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Abstract

Asian options are path-dependent derivatives. How to
price them efficiently and accurately has been a long-
standing research and practical problem. Asian options
can be priced on the lattice. But only exponential-time
algorithms are currently known if such options are to
be priced on a lattice without approximation. Although
efficient approximation methods are available, most of
them lack accuracy guarantees. This paper proposes a
novel lattice for pricing Asian options. The resulting
exact pricing algorithm runs in subexponential time.
This is the first exact lattice algorithm to break the
exponential-time barrier. Because this lattice converges
to the continuous-time stock price process, the proposed
algorithm is guaranteed to converge to the desired
continuous-time option value.

1 Introduction

Path-dependent derivatives are derivatives whose payoff
depends nontrivially on the price history of a stock.
Path-dependent derivatives play an important role in
financial markets. Unfortunately, some of them are
known to be difficult to price in terms of speed and/or
accuracy, the Asian option being the most prominent
example. An Asian option is an option whose payoff
depends on the arithmetic average price of the stock. It
is useful for hedging transactions whose cost is related
to the average price of the stock (such as crude oil). Its
price is also less subject to price manipulation; hence the
average-price feature is popular in many thinly-traded
markets.

There are no exact simple closed-form solutions for
Asian option prices. Approximate closed-form solutions
are suggested in [17, 21, 24]. Geman and Yor derive an
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analytical expression for the Laplace transform of the
Asian call in [13]. Numerical inversion of this transform
is considered in [12] and [23]. Some inversion algorithms
based on the Euler and Post-Widder methods can be
found in [1]. Most closed-form formulas lack accuracy
guarantees. Indeed, some produce large pricing errors
in extreme cases [11].

Since no simple closed-form solutions exist yet for
the Asian option, the development of efficient numerical
algorithms becomes critical. First, there are the popular
Monte Carlo and quasi-Monte Carlo methods [3, 4,
5, 16]. Both the Monte Carlo approach and the
analytical approach suffer from the inability to price
American-style Asian options without bias. (European-
style and American-style options will be defined later.
Basically, European-style options do not allow early
exercise, whereas American-style options do.) Recently,
a least-squares Monte Carlo approach to address this
problem is proposed [18]. Another problem of Monte
Carlo method is that it is inefficient and the result is
probabilistic. An alternative approach is the lattice
and the related discretized partial-differential-equation
method. This approach can handle early exercise. A
lattice consists of nodes and edges connecting them.
The lattice divides a time interval into n equal time
steps. If the stock price process simulated by the lattice
converges to the continuous-time stock price process as
n → ∞, then the option value priced on this lattice
by the so-called backward induction (to be introduced
later) also converges to desired continuous-time option
value [9].

The difficulty in pricing Asian options is evidenced
by the fact that only exponential-time lattice pricing
algorithms are known if approximation is not used in
backward induction. We call a lattice algorithm ex-
act if it does not adopt approximation in backward in-
duction. (In this paper, a polynomial-time algorithm
means that the running time is polynomial in n. The
same convention is adopted for exponential-time and
subexponential-time algorithms.) To reduce the com-
plexity, Hull and White propose an efficient approxi-
mation algorithm in [14]. Their influential paradigm is
followed by many such as [15, 22, 25]. The major prob-



lem with the Hull-White paradigm is the convergence
guarantee. Specifically, assume that the pricing error
between the approximate and the exact algorithms is
denoted by e. An approximation lattice algorithm con-
verges to the desired option value if e → 0 as n → ∞.
Unfortunately, most Hull-White-type algorithms lack
such convergence guarantees. In fact, improper approx-
imations result in divergence or convergence to a wrong
value [10]. Aingworth et al. and Dai et al. provide ef-
ficient approximation algorithms that have convergence
guarantees for the European-style Asian options [2, 7].
Unfortunately, neither has convergence guarantees for
American-style Asian options.1

Another paradigm due to Dai and Lyuu [8] con-
structs a lattice called the multiresolution lattice. It
converges to the desired option value as it is exact. Nu-
merical results show that the method works for n up to
160 under some cases. Note that an exponential-time
algorithm cannot work with an n that high. There are
two drawbacks with the multiresolution lattice. First,
no proof is offered to show that this algorithm runs in
subexponential time. Second, the multiresolution lat-
tice is constructed by an ad hoc local search, and no
proof exists to guarantee that the lattice can always be
constructed successfully.

