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Abstract

*Player:

seller A, buyer B



Abstract

* Both buyer and seller to stop them at any time
then the buyer can exercise the right

a specified security (S;) for certain agreed price (K)



Abstract

o |f the contract is terminated by A

then A must pay certain penalty to B



Abstract

* Analysis:

game contingent claims (GCC)

optimal stopping games (Dynkin’s games)



Abstract

e Characteristic:

cheaper than usual American options

diversify financial markets



Introduction

* What is the fair price I/ for such contract?



Introduction

* Based on hedging

V™ should be the minimal capital

invest it into a self-financing portfolio

cover liability



Introduction

A standard (B;, S )-securities market
nonrandom (riskless) component B;

random (risky) component S,



Introduction

A probability space (Q, F, P)
with a stochastic process S; = 0
o-algebras F; C F,

F:isgeneratedbyall 5,0 <u <t



Introduction

* Two right continuous with left limits stochastic
payoff processes:

X; =Y, = 0, adapted to the filtration F;



Introduction

* A game contingent claim (GCC):

B exercises => payoff = Y;
A cancels => payoff = X;
same time => payoff = Y;

6t:Xt_Yt20



Introduction

Assuming that clairvoyance 1s not possible 4 and B have to use only stopping
times with respect to the filtration {.7 } as their cancellation and exercise times.



Introduction

* European options:
Y, =0fort<TandY,=Yr=0fort=T

* American options:
if the penalty is chosen large enough



Introduction

*Discrete time: CRR-model

e continuous time: geometric Brownian motion

e Markov case: Y, = B'Y(S,), X; = B*X(S,), B < 1



Discrete time

e Based on CRR-model
() = {1, —1}N

cw = (W1, Wy, ., 0yN),w; =1or —1



Discrete time

*with the product probability:

P={pq}",q=1-p,0<p<1

— 1
p(w) =p*q" " k= (N + XiL; wy)



Discrete time

* savings account:
B,=(1+1)"By,By>0,7r>0

e stock price:

_Sol_[(1+,0k) 50 >0

WhGFEpk(a))— (a+b+a)k(b—a)) —1<a<r<b



Discrete time

e portfolio strategy m:
8 =z>0,m = (1, Ty, ..., Ty )

e at time n:
iy = (,Bn: Vn)r Z‘Z’f = bnBn + ¥nSn

o self-financing:
Bn—l(ﬁn - ﬁn—l) + Sn—l(yn - Vn—l) =0



Discrete time

ecancellation time:
o,T € Fon

def

o™ T € min(o, 1)
* payoff:
R(O-' T) g XO'IO'<T + YTITSO'



Discrete time

A hedge against a GCC with a maturity date N 1s a pair (0. 7) of a stopping
time 0 € Ay and a self-financing portfolio strategy 7 such that Z7, > R(o,n)
forall»n =0.1,... ,N.

The fair price V'* of a GCC 1s the mnfimum of V7 > 0 such that there exists
a hedge (o, m) agaimnst this GCC with Z;J =T".



Theorem 2.1

Theorem 2.1 Let P* = {p*,1 — p*} be the probability on the space (2 with

p"=3=. N <ooand E* denotes the corresponding expectation. Then the fair

price V™ of the above GCC equals Vi, which can be obtained from the recursive
relations Vy, = (1 + M NYy and forn=0,1,... .N —1

Voy =min((1 + 7)) "X, max((1 +7) "V, E*(V," x| 7)) (2.7)



Theorem 2.1

Moreover, forn =0.1.... N,
7 — . AN—ONA Tz
Ve = min max E*| (1+7)"7""R(o. 7)|.7, (2.8)
D'E;'Zw-.-' TE_%@J
= max min E*( (1 +7r)" " "R(o. 7.7, ).
TEC ;Z}L’"r" GE%?M
(Back)

(Back1)



Theorem 2.1

Furthermore, for each n =0,1,... N the stopping times

ony =min{k >n (1 +r VX = Viy or k =N} and (2.9)
v =min{k > n : (1 +7) Y = Vi

belong to Zyn (since Vi, = (1 + 1)V Yy) and they satisfy



Theorem 2.1

E* ((1 + 1) "IN R(g . T)

Z) = r:*"-*' <E ((1 T F)_JAT”TVR(U: T;«i?\i’)

%)

