, N$,

$$
\begin{align*}
V_{n N}^{*} & =\min _{\sigma \in \mathscr{\mathscr { F } _ { n N }}} \max _{\tau \in \mathscr{\mathscr { F } _ { n N }}} E^{*}\left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau) \mid \mathscr{F}_{n}\right) \tag{2.8}\\
& =\max _{\tau \in \mathscr{\mathscr { F }} n} \min _{\sigma \in \mathscr{\mathscr { F }}_{n} N} E^{*}\left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau) \mid \mathscr{F}_{n}\right) .
\end{align*}
$$

Theorem 2.1

Furthermore, for each $n=0,1, \ldots, N$ the stopping times

$$
\begin{align*}
& \sigma_{n N}^{*}=\min \left\{k \geq n:(1+r)^{-k} X_{k}=V_{k N}^{*} \text { or } k=N\right\} \text { and } \tag{2.9}\\
& \tau_{n N}^{*}=\min \left\{k \geq n:(1+r)^{-k} Y_{k}=V_{k N}^{*}\right\}
\end{align*}
$$

belong to $\mathscr{J}_{n N}\left(\right.$ since $\left.V_{N N}^{*}=(1+r)^{-N} Y_{N}\right)$ and they satisfy

Theorem 2.1

$$
\begin{equation*}
E^{*}\left((1+r)^{-\sigma_{n N}^{*} \wedge \tau} R\left(\sigma_{n N}^{*}, \tau\right) \mid \mathscr{F}_{n}\right) \leq V_{n N}^{*} \leq E^{*}\left((1+r)^{-\sigma \wedge \tau_{n v i v}^{*}} R\left(\sigma, \tau_{n N}^{*}\right) \mid \mathscr{F}_{n}\right) \tag{2.10}
\end{equation*}
$$

for any $\sigma, \tau \in \mathscr{T}_{n, N}$. Finally, there exists a self-financing portfolio strategy π^{*} such that $\left(\sigma_{0 N}^{*}, \pi^{*}\right)$ is a hedge against this GCC with the initial capital $Z_{0}^{\pi^{*}}=V_{0 N}^{*}$ and such strategy is unique up to the time $\sigma_{0 N}^{*} \wedge \tau_{0 N}^{*}$.

Theorem 2.1

Proof. Let $\pi=\left(\pi_{1}, \ldots, \pi_{N}\right), \pi_{n}=\left(\beta_{n}, \gamma_{n}\right)$ be a self-financing portfolio strategy with $Z_{0}^{\pi}=z>0$ then $M_{n}^{\pi}=(1+r)^{-n} Z_{n}^{\pi}$ (see [SKKM1]),

$$
\begin{equation*}
M_{n}^{\pi}=\boldsymbol{z}+\sum_{k=1}^{n}(1+r)^{-k} \gamma_{k} S_{k-1}\left(\rho_{k}-r\right), \tag{2.11}
\end{equation*}
$$

which is a martingale with respect to the filtration $\left\{\mathscr{F}_{n}\right\}_{0 \leq n \leq N}$ and the probability P^{*}.

Part1 of proof

- Suppose that (σ, π) is a hedge, by the Optional Sampling Theorem (see [Ne], Theorem II-2-13)
for any $\tau \in \mathcal{F}_{0 N}$,
we have $\left.\left.Z_{0}^{\pi}=\mathrm{E}^{*}\left((1+r)^{-\sigma \wedge \tau} Z_{-\sigma \wedge \tau}^{\pi}\right)\right) \geq \mathrm{E}^{*}\left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau)\right)\right)$

Since, by the definition, V^{*} is the infimum of such initial capitals Z_{0}^{π} then V^{*} is not less than the right hand side of (2.8).

Part2 of proof

- In the other direction
for any $\sigma \in \mathcal{F}_{0 N}$,
set $V_{n}^{\sigma}=\max _{\tau \in \mathscr{Z n v}^{\prime}} E^{*}\left(U_{\tau}^{\sigma} \mid \mathscr{T _ { n }}\right)$ where $U_{k}^{\sigma}=(1+r)^{-\sigma \wedge k} R(\sigma, k), k=0,1, \ldots, N$.

Part2 of proof

- Observe that U_{k}^{σ} is $\mathcal{F}_{\sigma \wedge \tau}$-measurable

It is easy to check directly and follows from general theorems (see [Ne], Proposition VI-1-2)
that $\left\{V_{n}^{\sigma}\right\}_{0 \leq n \leq N}$ is a minimal supermartingale with respect to the filtration $\left\{\mathscr{F}_{n}\right\}_{0 \leq n \leq N}$ such that $V_{n}^{\sigma} \geq U_{n}^{\sigma}, n=0,1, \ldots, N$.

Part2 of proof

- Proceeding in the standard way via the Doob supermartingale decomposition and the martingale representation
(obtain similarly to Sect. 2 and Sect. 5 in [SKKM1])
there exists a self-financing portfolio strategy $\pi^{\sigma}=\left(\pi_{1}^{\sigma}, \ldots, \pi_{1}^{\sigma}\right)$, $\pi_{n}^{\sigma}=\left(\beta_{n}^{\sigma}, \gamma_{n}^{\sigma}\right)$ with the portfolio value process $Z_{n}^{\pi^{\sigma}}=\beta_{n}^{\sigma} B_{n}+\gamma_{n}^{\sigma} S_{n}$ such that (π, σ) is a hedge.

