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4.4.1 Formula for Brownian Motion

e chain rule from ordinary calculus

df(W(t)) = F'(W()) W' (t)dt = f'(W(t)) dW (2)



4.4.1 Formula for Brownian Motion

e But W has nonzero quadratic variation

df(W(t)) = f'(W(t))dW(t) + 5 f” (W(t)) dt

The Ito-Doeblin formula in differential form.



4.4.1 Formula for Brownian Motion

 The Ito-Doeblin formula in integral form:

SO O) - fWO) = [ FOW@) W) +3 [ W) du



Theorem 4.4.1 (It6-Doeblin formula for Brownian motion). Let
f(t,x) be a function for which the partial derivatives fi(t,x), f:(t,z), and
fzz(t,x) are defined and continuous, and let W(t) be a Brownian motion.
Then, for every T > 0,

FEW) = F0WO) + [ (W) d

T 1 T
[ W) WO+ [ W) & @43)



Theorem 4.4.1 (Ito-Doeblin formula for
Brownian motion)

* Proof:

FixT > 0, and let Il = {ty, t4, ..., t,,} be a
partition of [O,T]

1.written as the sum of the changes
2.use Taylor’s formula



Preview:

f(tir1, Ti41) — f(t5,25)
= fi(tj, x;)(tj1 — t;) + fz(t;, T5)(Tj41 — T5)

1
+5 foa (s, 25)(Tj1 = 25)? + fealts, 2 ts01 — 5 )(Tj41 — T5)

+%ftt(tja z;)(tj+1 — t;)* + higher-order terms. (4.4.8)



replace X; by W (t;), Xj+1 by W(t;4+1),
and sum:
F(T,W(T)) - £(0,W(0))
=Y [ft+1, W(tip1) — f(t5, W(2))]
3=0
n—1 n-1
= Filts, Wt)) (b =) + D Falts, W(E)) (W (t501) = W(E)))
7=0

j=0

n—1
s 3 fer by W) (W (50) = W)
n—1
+ 3 fra (b5, W (t)) (t41 — t5) (W (t501) — W(t5))
=0

ln—l
_|-§ Z fet (tj, W(tj))(tj+1 - t‘,-)2 + higher-order terms. (4.4.9)
—rd



take the limit as [|II|| = O,

e the left-hand side of ( 4.4.9) is unaffected
e The first term on the right-hand side of (4.4.9):
T

u%amo; ot W () (b1 — 1)) = f A6 W)t

* the second term:

T
fo@ WENWY (Ge0) = WD) = [ £le, W (©)aw ()
0

IHII -0



e the third term:

n—1 T
1 1
||ﬁi|fgo§;fxx(tf'W(tf))(W(tjﬂ) - W(t))? = 5] frx (8, W (D)) dt
B 0



e the fourth term

n—1
lim fex (5, W ()} (£i01 — t5) (W (t501) — W(E;))
1710 | <
n—1
< ||117i||nloz |fiz (t5, W(t))| - (i1 — t5) - [W(tj41) — W(E5)]
7=0

n-—1
= Ilrg'ilﬂo os?s&f—l IW(tHI) - W(tk), .Ilflrilﬂoﬁzo 'fm (tj’ W(t‘f))'(tHl ~ )

=0- / ’ | fez(t, W(t)) dt = O. (4.4.10)
0



e the fifth term

o |2 Zf** ti, W(t;)) (41 — t5)
1=
<I|#ﬁ0520|f¢t(tj, )] - (t01 — £;)?

1
< - ]. S - - — -
) IIHIMEOOETEf—l(tkH t)- hlfn 0 Z [ Fee (85, W (8) |41 = £5)

T
= % -0 /0 fu(t,W(t))dt = o0. (4.4.11)



Remark 4.4.2.