Our paper will propose the first exact pricing al-
gorithm that provably breaks the exponential-time bar-
rier. Here is the rough overview. We construct a new
lattice composed of integral stock prices. The stock
price sum of a price path on the lattice is therefore an
integer. This critical property is used to ensure that
no approximations are needed in backward induction,
making the algorithm exact and convergent. We also
prove that the time complexity is subexponential in n.

The homogeneous property of the option value is
crucial to the construction of the said lattice. Suppose
we multiply the stock prices by a constant K before
pricing the option. The homogeneous property says
that this option value divided by K gives the originally
desired option value [20]. In our paper, a K is found that
guarantees that an integral lattice can be constructed.
To ensure that the pricing results based on our lattice
converge to the desired continuous-time option value,
we have to make sure that our lattice converges to the
continuous-time stock price process. The conditions are
that the lattice should match the mean and the variance
of the stock price process at each time step [9]. It will
be proved that an integral price that satisfies the above
conditions exists for every node on the lattice.

The paper is organized as follows. The mathemat-

1Aingworth et al. give an incorrect convergence proof for their
American-style Asian option pricing algorithm [7].

ical model is described in section 2. We will review
how a lattice is constructed and how the Asian option
is priced on the lattice in section 3. In section 4, we will
show how to construct the proposed lattice. Rigorous
proofs given in section 5 shows that our pricing algo-
rithm is the first exact pricing algorithm that breaks
the exponential-time barrier. Section 6 concludes that
paper.

2 Modeling and Definitions

Assume that an Asian option initiates at 0 (in years)
and matures at T (in years). Define S(t) as the price of
the stock at year t. The stock price is assumed to follow
the continuous-time log-normal diffusion process:

(2.1) S(t + dt) = S(t)exp[(r − 0.5σ2)dt + σdWt],

where Wt is the standard Wiener process, r is the
risk-free interest rate per annum, and σ is the annual
volatility. It is useful to think of dWt as normally
distributed with mean 0 and variance dt. In the discrete-
time approximation, the time between year 0 and year
T is partitioned into n time steps. The length of each
time step ∆t is equal to T/n. For convenience, all the
time notations in this paper are expressed in terms of
the number of time steps unless stated otherwise. Let
Si denote the stock price at (discrete) time i, which
corresponds to S(i∆t) in the continuous-time model.
Define the sum of a partial price path started at time 0
and ended at time j, S0 → S1 → · · · → Sj , as

∑j
i=0 Si.

We call this sum prefix sum. The payoff of an Asian
option depends on the average of the stock prices. The
price average is defined as

Aavg(i) ≡ S0 + S1 + · · · + Si

i + 1
.

The payoff for a European-style Asian option at matu-
rity date is

(2.2) exercise value =
{

Aavg(n) − X, for a call,
X − Aavg(n), for a put,

where X is called the exercise price. Our task
is to compute e−nr∆tE(max(Aavg(n) − X, 0)) and
e−nr∆tE(max(X − Aavg(n), 0)) in such a way that
the value converges to the continuous-time limits
e−rT E[max( 1

T

∫ T

0
S(t) dt−X, 0) ] and e−rT E[max(X−

1
T

∫ T

0
S(t) dt, 0) ], respectively, as n increases.

An American-style option gives the owner the right
to exercise the option before maturity, thus an earlier
payoff. The exercise value for an American-style option
at time i is

(2.3) exercise value =
{

Aavg(i) − X, for a call,
X − Aavg(i), for a put.



An option will be exercised early by the owner if
the option’s continuation value (the value to hold the
option) is smaller than its exercise value.

3 Preliminaries

Before introducing our new lattice, we first review how
a lattice is constructed so that it converges to the log-
normal price process. Next we will show how to price
an Asian option on a lattice. This part will demonstrate
why the typical exact pricing algorithm explodes expo-
nentially and why the approximation approach of Hull
and White [14] is problematic. Finally, we will review
the ideas of the integral lattice that will be useful later.