Part3 of proof

- Next, define $\sigma_{n N}^{*}, \tau_{n N}^{*}$ by (2.9).

Then it is easy to see by the backward induction in n that (2.8) and (2.10) hold true.

Part4 of proof

Now take $\sigma^{*}=\sigma_{0 N}^{*} \in \mathscr{J}_{0 N}$ and construct the corresponding self-financing portfolio strategy $\pi^{*}=\pi^{\sigma^{*}}$, as above, which yields the hedge (σ^{*}, π^{*}) with the initial capital $V_{0}^{\sigma^{*}}=\max _{\tau \in \mathcal{F}_{0, N}} E^{*}\left((1+r)^{-\sigma^{*} \wedge \tau} R(\sigma, \tau)\right)=V_{0 N}^{*}$ where the last equality follows from (2.10). This together with the first part of the proof gives $V^{*}=V_{0 N}^{*}$.

Part5 of proof

- It remains to obtain the uniqueness.

Set $\tau^{*}=\tau_{0 N}^{*}$. Since $\left(\sigma^{*}, \pi^{\sigma^{*}}\right)$ is a hedge
then $M_{0}^{\pi^{\sigma^{*}}}=V_{0}^{\sigma^{*}}=E^{*}\left((1+r)^{-\sigma^{*} \wedge \tau^{*}} R\left(\sigma^{*}, \tau^{*}\right)\right) \leq E^{*}\left((1+r)^{-\sigma^{*} \wedge \tau^{*}} Z_{\sigma^{*} \wedge \tau^{*}}^{\pi^{*}}\right)=$ $E^{*} M_{\sigma^{*} \wedge \tau^{*}}^{\pi^{*}}=M_{0}^{\pi^{\sigma^{*}}}$ since $M_{n}^{\pi^{\sigma^{*}}}$ is a martingale.

It follows that $Z_{\sigma^{*} \wedge \tau^{*}}^{\sigma^{*}}=R\left(\sigma^{*}, \tau^{*}\right)$.

Part5 of proof

- Let now $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right), \pi_{n}=\left(\beta_{n}, \gamma_{n}\right)$ be another self-financing portfolio strategy with $Z_{0}^{\pi}=V^{*}=V_{0}^{\sigma}$.

According to the first part of the proof

$$
M_{n}^{\pi}=(1+r)^{-n} Z_{n}^{\pi} \text { and } Z_{\sigma^{*} \wedge \tau^{*}}^{\pi}=\mathrm{R}\left(\sigma^{*}, \tau^{*}\right)=Z_{\sigma^{*} \wedge \tau^{*}}^{\pi^{*}}
$$

and so $\mathrm{M}_{\sigma^{*} \wedge \tau^{*}}^{\pi}=\mathrm{M}_{\sigma^{*} \wedge \tau^{*}}^{\pi^{*}}$

Part5 of proof

- Since both and $M_{n}^{\pi}, M_{n}^{\pi^{*}}$ are martingales it follows that $\mathrm{M}_{n}^{\pi}=\mathrm{M}_{n}^{\pi^{*}}$ and $Z_{n}^{\pi}=Z_{n}^{\pi^{*}}$ for all $n \leq \sigma^{*} \wedge \tau^{*}$
- Since the representation (2.11) is unique
$S_{n}>0$ and $\rho_{n} \neq r$ for all n
then $\gamma_{n}=\gamma_{n}^{\pi^{*}}$ and $\beta_{n}=\beta_{n}^{\pi^{*}}$ for all $n \leq \sigma^{*} \wedge \tau^{*}$

Remark 2.2

- $R(\sigma, \tau)$ is replaced by $\hat{R}(\sigma, \tau)=X_{\sigma} \mathbb{I}_{\sigma<\tau}+Y_{\tau} \mathbb{I}_{\tau<\sigma}+W_{\sigma} \mathbb{I}_{\sigma=\tau}$ where W_{n} is \mathcal{F}_{n}-measurable, $Y_{n} \leq W_{n} \leq X_{n}, \mathrm{n}=0,1, \ldots, \mathrm{~N}$ and $W_{N} \leq Y_{N}$.

Remark 2.3

- Theorem 2.1 can be extended to the infinite horizon case $\mathrm{N}=\infty$

Remark 2.4

- Theorem 2.1 can be generalized to the case when consumption or infusion of capital is also possible.

$$
\begin{aligned}
& Z_{n-1}^{\pi}=\beta_{n} B_{n-1}+\gamma_{n} S_{n-1}+g_{n} \\
& V^{*}=\min _{\sigma \in \mathscr{O} v v} \max _{\tau \in \mathscr{Z o v}} E^{*}\left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau)+\sum_{k=1}^{\sigma \wedge \tau}(1+r)^{-(k-1)} g_{k}\right.
\end{aligned}
$$

Remark 2.5

- It is easy also to generalize the above set up allowing dependence of r, a and b on time
i.e. assuming that $\rho_{k}(\omega)=\frac{1}{2}\left(a_{k}+b_{k}+\omega_{k}\left(b_{k}-a_{k}\right)\right)$ and
$B_{n}=B_{0} \prod_{k=1}^{n}\left(1+r_{k}\right)$ where $r_{k}, a_{k}, b_{k} ; k=1, \ldots, N$ are nonrandom sequences
satisfying $-1<a_{k}<r_{k}<b_{k}$.

