
Efficient, Exact Algorithms for Asian
Options with Multiresolution Lattices

Tian-Shyr Dai
Dept. Computer Science &
Information Engineering

National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei, Taiwan

Yuh-Dauh Lyuu
Dept. Computer Science &
Information Engineering∗

National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei, Taiwan
886-2-23625336 x429 (o)

886-2-23628167 (fax)
lyuu@csie.ntu.edu.tw

and
Department of Finance

National Taiwan University
No. 1, Sec. 4, Roosevelt Rd.

Taipei, Taiwan

Abstract

Asian options are a kind of path-dependent derivatives. How to price such
derivatives efficiently and accurately has been a long-standing research and
practical problem. This paper proposes a novel multiresolution (MR) trinomial
lattice for pricing European- and American-style arithmetic Asian options. Ex-
tensive experimental work suggests that this new approach is both efficient and
more accurate than existing methods. It also computes the numerical delta
accurately. The MR algorithm is exact as no errors are introduced during
backward induction. In fact, it may be the first exact discrete-time algorithm
to break the exponential-time barrier. The MR algorithm is guaranteed to con-
verge to the continuous-time value.
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Path-dependent derivatives are derivatives whose payoffs depend nontrivially on
the price history of the underlying asset. Some path-dependent derivatives such
as barrier options, lookback options, and geometric Asian options can be efficiently
priced (see Lyuu (1998) and Lyuu (2002)). Others, however, are known to be difficult
to price in terms of speed and/or accuracy. The (arithmetic) Asian option is perhaps
the most prominent example in this category. The Asian option has a payoff that is
determined by the (arithmetic) average price of the underlying asset. It is useful for
hedging transactions whose cost is related to the average price of the asset. It is also
harder to manipulate. This feature is especially important in thin markets.

Assume the asset price follows the lognormal diffusion,

dS

S
= r dt + σ dW,

where W is the standard Wiener process, r is the risk-free interest rate per annum,
and σ is the annual volatility. In the discrete-time setting, define �t ≡ τ/n, where τ
is the option’s time to maturity (in years) and n is the number of periods τ is divided
into. The payoff of the option depends on the (arithmetic) sum of the asset prices.
Specifically, define the (arithmetic) average by

Aavg(n) ≡ S0 + S1 + · · · + Sn

n + 1
.

Here Si denotes the underlying asset’s price at (discrete) time i, which corresponds
to absolute time i∆t in the continuous-time model. The payoff for the Asian call is
max(Aavg(n)−X, 0), where X is called the exercise price. The payoff for the Asian put
is max(X−Aavg(n), 0). Our task is to compute the discounted expected values of the
above payoffs in such a way that the values converge to the continuous-time limits
e−rτE[ max( 1

τ

∫ τ

0
S(t) dt − X, 0) ] and e−rτE[ max(X − 1

τ

∫ τ

0
S(t) dt, 0) ]. American-

style Asian options are identical except for the early exercise feature. The algorithms
should also price American-style options accurately. Although we will concentrate on
the call option in this paper, the results hold for puts as well.

The major contribution of this paper is a novel trinomial lattice that is general-
purpose but most useful for pricing Asian options, which has been a long-standing
problem when the underlying asset’s price is lognormally distributed. Pricing on
the lattice is efficient and accurate. Furthermore, unlike most other schemes, inter-
polation is not needed in backward induction. The algorithm is therefore an exact
discrete-time algorithm. This characteristic is in sharp contrast to existing discrete-
time algorithms; these algorithms attempt to approximate the naive but convergent
exponential-time algorithm, which simply evaluates each of the 3n paths on an n-
period trinomial model. Our algorithm can price both European- and American-
style options. Convergence to the continuous-time value is guaranteed as the lattice
matches the first and second moments of the continuous-time model at each node (see
Duffie (1996)). Such theoretical guarantee is lacking in many other approximation
schemes.
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The idea is deceptively simple. It is well-known that the option value is homo-
geneous of degree one in the asset price (see Merton (1994)). We can thus multiply
the exercise price and all the asset prices on the lattice by some number x > 0, price
the option, and finally divide the calculated option value by x. This, together with
the extra degrees of freedom afforded by the trinomial model, will be exploited to
construct a trinomial lattice with integral asset prices. This means that the price
sum of any path on the lattice will be integers as well. (Recall that the payoff is
determined by the price sum.) The key insight can now be stated: The price sums
of paths reaching any given node are finite in number and enumerable, being integers
between some integral minimum and maximum price sums. Take the hypothetical
3-period integral trinomial lattice in Figure 1 for example. The underlying asset’s
prices are printed on the nodes. Consider the price paths that reach the shaded node
with an asset price of 4. The paths with the maximum price sum and the minimum
price sum are (8, 12, 8, 4) and (8, 4, 2, 4), respectively. The maximum and minimum
price sums are thus 8 + 12 + 8 + 4 = 32 and 8 + 4 + 2 + 4 = 18, respectively. Now, the
possible price sums at that node must be some of the 15 integers between 18 and 32,
inclusively. Notice how the price sums have been enumerated without going through
every possible path. The integral property will eventually allow backward induction
to dispense with approximations. The algorithm is thus exact.