3.1 How To Construct a Lattice We use the well-
known Cox-Ross-Rubinstein (CRR) binomial lattice [6]
to illustrate how a lattice is constructed in principle. A
3-time-step CRR binomial lattice is illustrated in Fig.
1. At each time step, the stock price S can either
become Su—the up move—with probability Pu or Sd—
the down move—with probability Pd ≡ 1 − Pu. The
relation

(3.4) ud = 1

is enforced by the CRR binomial lattice. The logarith-
mic stock price mean (µ) and variance (Var) one time
step from now are derived from Eq. (2.1) as

µ ≡ (r − 0.5σ2)∆t,(3.5)
Var ≡ σ2∆t.(3.6)

To make sure that the lattice converges to the
continuous-time stock price process, the mean and the
variance of the logarithmic price process should be cal-
ibrated by the matching those of the lattice and those
of the continuous-time model:

Pu ln u + Pd ln d = µ,(3.7)
Pu(ln u − µ)2 + Pd(ln d − µ)2 = Var.(3.8)

Note that

(3.9) Pu + Pd = 1.

The 4 parameters (Pu, Pd, u, and d) are uniquely ob-
tained by solving Eqs. (3.4), (3.7)–(3.9). The branching
probabilities Pu and Pd should be between 0 and 1 to
meet the no-arbitrage requirements. In the CRR lattice,
this demand can always be met by suitably increasing
n [19].

If each node in a lattice can branch to � nodes at the
next time step, we call it an �-nomial lattice. The above
idea can be applied to construct an �-nomial lattice.
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Figure 1: A 3-time-Step CRR Binomial Lattice.

Note that 2� degrees of freedoms are provided by an
�-nomial lattice. They include � price multiplicative
factors (like u and d in the CRR binomial lattice)
and � branching probabilities (like Pu and Pd in the
CRR binomial lattice). These branching probabilities
must be between 0 and 1 to meet the no-arbitrage
requirements. We need 2� independent equations to
determine these 2� variables uniquely. The calibration
of mean and variance gives 2 equations. The branching
probabilities sum to 1, giving another one. Additional
2�− 3 equations must be added. For example, Eq. (3.4)
is the extra equation used in the CRR binomial model.
This paper will construct a trinomial lattice (� = 3).

3.2 Pricing Asian Options on a Trinomial Lat-
tice We now show how to price an Asian call with a
trinomial lattice. In a trinomial lattice, each node can
branch to three successor nodes in next time step. Let
Si,j denotes (j + 1)th largest stock price of the nodes
at time i. A 2-time-step trinomial tree is illustrated in
Fig. 2. Take the root node as an example. Its stock
price is S0,0. The stock price can move upward to S1,0

with probability Pu, move flatly to S1,1 with probabil-
ity Pm, and move downward to S1,2 with probability
Pd. The branching probabilities will vary for different
nodes. There are 2� + 1 nodes at time �.

Note that the option value of a partial price path is
influenced by the prefix sum of this partial price path.
To price an Asian option exactly, enough number of
states are required at each node to keep the option
values corresponding to different prefix sums. The
option value at time n can be calculated by Eq. (2.2).
Define V(S,C) as the option value whose corresponding
prefix sum is C and whose stock price is S. Again, let
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Figure 2: A 2-Time-Step Trinomial Lattice.
The initial stock price is S0,0. Si,j denotes the (j +1)th
largest stock price at time i. Pu, Pm, and Pd denote the
branching probabilities, respectively.

Pu, Pm, and Pd denote the branching probabilities of
the node with stock price Si,j . The backward induction
formulae for the European-style and American-style
options are

V(Si,j , C) = e−r∆t [PuV(Si+1,j , C + Si+1,j)+
PmV(Si+1,j+1, C + Si+1,j+1) +
PdV(Si+1,j+2, C + Si+1,j+2)](3.10)

and

V(Si,j , C) = max
(
e−r∆t [PuV(Si+1,j , C + Si+1,j)+

PmV(Si+1,j+1, C + Si+1,j+1) +
PdV(Si+1,j+2, C + Si+1,j+2)] , E) ,

respectively. The exercise value E in the latter formula
is defined in Eq. (2.3). The above formulae can be
applied in a backward fashion from time n to time 0.
The root node thus gives the desired option value. The
backward-induction procedure implies that the overall
running time is proportional to the total number of
prefix sums on the lattice. Unfortunately, the number
of price paths grows exponentially in n, giving as many
prefix sums. This makes an exact pricing algorithm
explode exponentially.

