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4.4.1 Formula for Brownian Motion 

• chain rule from ordinary calculus 
 

 



4.4.1 Formula for Brownian Motion 

• But W has nonzero quadratic variation 
 
 
 
 
The Ito-Doeblin formula in differential form. 



4.4.1 Formula for Brownian Motion 

• The Ito-Doeblin formula in integral form: 
 
 

 





Theorem 4.4.1 (Ito-Doeblin formula for 
Brownian motion) 
• Proof: 
 
Fix 𝑇𝑇 > 0, and let Π = {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛} be a 
partition of [0,T] 
 
1.written as the sum of the changes  
2.use Taylor’s formula 



Preview: 



replace 𝑋𝑋𝑗𝑗  by 𝑊𝑊(𝑡𝑡𝑗𝑗), 𝑋𝑋𝑗𝑗+1 by 𝑊𝑊(𝑡𝑡𝑗𝑗+1), 
and sum: 



take the limit as Π → 0, 

• the left-hand side of ( 4.4.9) is unaffected 
• The first term on the right-hand side of (4.4.9): 

lim
Π →0

� 𝑓𝑓𝑡𝑡(𝑡𝑡𝑗𝑗 ,𝑊𝑊(𝑡𝑡𝑗𝑗))(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗)
𝑛𝑛−1

𝑗𝑗=0

= �𝑓𝑓𝑡𝑡 𝑡𝑡,𝑊𝑊 𝑡𝑡 𝑑𝑑𝑑𝑑
𝑇𝑇

0

 

 
• the second term: 

lim
Π →0

� 𝑓𝑓𝑥𝑥(𝑡𝑡𝑗𝑗 ,𝑊𝑊(𝑡𝑡𝑗𝑗))(𝑊𝑊(𝑡𝑡𝑗𝑗+1) −𝑊𝑊(𝑡𝑡𝑗𝑗))
𝑛𝑛−1

𝑗𝑗=0

= �𝑓𝑓𝑥𝑥 𝑡𝑡,𝑊𝑊 𝑡𝑡 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑇𝑇

0

 



• the third term: 

lim
Π →0

1
2 �𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡𝑗𝑗 ,𝑊𝑊(𝑡𝑡𝑗𝑗))(𝑊𝑊 𝑡𝑡𝑗𝑗+1 −𝑊𝑊 𝑡𝑡𝑗𝑗 )2
𝑛𝑛−1

𝑗𝑗=0

=
1
2�𝑓𝑓𝑥𝑥𝑥𝑥 𝑡𝑡,𝑊𝑊 𝑡𝑡 𝑑𝑑𝑑𝑑

𝑇𝑇

0

 

 



• the fourth term 
 



• the fifth term 
 



Remark 4.4.2. 

• (𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗)(𝑊𝑊(𝑡𝑡𝑗𝑗+1) −𝑊𝑊(𝑡𝑡𝑗𝑗)) has limit zero 
⟹ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡 = 0 
 
• (𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗)(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗)has limit zero 
⟹ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0 

 



Remark 4.4.2. 

• In differential form it becomes 
 



Remark 4.4.2. 

• The lto-Doeblin formula in differential form 
simplifies to 

 



Figure 4.4.1 

• The first-order approximation has an error due 
to the convexity of the function f(x). 
 

 



In other words, 



 
 
 
 
 
 
 

• Rearranging terms, we have formula (4.3.6) 



4.4.2 Formula for Ito Processes 



4.4.2 Formula for Ito Processes 

 
 

 
Proof: 

   Set  𝐼𝐼 𝑡𝑡 = ∫ ∆ 𝑢𝑢 𝑑𝑑𝑑𝑑 𝑢𝑢𝑡𝑡
0 , 𝑅𝑅(𝑡𝑡) = ∫ Θ 𝑢𝑢 𝑑𝑑𝑑𝑑𝑡𝑡

0  

   Π = {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛} be a partition of [0,t] 



quadratic variation: 



AS Π → 0 

• according to Theorem 4.3.1(vi) 
 
the first term 

   𝐼𝐼, 𝐼𝐼 𝑡𝑡 = ∫ ∆2 𝑢𝑢 𝑑𝑑𝑑𝑑𝑡𝑡
0  



The absolute value of the second term 
is bounded above by 



The absolute value of the third term is 
bounded above by 



• AS Π → 0, the second term and the third 
term has limit 0 because 𝐼𝐼 𝑡𝑡  and 𝑅𝑅 𝑡𝑡  is 
continuous 
 

⇒ 𝑋𝑋,𝑋𝑋 𝑡𝑡 = 𝐼𝐼, 𝐼𝐼 𝑡𝑡 = ∫ ∆2 𝑢𝑢 𝑑𝑑𝑑𝑑𝑡𝑡
0 . 