* (Ljy1 — )W (Ljy1) — W(L;)) has limit zero
= dtdW(t) =0

¢ (tj+1 — tj)(tj_|_1 — tj)has limit zero
= dtdt =0



Remark 4.4.2.

e |n differential form it becomes

df (t, W (t))
= fi(t, W(t)) dt + f-(t, W(t)) dW(t) + %fm (t, W(t)) dW (t) dW (t)
+ea (6, W(D) dEdW () + 5 fua (8, W(2)) di dt

but
dw(t)dW(t) =dt, dtdW(t)=dW(t)dt=0, dtdt=0, (4.4.12)



Remark 4.4.2.

e The lto-Doeblin formula in differential form
simplifies to

df (t, W(t)) = fe(t, W(t)) dt+ f (t, W(t)) AW (t) + % fra(t, W (t)) dt. (4.4.13)



Figure 4.4.1

* The first-order approximation has an error due
to the convexity of the function f(x).

/

(W (tje1), f(W (tj41)))

Wi(t;), F(W(t; :
(W(ts), F(W(t;))) E)f(w(tj))(W(t,-“)—W(ts'))

W(tj+1)

Fig. 4.4.1. Taylor approximation to f(W (t;4+1)) — f(W (2;)).



In other words,

f(W(tJ+1)) — f(W(tJ)) = f'(W(tj)) (W(tj.l.l) — W(t; )) + small error,
(4.4.14)

and

f(W(tje)) — F(W(5) = £ (W(t) (W(tj) — W(tj))

§f"(W (DN W (tis1) - W(t;)°
+ smaller error. (4.4.15)



For example, with f(z) = 1z2, this formula says that
—W2 (T) = F(W(T)) - F(W(0))
= ] f'(W(t)) dW(t)+% ] " (W(t)) dt
0 0

- f "W aw + Lt
0

e Rearranging terms, we have formula (4.3.6)



4.4.2 Formula for Ito Processes

Definition 4.4.3. Let W(t), t > 0, be a Brownian motion, and let F(t),
t > 0, be an associated filtration. An Itd process is a stochastic process of the
form

X(t) = X(0) +/; A(u) dW (u) +/0 O(u) du, (4.4.16)

where X (0) is nonrandom and A(u) and ©(u) are adapted stochastic pro-
2
cesses.



4.4.2 Formula for Ito Processes

Lemma 4.4.4. The quadratic variation of the Ité process (4.4.16) is

(X, X](t) = / t A?(u) du. (4.4.17)
0
Proof:
Set I(t) = [T A)dW (W), R(t) = [, @(w)du
[1 = {ty, tq1, ..., t,} be a partition of [0,t]



guadratic variation:

n—1
Z (X (tj41) — Z [I(t41) = 1(t;))" + > [Rtj) - R(t;))”
j= 3=0

+2 Z [Z(t41) = I(t;)] [R(tj+1) — R(t;)].

j=0



AS ||TI|| = O

e according to Theorem 4.3.1(vi)

the first term

[1,11(8) = [, A% (Wdu



The absolute value of the second term
is bounded above by

n—1
max_ |R(tir1) = R(te)| - ) |R(tj1) = R(t)]
J=0

0<k<n—

n-ll ot

= opax | |R(tk+1) — R(tx)| - _.,Z—:o y B(u)du
n-l etin
< 051.1515331{—1 'R(tk+1) — R(tk)l ' ; /; |9(u)| du

max | |Rltess) — Rlte)| - | 16()|d

0<k<n-—1



The absolute value of the third term is
bounded above by

n—1
2 max |I(tes1) — I(t)] - D |R(tin) — R(t;))
=0

0<k<n-1

t
< —_ .
<2 max [T(tn) — 18] - [ 1@ du,



e AS ||TTI|| = O, the second term and the third
term has limit 0 because I(t) and R(t) is
continuous

= [X, X1 = [1,11() = [, A*(w)du.