Hull and White suggest an efficient algorithm by
limiting the number of prefix sums at each node to
some manageable magnitude k [14]. It then resorts to
interpolation as an approximation scheme in backward
induction. This approach is efficient, with a running

time of O(kn2). However, it is problematic since
interpolation errors are introduced and accumulated at
each time step. The Hull-White approach therefore may
not converge to the desired option value as n → ∞.

Aingworth et al. [2] and Dai et al. [7] also use inter-
polation in their approximation algorithms. Their algo-
rithms provide convergence guarantees for European-
style Asian options. This relies on the observation
that V (S,C) can be evaluated by a simple formula if
C ≥ nX. They can then focus on evaluating V (N,C)
for C < nX by using Eq. (3.10) and interpolation. How-
ever, no efficient approximation algorithms have conver-
gence guarantees for pricing American-style Asian op-
tions.

3.3 An Integral Lattice Reducing the number of
prefix sums by restricting the possible stock price of
each node in the lattice is first suggested by Dai and
Lyuu [8]. In our paper, we will construct a trinomial
lattice composed of integral stock prices. Note that if
the stock price of each node in the lattice is an integer,
all possible prefix sums must be integers since integers
are closed under additions. A proof to show that the
time complexity of the algorithm is subexponential in n
will be given later.

Note that the stock price at the root node S is not
required to be an integer. S is a rational number when
storing in the computer. Thus S can be represented
as S′ + a for some integer S′ ≥ 0 and some rational
number a where 0 ≤ a < 1. Assume that the maximum
prefix sum in the lattice is F . Any possible prefix
sum must belong to the set {X : X ≤ F, X =
I + a, I is a nonnegative integer.}. The key to show
that our algorithm breaks exponential time barrier is to
prove that the number of elements in this set is bounded
by a subexponential function in n.

4 Lattice Construction

To reduce the number of prefix sums at each node in
our lattice, the stock price of each node (except the root
node) is restricted to be an integer. To ensure that the
stock price process simulated by our lattice converges to
the stock price process mentioned in Eq. (2.1), the mean
and the variance of the logarithmic stock price process
are matched at each node in the lattice. In this section,
we will first show how the lattice is constructed step
by step in order to meet the above two requirements.
Proof will be given in the next section to show that
our lattice provides a subexponential-time algorithm for
Asian options.

The homogeneous property says [20]:

E[max(A − X, 0)] =
1
K

E [max (KA − KX, 0)] .



Thus we can multiply the initial stock price (S0) and
the strike price X by a constant K and price this
hypothetical option. The desired option value is then
obtained by dividing this hypothetical option price by
K. To ensure that a proper integral price can be
assigned to each node (except the root node), K is
defined as follows:
(4.11)
K ≡ (0.25S0σ)−1

√
n/T exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
.

Note that K ∈ eO(
√

n). We will show later that this K
works.

Next a trinomial lattice is constructed to price
this hypothetical option. Note that the stock price
of the root node (S0,0) is equal to KS0.2 Our goal
is to find integral stock prices Si,j for 0 < i ≤ n,
0 ≤ j ≤ 2i. Define the V -log-price of stock price V ′

as ln(V ′/V ) and ci,j ≡ (r− 0.5σ2) i∆t + 2(i− j)σ
√

∆t .
Si,j will be some integer whose KS0-log-price belongs
to the following interval centered around ci,j : (ci,j −
0.25σ

√
∆t, ci,j + 0.25σ

√
∆t). We call ci,j the log-price

center for Si,j . Take the 2-time-step trinomial lattice
in Fig. 3 as an example. The x-axis marks the time
step in the lattice, and the y-axis denotes KS0-log-
prices. Each log-price center is depicted as a hollow
circle. Each dotted line segment begins at ci,j and
ends at ci+1,j+1. The slopes of these dotted lines
represent the expected growth rate of the logarithmic
stock price, (r − 0.5σ2)∆t. The integral stock price for
each node is depicted as a solid circle. Take S2,0 as
an example. Because c2,0 = (r − 0.5σ2) 2∆t + 4σ

√
∆t,

the KS0-log-price of S2,0 should fall within the interval
(c2,0−0.25σ

√
∆t, c2,0+0.25σ

√
∆t). The proof in section

5.1.1 shows that there is always at least one integer
whose KS0-log-price falls within the said interval.