In practice the algorithm will not really be multiplying asset prices on the lattice
as there exists a more efficient, yet equivalent, implementation. By insisting that
the multiplication factor x be a power of two, multiplication amounts to shifting the
prices by j bits to the left when x = 2j, where j ≥ 0. In reality, this step will be
replaced by extending the asset prices’ precision after the decimal point by j bits.
For example, instead of multiplying 101 (base 2) by x = 22 to yield 10100, treat
101 as 101.00 and perform thereafter any arithmetic operations with it using two
bits of precision after the decimal point. Thus asset prices will simply be rational
numbers of finite precision. We may switch back and forth between the two equivalent
interpretations—multiplication and precision extension—whichever is demanded by
clarity.

It is not necessary to apply the extension of precision mentioned above to all the
lattice nodes. When a node N has extended precision, those nodes reachable from it
need to have extended precision as well. The reason is that a path passing through
node N adds N ’s price, which has extended precision, to the price sum. On the other
hand, nodes not reachable from node N need not have the same precision as N . This
observation will be employed to reduce the complexity further and result in nodes
with varying precisions, thus the term multiresolution (MR). The general notion of
multiple resolution has been used explicitly in image processing since as early as 1975
(see Rosenfeld (1984)) and, in the finance literature, is implicit in the adaptive mesh
of Ahn, Figlewski, and Gao (1999).

Nothing is gained with the above manipulations unless the number of states is
reduced from 3n for a trinomial lattice of depth n to a much more manageable
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number. Recall that, here, the number of states is the number of price sums. It turns
out that limiting the stock prices to finite-precision rational numbers does drastically
reduce the possible number of price sums. For example, with 160 time periods, the
total number of paths to the middle node at expiration is the astronomical

80∑
i=0

(
160

i

)(
160 − i

i

)
≈ 8.429 × 1074.

No computers are expected to face down this number now, or in the future. But the
total number of price sums at that node is at most 57887 under the typical scenario
in Figure 2(a), which also gives a detailed account of the numbers of price sums at
other nodes as well. (The number 57887 will be verified in a later section.) Thus a
lot of paths produce the same price sums on the MR lattice. That is why the MR
algorithm can price Asian options in the case of 160 periods. We are led to conclude
that the MR algorithm has broken the 3n barrier while remaining an exact algorithm.
It may be the first exact discrete-time algorithm to break the 3n barrier.

Extensive computer experiments suggest that the MR algorithm is superior to the
approaches in the literature sampled above in terms of both convergence and accuracy.
It is also a practical algorithm. Figure 3 plots a typical convergence behavior of the
algorithm. Note that it quickly converges to the continuous-time value. Sensitivity
measures such as delta are also straightforward to compute with the MR algorithm.
Hence hedging the Asian option presents no fundamental problems.

We now survey the literature. Approximate closed-form solutions are suggested
in Levy (1992), Milevsky (1998), and Turnbull and Wakeman (1991). Geman and
Yor (1993) derive an analytical expression for the Laplace transform of the Asian call.
Numerical inversion of this transform is considered in Geman and Eydeland (1995)
and Shaw (1998). Some inversion algorithms based on the Euler and Post-Widder
methods can be found in Abate and Whitt (1995).