Lemma 4.4.4 in differential form

dX (t) = A(t) dW(t) + O(t) dt

dX(t)dX(t) = A%(t) dW (t) AW (t) + 2A(t)O(t) dW (t) dt + O>(t) dt dt
= A%(t) dt. (4.4.19)



Definition 4.4.5. Let X (t), t > 0, be an Ité process as described in Definition
4.4.8, and let I'(t), t > 0, be an adapted process. We define the integral with
respect to an Itd process®

/ I'(u)dX(u) =[0 I'u)A(u) dW(u)+/0 I'(u)B(u) du. (4.4.20)

0



Theorem 4.4.6 (It6-Doeblin formula for an Ité process). Let X(t),
t > 0, be an Ité process as described in Definition 4.4.3, and let f(t,x) be a

function for which the partial derivatives fi(t,x), fz(t,x), and fr(t,x) are
defined and continuous. Then, for every T > 0,

F(T, X(T))
= (0, X(0)) +f fe(t, X (2)) dt+[ f=(t, X () dX(t)
0 0

1 T
+3 /0 f==(t, X (t)) d[X, X](t)
T T
= (0, X(0)) + / fe(t, X (1)) dt + f f=(, X (1)) A(t) dW (2)
0 0

T 1 T
+ /0 fo(6,X()O(t) dt + > /0 fex (6, X(£)) A2(t)dt.  (4.4.22)



Theorem 4.4.6

* Proof:

FixT > 0, and let Il = {ty, t4, ..., t,,} be a
partition of [O,T]

1.written as the sum of the changes
2.use Taylor’s formula



f(T, X(T)) £(0,X(0))
= Z folts X () i1 — 1) + Z ot X (t)) (X (t341) = X (25))

+§ j;o fox (i, X () (X (tj41) — X(tj))

+ Z fez (b5, X (85)) (t541 — 1) (X (t41) — X (2;))

n—1

Z Fre(t5, X (£5)) (tj41 — t;)° + higher-order terms. (4.4.21)
=0



take the limit as [|II|| = O,

e The first term on the right-hand side of (4.4.21):

n

_q T
lim. JZO e XD (Gor — 1) = | £t X))
= 0

e the second term:
n

—1 T
lim Y £t X)X () — X(8)) = j £(6,X(©)dx ()
0

ITT{| =0 £
J=0

T T
— J fo(t, X(®)A)dW (t) + J fe(t, X(®))O(t)dt
0 0



e the third term:

n—1
1
o7 Z‘) frx (6, X (G X (41) = X(6))7
1 : : 1 .
=5 [ feelt. X @)X, X10) = 5 [ feelt, X®)alx,X10
0 0

T
= %fox(t,X(t))Az(t)dt
0

 The last two sums on the right-hand side have
zero limits as [|II|]| = O.



Remark 4.4.7 (Summary of stochastic
calculus)

* |n differential notation
df (t, X (t)) = fe(t, X(2)) dt + f- (¢, X (¢)) dX (¢) + %fm(t,X(t)) dX(t)dX(t).

(4.4.23)

df (t, X(t)) = fe(t, X (t)) dt + f=(t, X (t)) A(t) dW (¢)
+f=(t, X (t))O(t) dt + %fm (t, X (2)) A%(t) dt. (4.4.24)



4.4.3 Examples

Ezample 4.4.8 (Generalized geometric Brownian motion). Let W (t), t > 0,
be a Brownian motion, let F(¢), t > 0, be an associated filtration, and let «(t)
and o(t) be adapted processes. Define the Itd process

X(t) = /0 o(s) dW(s) + /0 t (ats) - %az(s))ds. (4.4.25)



Exampled.4.8

e Then
1
dX(t) = o(t)dW(t) + (a(t) — Eaz(t)> dt
e Consider an asset price process given by

S(t) = S(0)e*Y) = S(0)exp { /0 t o(s)dW (s) + fo t (a(s) — %az(s))ds}

where S(0) is nonrandom and positive.



Exampled.4.8

* We may write
S = f(X(@®)), f(x) = S(0)e*
f'(x) = S(0)e*, f"(x) = S(0)e*



Exampled.4.8

e According to the Ito-Doeblin formula

dS(t) = df (X (t))
= F/(X () dX(t) + 5 " (X (8)) dX (2) dX (1
= S5(0)eX®) dX (¢) + %S(O)ex(‘) dX(t)dX(t)

= S(t)dX(t) + %S(t) dX(t)dX (t)
= a(t)S(t) dt + o(t)S(t) dW(t).
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