The branching probabilities for each node are com-
puted as follows. Take a node with price Si,j . Re-
call that the probabilities for the stock price moving
to Si+1,j , Si+1,j+1, and Si+1,j+2 are Pu, Pm, and Pd,
respectively. Define α, β, and γ as follows:

α ≡ ln(Si+1,j/Si,j) − µ,(4.12)
β ≡ ln(Si+1,j+1/Si,j) − µ,(4.13)
γ ≡ ln(Si+1,j+2/Si,j) − µ,(4.14)

where µ is defined in Eq. (3.5). The branching proba-
bilities satisfy

Puα + Pmβ + Pdγ = 0,(4.15)
Puα2 + Pmβ2 + Pdγ

2 = Var,(4.16)
Pu + Pm + Pd = 1,(4.17)

2Note that KS0 is not necessary an integer since both K and
S0 are not necessary integers, too.
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Figure 3: A 2-Time-Step Trinomial Lattice over
KS0-log-prices.

where Var is defined in Eq. (3.6). Eqs. (4.15) and (4.16)
match the mean and the variance of the logarithmic
stock price, respectively. Hence our lattice converges
weakly to the lognormal stock price process. That Eqs.
(4.15)–(4.17) give valid branching probabilities will be
proved in section 5.1.2.

5 Proof

A proof is given to show that our approach provides
a subexponential-time algorithm for pricing Asian op-
tions. The proof is broken up into two parts. First, we
will show that a valid lattice is constructed. Next we
will show that the exact pricing algorithm based on this
lattice runs in subexponential time.

5.1 Validity of the Lattice

5.1.1 Existence of Integral Stock Prices When
constructing the trinomial lattice, an integral stock
price is assigned to each node. More specifically, Si,j

should be an integer whose KS0-log-price falls in (ci,j −
0.25σ

√
∆t, ci,j + 0.25σ

√
∆t). To ensure that such an

integer exists, it suffices to show that

KS0

[
exp

(
ci,j + 0.25σ

√
∆t

)
− exp

(
ci,j − 0.25σ

√
∆t

)]
> 1.

Our goal now is to show that our choice of K in Eq.
(4.11) satisfies the above inequality. Without loss of
generality, only the case Sn,2n is considered as exp(ci,j +
0.25σ

√
∆t) − exp(ci,j − 0.25σ

√
∆t) is minimized when



i = n and j = 2n. Thus it suffices to show that our K
satisfies

K > S−1
0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

.

Indeed,
S−1

0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

= S−1
0 exp

[
(0.5σ2 − r) T + 2σ

√
Tn

]

×
(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

< S−1
0 exp

[
(0.5σ2 − r) T + 2σ

√
Tn

]
/(0.25σ

√
T/n)(5.18)

≤ (0.25S0σ)−1
√

n/T exp
[
(0.5σ2 − r) T + 2σ

√
Tn

]

= eO(
√

n),

where Eq. (5.18) holds because
e0.25σ

√
∆t − e−0.25σ

√
∆t >

(
1 + 0.25σ

√
∆t

)
− 1 = 0.25σ

√
∆t .

5.1.2 Validity of Branching Probabilities In this
section, we will prove that Eqs. (4.15)–(4.17) result in
valid branching probabilities for the stock price Si,j . To
be more specific, the branching probabilities Pu, Pm,
and Pd, are proved to be strictly larger than 0 to meet
the no-arbitrage requirement (note that this suffices to
ensure that they are all less than 1). First we will derive
constraints on α, β, γ defined in Eqs. (4.12)–(4.14).
Then we will show that valid branching probabilities
are obtained by solving Eqs. (4.15)–(4.17) given the
constraints on α, β, and γ.

We use the plot in Fig. 4 to aid the proof. Note
that a KS0-log-price of x becomes a Si,j-log-price of
x + ln KS0

ln Si,j
. The following computations are in Si,j-log-

prices unless sated otherwise. The log-price center of
Si,j , c′, equals ci,j + ln KS0

ln Si,j
, whereas c, the log-price

center of Si+1,j+1, equals c′ + (r − 0.5σ2)∆t. The log-
price centers of Si+1,j and Si+1,j+2 are c + 2σ

√
∆t and

c − 2σ
√

∆t, respectively. The Si,j-log-price of Si,j is
0. The conditional mean of the stock price one time
step after it reaches Si,j is µ = (r − 0.5σ2)∆t. By
construction, the distance between the Si,j-log-price of
Si,j , which equals 0, and its log-price center c′ is smaller
than 0.25σ

√
∆t . This implies that |c′| < 0.25σ

√
∆t .

