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Abstract

•Player:

seller A, buyer B



Abstract

•Both buyer and seller to stop them at any time

then the buyer can exercise the right

a specified security (S𝑡𝑡) for certain agreed price (K)



Abstract

• If the contract is terminated by A

then A must pay certain penalty to B



Abstract

•Analysis:

game contingent claims (GCC)

optimal stopping games (Dynkin’s games)



Abstract

•Characteristic:

cheaper than usual American options

diversify financial markets



Introduction

•What is the fair price 𝑉𝑉∗ for such contract?



Introduction

• Based on hedging

𝑉𝑉∗ should be the minimal capital

invest it into a self-financing portfolio

cover liability



Introduction

•A standard (𝐵𝐵𝑡𝑡, 𝑆𝑆𝑡𝑡)-securities market

nonrandom (riskless) component 𝐵𝐵𝑡𝑡

random (risky) component 𝑆𝑆𝑡𝑡



Introduction

• A probability space (Ω,ℱ,𝑃𝑃)

with a stochastic process 𝑆𝑆𝑡𝑡 ≥ 0

σ-algebras ℱ𝑡𝑡 ⊂ ℱ,

ℱ𝑡𝑡 is generated by all 𝑆𝑆𝑢𝑢, 0 ≤ 𝑢𝑢 ≤ 𝑡𝑡



Introduction

•Two right continuous with left limits stochastic 
payoff processes:

X𝑡𝑡 ≥ Y𝑡𝑡 ≥ 0, adapted to the filtration ℱ𝑡𝑡



Introduction

•A game contingent claim (GCC):

B exercises => payoff = Y𝑡𝑡
A cancels    => payoff = 𝑋𝑋𝑡𝑡
same time  => payoff = Y𝑡𝑡

𝛿𝛿𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑌𝑌𝑡𝑡 ≥ 0



Introduction



Introduction

•European options:
𝑌𝑌𝑡𝑡 = 0 for 𝑡𝑡 < 𝑇𝑇 and 𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑇𝑇 ≥ 0 for 𝑡𝑡 = 𝑇𝑇

•American options:
if the penalty is chosen large enough



Introduction

•Discrete time: CRR-model

•continuous time: geometric Brownian motion

•Markov case: 𝑌𝑌𝑡𝑡 = 𝛽𝛽𝑡𝑡𝑌𝑌(𝑆𝑆𝑡𝑡), 𝑋𝑋𝑡𝑡 = 𝛽𝛽𝑡𝑡𝑋𝑋(𝑆𝑆𝑡𝑡), 𝛽𝛽 ≤ 1



Discrete time

•Based on CRR-model

•Ω = {1,−1}𝑁𝑁

•𝜔𝜔 = 𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑁𝑁 ,𝜔𝜔𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 − 1



Discrete time

•with the product probability: 

𝑃𝑃 = {𝑝𝑝, 𝑞𝑞}𝑁𝑁, 𝑞𝑞 = 1 − 𝑝𝑝, 0 < 𝑝𝑝 < 1

•𝑝𝑝(𝜔𝜔) = 𝑝𝑝𝑘𝑘𝑞𝑞𝑁𝑁−𝑘𝑘, 𝑘𝑘 = 1
2

(𝑁𝑁 + ∑𝑖𝑖=1𝑁𝑁 𝜔𝜔𝑖𝑖)



Discrete time

• savings account:
𝐵𝐵𝑛𝑛 = (1 + 𝑟𝑟) 𝑛𝑛 𝐵𝐵0,𝐵𝐵0 > 0, 𝑟𝑟 > 0

• stock price:

𝑆𝑆𝑛𝑛 = 𝑆𝑆0�
𝑘𝑘=1

𝑁𝑁

1 + 𝜌𝜌𝑘𝑘 , 𝑆𝑆0 > 0

where 𝜌𝜌𝑘𝑘 𝜔𝜔 = 1
2
𝑎𝑎 + 𝑏𝑏 +𝜔𝜔𝑘𝑘 𝑏𝑏 − 𝑎𝑎 , −1 < 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏



Discrete time

• portfolio strategy 𝜋𝜋:
𝑍𝑍0𝜋𝜋 = 𝑧𝑧 > 0,𝜋𝜋 = 𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑁𝑁

• at time n:
𝜋𝜋𝑛𝑛 = (𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛), 𝑍𝑍𝑛𝑛𝜋𝜋 = 𝛽𝛽𝑛𝑛𝐵𝐵𝑛𝑛 + 𝛾𝛾𝑛𝑛𝑆𝑆𝑛𝑛

• self-financing:
𝐵𝐵𝑛𝑛−1 𝛽𝛽𝑛𝑛 − 𝛽𝛽𝑛𝑛−1 + 𝑆𝑆𝑛𝑛−1 𝛾𝛾𝑛𝑛 − 𝛾𝛾𝑛𝑛−1 = 0



Discrete time

•cancellation time:
𝜎𝜎, 𝜏𝜏 ∈ ℱ0𝑁𝑁

𝜎𝜎^ 𝜏𝜏 ≝ min(𝜎𝜎, 𝜏𝜏)
•payoff:

R(𝜎𝜎, 𝜏𝜏) ≝ 𝑋𝑋𝜎𝜎Ι𝜎𝜎<𝜏𝜏 + 𝑌𝑌𝜏𝜏Ι𝜏𝜏≤𝜎𝜎



Discrete time



Theorem 2.1



Theorem 2.1

(Back1)

(Back)



Theorem 2.1



Theorem 2.1



Theorem 2.1

(back)



Part1 of proof

• Suppose that (σ, π) is a hedge, by the Optional Sampling Theorem
(see [Ne], Theorem II-2-13)

for any 𝜏𝜏 ∈ ℱ0𝑁𝑁,
we have 𝑍𝑍0𝜋𝜋 = E∗( 1 + 𝑟𝑟 −𝜎𝜎∧𝜏𝜏𝑍𝑍−𝜎𝜎∧𝜏𝜏𝜋𝜋 )) ≥ E∗( 1 + 𝑟𝑟 −𝜎𝜎∧𝜏𝜏𝑅𝑅(𝜎𝜎, 𝜏𝜏)))

Since, by the definition, 𝑉𝑉∗ is the infimum of such initial capitals 𝑍𝑍0𝜋𝜋
then 𝑉𝑉∗ is not less than the right hand side of (2.8).