Lemma 4.4.4 in differential form 

 
 
 







Theorem 4.4.6 

• Proof: 
 
Fix 𝑇𝑇 > 0, and let Π = {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛} be a 
partition of [0,T] 
 
1.written as the sum of the changes  
2.use Taylor’s formula 

 





take the limit as Π → 0, 

• The first term on the right-hand side of (4.4.21): 

lim
Π →0

� 𝑓𝑓𝑡𝑡(𝑡𝑡𝑗𝑗 ,𝑋𝑋(𝑡𝑡𝑗𝑗))(𝑡𝑡𝑗𝑗+1 − 𝑡𝑡𝑗𝑗)
𝑛𝑛−1

𝑗𝑗=0

= �𝑓𝑓𝑡𝑡 𝑡𝑡,𝑋𝑋 𝑡𝑡 𝑑𝑑𝑑𝑑
𝑇𝑇

0

 

 
• the second term: 

lim
Π →0

� 𝑓𝑓𝑥𝑥(𝑡𝑡𝑗𝑗 ,𝑋𝑋(𝑡𝑡𝑗𝑗))(𝑋𝑋(𝑡𝑡𝑗𝑗+1) − 𝑋𝑋(𝑡𝑡𝑗𝑗))
𝑛𝑛−1

𝑗𝑗=0

= �𝑓𝑓𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 𝑑𝑑𝑋𝑋(𝑡𝑡)
𝑇𝑇

0

 

= �𝑓𝑓𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 ∆(𝑡𝑡)𝑑𝑑𝑊𝑊(𝑡𝑡)
𝑇𝑇

0

+ �𝑓𝑓𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 Θ(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0

 



• the third term: 

lim
Π →0

1
2 �𝑓𝑓𝑥𝑥𝑥𝑥(𝑡𝑡𝑗𝑗 ,𝑋𝑋(𝑡𝑡𝑗𝑗))(𝑋𝑋 𝑡𝑡𝑗𝑗+1 − 𝑋𝑋 𝑡𝑡𝑗𝑗 )2
𝑛𝑛−1

𝑗𝑗=0

 

=
1
2�𝑓𝑓𝑥𝑥𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 𝑑𝑑 𝑋𝑋,𝑋𝑋 𝑡𝑡

𝑇𝑇

0

=
1
2�𝑓𝑓𝑥𝑥𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 𝑑𝑑 𝑋𝑋,𝑋𝑋 𝑡𝑡

𝑇𝑇

0

 

=
1
2�𝑓𝑓𝑥𝑥𝑥𝑥 𝑡𝑡,𝑋𝑋 𝑡𝑡 ∆2(𝑡𝑡)𝑑𝑑𝑡𝑡

𝑇𝑇

0

 

• The last two sums on the right-hand side have 
zero limits as Π → 0. 

 



Remαrk 4.4.7 (Summary of stochastic 
calculus) 
• In differential notation 

 
 

 



4.4.3 Examples 



Example4.4.8 

• Then 

𝑑𝑑𝑑𝑑 𝑡𝑡 = 𝜎𝜎 𝑡𝑡 𝑑𝑑𝑑𝑑 𝑡𝑡 + 𝛼𝛼 𝑡𝑡 −
1
2
𝜎𝜎2(𝑡𝑡) 𝑑𝑑𝑑𝑑 

• Consider an asset price process given by 
 
 

where S(0) is nonrandom and positive. 
 



Example4.4.8 

• We may write 
𝑆𝑆 𝑡𝑡 = 𝑓𝑓 𝑋𝑋 𝑡𝑡 , 𝑓𝑓 𝑥𝑥 = 𝑆𝑆(0)𝑒𝑒𝑥𝑥 
𝑓𝑓′ 𝑥𝑥 = 𝑆𝑆(0)𝑒𝑒𝑥𝑥,  𝑓𝑓′′ 𝑥𝑥 = 𝑆𝑆(0)𝑒𝑒𝑥𝑥 

 



Example4.4.8 

• According to the lto-Doeblin formula 
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