Hence,

|µ − c| =
∣∣(r − 0.5σ2)∆t − [

c′ + (r − 0.5σ2)∆t
]∣∣

= | c′ | < 0.25σ
√

∆t .

Thus µ falls within interval (c − 0.25σ
√

∆t, c +
0.25σ

√
∆t). Now β = ln(Si+1,j+1/Si,j) − µ falls within

interval (−0.5σ
√

∆t, 0.5σ
√

∆t) as the Si,j-log-price of
Si+1,j+1, ln(Si+1,j+1/Si,j), falls within interval (c −
0.25σ

√
∆t, c + 0.25σ

√
∆t). Figure 4 illustrates a case

where β < 0.

We next represent α and γ in terms of β. Define d1

as the difference between Si+1,j ’s and Si+1,j+1’s Si,j-
log-prices and d2 as the difference between Si+1,j+1’s
and Si+1,j+2’s Si,j-log-prices. Thus α and γ can be
represented as

α = ln (Si+1,j/Si,j) − ln(Si+1,j+1/Si,j)
+ ln(Si+1,j+1/Si,j) − µ

= d1 + β,

γ = ln (Si+1,j+2/Si,j) − ln(Si+1,j+1/Si,j)
+ ln(Si+1,j+1/Si,j) − µ

= −d2 + β.

Note that 1.5σ
√

∆t < d1 < 2.5σ
√

∆t because

c + 1.75σ
√

∆t < ln(Si+1,j/Si,j) < c + 2.25σ
√

∆t,

c − 0.25σ
√

∆t < ln(Si+1,j+1/Si,j) < c + 0.25σ
√

∆t,

d1 = ln(Si+1,j/Si,j) − ln(Si+1,j+1/Si,j).

Similarly, 1.5σ
√

∆t < d2 < 2.5σ
√

∆t. Note also that
α = d1 + β > σ

√
∆t > 0 as β ∈ (−0.5σ

√
∆t, 0.5σ

√
∆t)

and d1 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t). Similarly, γ = −d2 +
β < −σ

√
∆t < 0 as d2 ∈ (1.5σ

√
∆t, 2.5σ

√
∆t). It is

also obvious that α > β > γ as d1, d2 > 0.
We now show that positive branching probabilities

are obtained given the constraints on α, β, and γ derived
above and summarized below:

β ∈ (−0.5σ
√

∆t, 0.5σ
√

∆t).
α = d1 + β, where d1 ∈ (1.5σ

√
∆t, 2.5σ

√
∆t).

γ = −d2 + β, where d2 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t).

The branching probabilities are solved by applying
Cramer’s rule to Eqs. (4.15)– (4.17). Define

det = (β − α)(γ − α)(γ − β),
detu = (βγ + Var)(γ − β),
detm = (αγ + Var)(α − γ),
detd = (αβ + Var)(β − α).

Then Pu = detu/det, Pm = detm/det, and Pd =
detd/det. Note that det < 0 as α > β > γ. To show
that the branching probabilities are valid, we have to
show that Pu, Pm, Pd > 0. As det < 0, it is sufficient
to show detu,detm,detd < 0. Moreover, as γ − β < 0,
α − γ > 0, and β − α < 0, we only need to show that
βγ + Var > 0, αγ + Var < 0, and αβ + Var > 0 instead.
1. βγ + Var > 0: Note that

βγ + Var = β(β − d2) + σ2∆t

= (β − 0.5d2)2 − 0.25d2
2 + σ2∆t.
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Figure 4: Branching Probabilities for the Node
with Price Si,j.
All the values in this figure are Si,j-log-prices except
the ones that are parenthesized. The nodes with
stock prices Si,j , Si+1,j , Si+1,j+1, and Si+1,j+2 are
represented by solid circles. The branches that connect
these nodes are represented by thick lines. The log-price
centers of Si,j and Si+1,j+1 are c′ and c, respectively.
Pu, Pm, and Pd denote the branching probabilities for
the upper, middle, and lower branches from the node
with price Si,j . Values α, β, and γ are defined in
Eqs. (4.12)–(4.14). Finally, | d1 | denotes the distance
between Si+1,j ’s and Si+1,j+1’s Si,j-log-prices, and | d2 |
denotes the distance between Si+1,j+1’s and Si+1,j+2’s
Si,j-log-prices.

