Game options

Yuri Kifer

• Player:

seller A, buyer B

Both buyer and seller to stop them at any time

then the buyer can exercise the right

a specified security (S_t) for certain agreed price (K)

• If the contract is terminated by A

then A must pay certain penalty to B

•Analysis:

game contingent claims (GCC)

optimal stopping games (Dynkin's games)

• Characteristic:

cheaper than usual American options

diversify financial markets

• What is the fair price V^* for such contract?

Based on hedging

V^* should be the minimal capital

invest it into a self-financing portfolio

cover liability

• A standard (B_t, S_t) -securities market

nonrandom (riskless) component B_t

random (risky) component S_t

• A probability space (Ω, \mathcal{F}, P)

with a stochastic process $S_t \ge 0$

 σ -algebras $\mathcal{F}_t \subset \mathcal{F}$,

 \mathcal{F}_t is generated by all S_u , $0 \le u \le t$

Two right continuous with left limits stochastic payoff processes:

 $X_t \ge Y_t \ge 0$, adapted to the filtration \mathcal{F}_t

• A game contingent claim (GCC):

B exercises => payoff =
$$Y_t$$

A cancels => payoff = X_t
same time => payoff = Y_t

$$\delta_t = X_t - Y_t \ge 0$$

Assuming that clairvoyance is not possible A and B have to use only stopping times with respect to the filtration $\{\mathscr{F}_t\}$ as their cancellation and exercise times.

- European options:
- $Y_t = 0$ for t < T and $Y_t = Y_T \ge 0$ for t = T

- •American options:
- if the penalty is chosen large enough

• Discrete time: CRR-model

continuous time: geometric Brownian motion

• Markov case: $Y_t = \beta^t Y(S_t), X_t = \beta^t X(S_t), \beta \leq 1$

Based on CRR-model

$$\bullet \Omega = \{1, -1\}^N$$

•
$$\omega = (\omega_1, \omega_2, \dots, \omega_N), \omega_i = 1 \text{ or } -1$$

• with the product probability:

$$P = \{p,q\}^{N}, q = 1 - p, 0
$$\bullet p(\omega) = p^{k}q^{N-k}, k = \frac{1}{2}(N + \sum_{i=1}^{N}\omega_{i})$$$$

• savings account:

$$B_n = (1 + r)^n B_0, B_0 > 0, r > 0$$

• stock price:

$$S_n = S_0 \prod_{k=1}^{N} (1 + \rho_k), S_0 > 0$$

where $\rho_k(\omega) = \frac{1}{2} (a + b + \omega_k (b - a)), -1 < a < r < b$

• portfolio strategy
$$\pi$$
:
 $Z_0^{\pi} = z > 0, \pi = (\pi_1, \pi_2, \dots, \pi_N)$

• at time n:

$$\pi_n = (\beta_n, \gamma_n), Z_n^{\pi} = \beta_n B_n + \gamma_n S_n$$

• self-financing:
$$B_{n-1}(\beta_n - \beta_{n-1}) + S_{n-1}(\gamma_n - \gamma_{n-1}) = 0$$

•cancellation time: $\sigma,\tau\in\mathcal{F}_{0N}$

$$\sigma^{\wedge} \tau \stackrel{\text{\tiny def}}{=} \min(\sigma, \tau)$$

• payoff:

 $\mathsf{R}(\sigma,\tau) \stackrel{\text{\tiny def}}{=} X_{\sigma}\mathsf{I}_{\sigma < \tau} + Y_{\tau}\mathsf{I}_{\tau \leq \sigma}$

A hedge against a GCC with a maturity date N is a pair (σ, π) of a stopping time $\sigma \in \mathscr{J}_{0N}$ and a self-financing portfolio strategy π such that $Z_{\sigma \wedge n}^{\pi} \ge R(\sigma, n)$ for all n = 0, 1, ..., N.

The fair price V^* of a GCC is the infimum of $V \ge 0$ such that there exists a hedge (σ, π) against this GCC with $Z_0^{\pi} = V$.