(2.10)
for any o, 7 € 7, n. Finally, there exists a self-financing portfolio strategy m*
such that (o8, ™) is a hedge against this GCC with the initial capital ZJ =V,
and such strategy is unique up to the time ogy N\ T}y -



Theorem 2.1

™ = (71, ....T™N), T = (B,.7,) be a self-financing portfolio strategy
with ZOW =z >0then M =(1+r)""Z" (see [SKKMI)),

Mﬁ=z+2(1+rr Sk—1(pr = 1), (2.1D)
which is a martingale with respect to the filtration {.7, } <, <y and the probability

P
(back)



Part1 of proof

e Suppose that (o, ) is a hedge, by the Optional Sampling Theorem
(see [Ne], Theorem II-2-13)

forany T € Fyy,
we have Z = E*((1 +r)"°"Z%;,.)) = E*((1 + r)7°*R(0, 1)))

Since, by the definition, V* is the infimum of such initial capitals Zj
then V™ is not less than the right hand side of (2.8).



Part2 of proof

e In the other direction

forany o € Fyy,

set V.Y = max E*(U/|.7) where UZ = (1 + N MR k), k=0,1.... . N.

TE JnN



Part2 of proof

 Observe that U}, is F,,,-measurable

It is easy to check directly and follows from general theorems
(see [Ne], Proposition VI-1-2)

that {77 }o<n<ny 1s a minimal supermartingale with respect to the filtration
{7, bo<n<y such that V.0 > U7, n=0.1,... .N.



Part2 of proof

* Proceeding in the standard way via the Doob supermartingale
decomposition and the martingale representation

(obtain similarly to Sect. 2 and Sect. 5 in [SKKM1])

there exists a self-financing portfolio strategy m¢ = ({, ..., m{),
2 = (BY,y?) with the portfolio value process ZT° = B°B, + v?ZS,,
such that (7T, 0)is a hedge.



Part3 of proof
* Next, definea,, T,yby (2.9).

Then it is easy to see by the backward induction in n that (2.8) and
(2.10) hold true.




Part4 of proof

Now take o* = oy € Zn and construct the corresponding self-financing

portfolio strategy 7% = 77 . as above, which yields the hedge (o*. 7*) with the

!
initial capital VD':’* = max E*((1 1) O ATR(a. 7)) = Von where the last equality
TE_%}N ]

follows trom (2.10). This together with the first part of the proof gives '™ = I},



Part5 of proof

* |t remains to obtain the uniqueness.
Set 7% = 7. Since (o, 77") is a hedge

then W”* = Po = EX(1+7) " MR, ) < EX(L+r)y"0 Nz ) =

#
a

E*MT., . = M since MT™ is a martingale.
It follows that ZC"; e = R(0F,77).



Part5 of proof

* Let now ™ = (T4, ..., Ty), Ty, = (Bn, Vi) be another self-financing
portfolio strategy with Zg = V* =V .

According to the first part of the proof

MF=(1+r)"ZFand Z". . =R(c", ") = Z7-

o*NT"

T . o
and so M «px = M oy



Part5 of proof

e Since both and M¥, MT are martingales
it follows that MF = MT and ZF = ZT foralln < o* AT

e Since the representation (2.11) is unique

S, > 0andp, #7r foralln
theny, = ¥7 and B,, = BT foralln < ¢* A T*



Remark 2.2

e R(o,7) isreplaced by R(0,7t) = X, 1, + Y. I, + W, I _.
where W,, is F,-measurable, Y,, < W, < X,,n=0,1,...,N
and Wy < Yy.



Remark 2.3

e Theorem 2.1 can be extended to the infinite horizon case
N = o0



Remark 2.4

* Theorem 2.1 can be generalized to the case when consumption or
infusion of capital is also possible.

m — . -~
Zn—l - 'j”B”—l T 5'?333?—1 +ﬂn

aNT
V* = min max E*(1+r) """ R(a, 1)+ Y (1+r)"* Vg
o€ Zon TE Zon k=1



Remark 2.5

* |t is easy also to generalize the above set up allowing
dependence of r, a and b on time

1.e. assuming that pz(w) = %(u;{ + by +wi(br — ap)) and

n
B, = By |I(1 + ;) where ry.ap.bpy k = 1,... .1 N are nonrandom sequences
k=1

satistymng —1 < ap < rp < b;.
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