For a given d2, βγ + Var reaches its minimum when
β = 0.5d2. Recall the constraints that 0.5d2 ∈
(0.75σ

√
∆t, 1.25σ

√
∆t) and β < 0.5σ

√
∆t. Hence

βγ + Var reaches its minimum for a given d2 ∈
(1.5σ

√
∆t, 2.5σ

√
∆t) when β → 0.5σ

√
∆t. Thus, we

have

βγ + Var = β(β − d2) + σ2∆t

> 0.5σ
√

∆t (0.5σ
√

∆t − d2) + σ2∆t

= −0.5σ
√

∆t d2 + 1.25σ2∆t

> −1.25σ2∆t + 1.25σ2∆t = 0.

2. αγ + Var < 0: Note that

αγ + Var = (β + d1)(β − d2) + σ2∆t.

As β + d1 > σ
√

∆t and β − d2 < −σ
√

∆t, we have

(β+d1)(β−d2)+σ2∆t < (σ
√

∆t)(−σ
√

∆t)+σ2∆t = 0.

3. αβ + Var > 0: This is proved similarly as we prove
βγ + Var > 0. Note that

αβ + Var = (β + d1)β + σ2∆t

= (β + 0.5d1)2 − 0.25d2
1 + σ2∆t.

For a given d1, αβ + Var reaches its minimum when
β = −0.5d1. Recall the constraints that −0.5d1 ∈
(−1.25σ

√
∆t,−0.75σ

√
∆t) and β > −0.5σ

√
∆t. Hence

αβ + Var reaches its minimum for a given d1 ∈
(1.5σ

√
∆t, 2.5σ

√
∆t) when β → −0.5σ

√
∆t. Thus we

have

αβ + Var = (β + d1)β + σ2∆t

> (−0.5σ
√

∆t + d1)(−0.5σ
√

∆t) + σ2∆t

= −0.5σ
√

∆t d1 + 1.25σ2∆t

> −1.25σ2∆t + 1.25σ2∆t = 0.

5.2 Running-Time Analysis Note that the time
complexity of an exact pricing algorithm is proportional
to the total number of prefix sums on the lattice. Thus
the pricing algorithm is subexponential in n if the total
number of prefix sums is bounded by a subexponential
function. We will first show that the maximum prefix
sum in our lattice is bounded by a subexponential
function. Then we will show that the total number of
prefix sums is, too.

The maximum stock price Sn,0 is bounded by
KS0e

cn,0+0.25σ
√

∆t, where

cn,0 = (r − 0.5σ2)n∆t + 2(n − 0)σ
√

∆t

= (r − 0.5σ2)T + 2σ
√

Tn .

Thus Sn,0 is bounded by a subexponential function as
both K and ecn,0+0.25σ

√
∆t are subexponential in n.

The maximum prefix sum in the lattice is equal to∑n
i=0 Si,0 ≤ (n + 1)Sn,0. Note that (n + 1)Sn,0 is also

a subexponential function. We define F ≡ (n + 1)Sn,0

for simplicity.
The next goal is to show that the total number of

prefix sums is bounded by a subexponential function.
Recall that the stock price for each node except the
root node in our lattice must be an integer. The stock
price at the root node (KS0) can be represented as
S′ + a for some integer S′ ≥ 0 and some rational
number a where 0 ≤ a < 1. Thus all the possible
prefix sums must belong to the set {X : X ≤ F, X =
I + a, I is a nonnegative integer.}. The number of
elements in this set is at most �F 	. Thus the maximum
number of prefix sums for each node is bounded by �F 	.
Since there are (n+1)2 nodes in an n-time-step trinomial
lattice, the total number of prefix sums is bounded
above by the subexponential function (n+1)2�F 	. The



time complexity of our algorithm is thus subexponential
in n.

6 Conclusions

This paper develops a new trinomial lattice particularly
with the Asian option in mind. The lattice uses the
notion of integrality of stock prices to reduce the time
complexity of an exact pricing algorithm dramatically.
Rigorous proof is given to show that the time complexity
is subexponential in n. Our lattice is guaranteed to con-
verge to the continuous-time stock price process. The
proposed pricing algorithm is guaranteed to converge to
the desired option value as it is exact. This is the first
exact lattice algorithm to break the exponential-time
barrier.
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