Theorem 2.1 Let $P^* = \{p^*, 1 - p^*\}^N$ be the probability on the space Ω with $p^* = \frac{r-a}{b-a}$, $N < \infty$ and E^* denotes the corresponding expectation. Then the fair price V^* of the above GCC equals V_{0N}^* which can be obtained from the recursive relations $V_{NN}^* = (1+r)^{-N} Y_N$ and for n = 0, 1, ..., N-1

$$V_{nN}^* = \min((1+r)^{-n}X_n, \max((1+r)^{-n}Y_n, E^*(V_{n+1N}^*|\mathscr{F}_n))).$$
(2.7)

Moreover, for n = 0, 1, ..., N*,*

$$V_{nN}^* = \min_{\sigma \in \mathscr{T}_{nN}} \max_{\tau \in \mathscr{T}_{nN}} E^* \left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau) \middle| \mathscr{T}_n \right)$$
$$= \max_{\tau \in \mathscr{T}_{nN}} \min_{\sigma \in \mathscr{T}_{nN}} E^* \left((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau) \middle| \mathscr{T}_n \right).$$

(Back)	
(Back1)	

(2.8)

Furthermore, for each n = 0, 1, ..., N the stopping times

$$\sigma_{nN}^* = \min\{k \ge n : (1+r)^{-k} X_k = V_{kN}^* \text{ or } k = N\} \text{ and}$$
(2.9)
$$\tau_{nN}^* = \min\{k \ge n : (1+r)^{-k} Y_k = V_{kN}^*\}$$

belong to \mathcal{J}_{nN} (since $V_{NN}^* = (1+r)^{-N} Y_N$) and they satisfy

$$E^*\left((1+r)^{-\sigma_{nN}^*\wedge\tau}R(\sigma_{nN}^*,\tau)\middle|\mathscr{F}_n\right) \le V_{nN}^* \le E^*\left((1+r)^{-\sigma\wedge\tau_{nN}^*}R(\sigma,\tau_{nN}^*)\middle|\mathscr{F}_n\right)$$
(2.10)

for any $\sigma, \tau \in \mathscr{T}_{n,N}$. Finally, there exists a self-financing portfolio strategy π^* such that (σ_{0N}^*, π^*) is a hedge against this GCC with the initial capital $Z_0^{\pi^*} = V_{0N}^*$ and such strategy is unique up to the time $\sigma_{0N}^* \wedge \tau_{0N}^*$.

Proof. Let $\pi = (\pi_1, ..., \pi_N)$, $\pi_n = (\beta_n, \gamma_n)$ be a self-financing portfolio strategy with $Z_0^{\pi} = z > 0$ then $M_n^{\pi} = (1 + r)^{-n} Z_n^{\pi}$ (see [SKKM1]),

$$M_n^{\pi} = z + \sum_{k=1}^n (1+r)^{-k} \gamma_k S_{k-1}(\rho_k - r), \qquad (2.11)$$

(back)

which is a martingale with respect to the filtration $\{\mathscr{F}_n\}_{0 \le n \le N}$ and the probability P^* .

Part1 of proof

• Suppose that (σ , π) is a hedge, by the Optional Sampling Theorem (see [Ne], Theorem II-2-13)

for any $\tau \in \mathcal{F}_{0N}$, we have $Z_0^{\pi} = \mathrm{E}^*((1+r)^{-\sigma\wedge\tau}Z_{-\sigma\wedge\tau}^{\pi})) \geq \mathrm{E}^*((1+r)^{-\sigma\wedge\tau}R(\sigma,\tau)))$

Since, by the definition, V^* is the infimum of such initial capitals Z_0^{π} then V^* is not less than the right hand side of (2.8).

Part2 of proof

• In the other direction

for any $\sigma \in \mathcal{F}_{0N}$,

set $V_n^{\sigma} = \max_{\tau \in \mathscr{J}_{nN}} E^*(U_{\tau}^{\sigma} | \mathscr{F}_n)$ where $U_k^{\sigma} = (1+r)^{-\sigma \wedge k} R(\sigma, k), k = 0, 1, \dots, N$.

Part2 of proof

• Observe that U_k^{σ} is $\mathcal{F}_{\sigma \wedge \tau}$ -measurable

It is easy to check directly and follows from general theorems (see [Ne], Proposition VI-1-2)

that $\{V_n^{\sigma}\}_{0 \le n \le N}$ is a minimal supermartingale with respect to the filtration $\{\mathscr{F}_n\}_{0 \le n \le N}$ such that $V_n^{\sigma} \ge U_n^{\sigma}$, n = 0, 1, ..., N.

Part2 of proof

 Proceeding in the standard way via the Doob supermartingale decomposition and the martingale representation
 (obtain similarly to Sect. 2 and Sect. 5 in [SKKM1])

there exists a self-financing portfolio strategy $\pi^{\sigma} = (\pi_1^{\sigma}, ..., \pi_1^{\sigma})$, $\pi_n^{\sigma} = (\beta_n^{\sigma}, \gamma_n^{\sigma})$ with the portfolio value process $Z_n^{\pi^{\sigma}} = \beta_n^{\sigma} B_n + \gamma_n^{\sigma} S_n$ such that (π, σ) is a hedge.