Part2 of proof

• In the other direction

for any σ ∈ ℱ0𝑁𝑁,



Part2 of proof

• Observe that U𝑘𝑘
𝜎𝜎 is ℱ𝜎𝜎∧𝜏𝜏-measurable

It is easy to check directly and follows from general theorems
(see [Ne], Proposition VI-1-2)



Part2 of proof

• Proceeding in the standard way via the Doob supermartingale
decomposition and the martingale representation

(obtain similarly to Sect. 2 and Sect. 5 in [SKKM1])

there exists a self-financing portfolio strategy 𝜋𝜋𝜎𝜎 = 𝜋𝜋1𝜎𝜎 , … ,𝜋𝜋1𝜎𝜎 ,
𝜋𝜋𝑛𝑛𝜎𝜎 = (𝛽𝛽𝑛𝑛𝜎𝜎 , 𝛾𝛾𝑛𝑛𝜎𝜎) with the portfolio value process 𝑍𝑍𝑛𝑛𝜋𝜋

𝜎𝜎 = 𝛽𝛽𝑛𝑛𝜎𝜎𝐵𝐵𝑛𝑛 + 𝛾𝛾𝑛𝑛𝜎𝜎𝑆𝑆𝑛𝑛
such that (𝜋𝜋,𝜎𝜎)is a hedge.



Part3 of proof

• Next, define𝜎𝜎𝑛𝑛𝑛𝑛∗ , 𝜏𝜏𝑛𝑛𝑛𝑛∗ by (2.9).

Then it is easy to see by the backward induction in n that (2.8) and 
(2.10) hold true.



Part4 of proof



Part5 of proof

• It remains to obtain the uniqueness.



Part5 of proof

• Let now 𝜋𝜋 = (𝜋𝜋1, … ,𝜋𝜋𝑛𝑛), 𝜋𝜋𝑛𝑛 = (𝛽𝛽𝑛𝑛, 𝛾𝛾𝑛𝑛) be another self-financing 
portfolio strategy with 𝑍𝑍0𝜋𝜋 = 𝑉𝑉∗ = 𝑉𝑉0𝜎𝜎

∗
.

According to the first part of the proof

𝑀𝑀𝑛𝑛
𝜋𝜋 = 1 + 𝑟𝑟 −𝑛𝑛𝑍𝑍𝑛𝑛𝜋𝜋 and 𝑍𝑍𝜎𝜎∗∧𝜏𝜏*

𝜋𝜋 = R 𝜎𝜎∗, 𝜏𝜏∗ = 𝑍𝑍𝜎𝜎∗∧𝜏𝜏∗
𝜋𝜋𝜎𝜎

*

and so M𝜎𝜎∗∧𝜏𝜏∗
𝜋𝜋 = M𝜎𝜎∗∧𝜏𝜏∗

𝜋𝜋𝜎𝜎
∗



Part5 of proof

• Since both and M𝑛𝑛
𝜋𝜋, M𝑛𝑛

𝜋𝜋∗ are martingales 
it follows that M𝑛𝑛

𝜋𝜋 = M𝑛𝑛
𝜋𝜋∗ and 𝑍𝑍𝑛𝑛𝜋𝜋 = 𝑍𝑍𝑛𝑛𝜋𝜋

∗
for all 𝑛𝑛 ≤ 𝜎𝜎∗ ∧ 𝜏𝜏∗

• Since the representation (2.11) is unique
𝑆𝑆𝑛𝑛 > 0 and 𝜌𝜌𝑛𝑛 ≠ 𝑟𝑟 for all n
then 𝛾𝛾𝑛𝑛 = 𝛾𝛾𝑛𝑛𝜋𝜋

∗
and 𝛽𝛽𝑛𝑛 = 𝛽𝛽𝑛𝑛𝜋𝜋

∗
for all 𝑛𝑛 ≤ 𝜎𝜎∗ ∧ 𝜏𝜏∗



Remark 2.2

• 𝑅𝑅 𝜎𝜎, 𝜏𝜏 is replaced by �𝑅𝑅 𝜎𝜎, 𝜏𝜏 = 𝑋𝑋𝜎𝜎𝕀𝕀𝜎𝜎<𝜏𝜏 + 𝑌𝑌𝜏𝜏𝕀𝕀𝜏𝜏<𝜎𝜎 + 𝑊𝑊𝜎𝜎𝕀𝕀𝜎𝜎=𝜏𝜏
where 𝑊𝑊𝑛𝑛 is ℱ𝑛𝑛-measurable, 𝑌𝑌𝑛𝑛 ≤ 𝑊𝑊𝑛𝑛 ≤ 𝑋𝑋𝑛𝑛, n = 0, 1, . . . ,N 
and 𝑊𝑊𝑁𝑁 ≤ 𝑌𝑌𝑁𝑁.



Remark 2.3

• Theorem 2.1 can be extended to the infinite horizon case 
N = ∞



Remark 2.4

• Theorem 2.1 can be generalized to the case when consumption or 
infusion of capital is also possible.



Remark 2.5

• It is easy also to generalize the above set up allowing 
dependence of r, a and b on time
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