Part3 of proof

• Next, define σ_{nN}^* , τ_{nN}^* by (2.9).

Then it is easy to see by the backward induction in n that (2.8) and (2.10) hold true.

Part4 of proof

Now take $\sigma^* = \sigma_{0N}^* \in \mathscr{J}_{0N}$ and construct the corresponding self-financing portfolio strategy $\pi^* = \pi^{\sigma^*}$, as above, which yields the hedge (σ^*, π^*) with the initial capital $V_0^{\sigma^*} = \max_{\tau \in \mathscr{J}_{0N}} E^*((1+r)^{-\sigma^* \wedge \tau} R(\sigma, \tau)) = V_{0N}^*$ where the last equality follows from (2.10). This together with the first part of the proof gives $V^* = V_{0N}^*$.

Part5 of proof

It remains to obtain the uniqueness.

Set $\tau^* = \tau_{0N}^*$. Since $(\sigma^*, \pi^{\sigma^*})$ is a hedge

then $M_0^{{\pi}^{\sigma^*}} = V_0^{{\sigma}^*} = E^*((1+r)^{-{\sigma}^* \wedge {\tau}^*} R({\sigma}^*,{\tau}^*)) \le E^*((1+r)^{-{\sigma}^* \wedge {\tau}^*} Z_{{\sigma}^* \wedge {\tau}^*}^{{\pi}^{\sigma^*}}) = E^* M_{{\sigma}^* \wedge {\tau}^*}^{{\pi}^{\sigma^*}} = M_0^{{\pi}^{\sigma^*}} \text{ since } M_n^{{\pi}^{\sigma^*}} \text{ is a martingale.}$

It follows that $Z_{\sigma^* \wedge \tau^*}^{\sigma^*} = R(\sigma^*, \tau^*)$.

Part5 of proof

• Let now $\pi = (\pi_1, ..., \pi_n)$, $\pi_n = (\beta_n, \gamma_n)$ be another self-financing portfolio strategy with $Z_0^{\pi} = V^* = V_0^{\sigma^*}$.

According to the first part of the proof

$$M_n^{\pi} = (1+r)^{-n} Z_n^{\pi}$$
 and $Z_{\sigma^* \wedge \tau^*}^{\pi} = \mathbb{R}(\sigma^*, \tau^*) = Z_{\sigma^* \wedge \tau^*}^{\pi^{\sigma^*}}$

and so $M^{\pi}_{\sigma^* \wedge \tau^*} = M^{\pi^{\sigma^*}}_{\sigma^* \wedge \tau^*}$

Part5 of proof

• Since both and M_n^{π} , $M_n^{\pi^*}$ are martingales it follows that $M_n^{\pi} = M_n^{\pi^*}$ and $Z_n^{\pi} = Z_n^{\pi^*}$ for all $n \le \sigma^* \land \tau^*$

• Since the representation (2.11) is unique $S_n > 0$ and $\rho_n \neq r$ for all n then $\gamma_n = \gamma_n^{\pi^*}$ and $\beta_n = \beta_n^{\pi^*}$ for all $n \leq \sigma^* \wedge \tau^*$

• $R(\sigma, \tau)$ is replaced by $\hat{R}(\sigma, \tau) = X_{\sigma} \mathbb{I}_{\sigma < \tau} + Y_{\tau} \mathbb{I}_{\tau < \sigma} + W_{\sigma} \mathbb{I}_{\sigma = \tau}$ where W_n is \mathcal{F}_n -measurable, $Y_n \le W_n \le X_n$, n = 0, 1, ..., Nand $W_N \le Y_N$.

• Theorem 2.1 can be extended to the infinite horizon case $N = \infty$

• Theorem 2.1 can be generalized to the case when consumption or infusion of capital is also possible.

$$Z_{n-1}^{\pi} = \beta_n B_{n-1} + \gamma_n S_{n-1} + g_n$$
$$V^* = \min_{\sigma \in \mathscr{J}_{0N}} \max_{\tau \in \mathscr{J}_{0N}} E^* ((1+r)^{-\sigma \wedge \tau} R(\sigma, \tau) + \sum_{k=1}^{\sigma \wedge \tau} (1+r)^{-(k-1)} g_k$$

 It is easy also to generalize the above set up allowing dependence of r, a and b on time

i.e. assuming that
$$\rho_k(\omega) = \frac{1}{2}(a_k + b_k + \omega_k(b_k - a_k))$$
 and

$$B_n = B_0 \prod_{k=1}^n (1 + r_k)$$
 where r_k, a_k, b_k ; $k = 1, ..., N$ are nonrandom sequences

satisfying $-1 < a_k < r_k < b_k$.