Because no simple closed-form solutions exist yet for the Asian option, the devel-
opment of efficient numerical algorithms is critical. First, there are the popular Monte
Carlo and related quasi-Monte Carlo methods; see Boyle, Broadie, and Glasserman
(1997), Broadie and Glasserman (1996), Broadie, Glasserman, and Kou (1999), and
Kemna and Vorst (1990). But both the Monte Carlo approach and the analytical
approach suffer from the inability to handle early exercise without bias. Recently,
Longstaff and Schwartz (2001) have developed a least-squares Monte Carlo approach
to tackle the problem.

Tree methods, to which our algorithm also belongs, and the related discretized
partial-differential-equation approach are more general than the above-mentioned
schemes because they can easily incorporate early exercise. The difficulty with the
tree method in the case of Asian options lies in its exponential nature. Many pro-
posed approaches to solve this combinatorial explosion augment a state variable to
each tree node, which is usually the price sum or, equivalently, the price average. A
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very successful approximation paradigm by Hull and White (1993) limits the number
of price sums at each node of the binomial tree to some manageable magnitude k.
It then resorts to interpolation in backward induction; see Hull and White (1993),
Klassen (2001), and Ritchken, Sankarasubramanian, and Vijh (1993). This approach
is efficient, with a running time of O(kn2), but it is no longer exact because errors
are introduced by interpolation. The convergence issue of such numerical algorithms
is analyzed in Barraquand and Pudet (1996) and Forsyth, Vetzal, and Zvan (2001).
Another paradigm seeks approximation algorithms that produce provable upper and
lower bounds (called range bounds) that bracket the option value; see Chalasani et al.
(1999) and Rogers and Shi (1995). The O(kn2)-time algorithm of Aingworth, Mot-
wani, and Oldham (2000) guarantees a theoretical error bound of O(Xn/k) for pricing
European-style options, where k can be varied for any desired trade-off between time
and accuracy. Akcoglu, Kao, and Raghavan (2001) derive a complex trade-off by
a recursive application of the above algorithm in the case of European-style Asian
options. All of the algorithms resort to either interpolation (or its extreme form,
rounding) or analytical approximation in pricing. They are therefore approximation
algorithms. In contrast, the MR algorithm is an exact discrete-time pricing algorithm.

1 Integral Trinomial Lattice and Option Pricing

Let N(i, j) denote the node on the trinomial lattice that has the jth largest asset
price at time i, where 1 ≤ j ≤ 2i + 1. S(N) will represent the asset price at node
N . The trinomial lattice’s topology is illustrated in Figure 4. Node N may move to
node u(N) by the up branch, to node m(N) by the flat branch, and to node d(N) by
the down branch. For the flat branch, S(m(N)) = S(N); hence the asset price does
not change if the flat branch is taken. Use pu(N), pm(N), and pd(N) to denote the
branching probabilities for the up, flat, and down nodes from node N . The trinomial
lattice recombines as shown in Figure 5.

Suppose the asset prices on the lattice are all positive integers throughout this
section. Then the sums of asset prices are positive integers. Denote the maximum
sum from the root at time 0 to node N(i, j) by Nmax(i, j) and the minimum sum by
Nmin(i, j). Both numbers are straightforward to calculate. A price sum for a path
from the root at time 0 to node N(i, j) at time i must belong in the set,

NΣ(i, j) ≡ {k : k is an integer, Nmin(i, j) ≤ k ≤ Nmax(i, j)}.

The critical observation is that NΣ(i, j) is finitely enumerable. Without figuring
out the exact number of price sums by exhaustive search, we simply take the easily
derivable NΣ(i, j) as our state space for node N(i, j), and the number of allocated
states becomes

|NΣ(i, j) | = Nmax(i, j) −Nmin(i, j) + 1.
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The above is an upper bound on the total number of valid price sums at node N(i, j).
Data will demonstrate that the bound is tight in practice. The computational com-
plexity of the pricing problem will be proportional to the total number of allocated
states,

∑n
i=0

∑2i+1
j=1 |NΣ(i, j) |.

We now have enough information to present the formula for pricing Asian options.
Let V (i, j, k) denote the option value at node N(i, j) given that the price sum at the
node is k. Backward induction says that

V (i, j, k) = [ pu V (i + 1, j, k + S(N(i + 1, j))) +(1)

pm V (i + 1, j + 1, k + S(N(i + 1, j + 1))) +

pd V (i + 1, j + 2, k + S(N(i + 1, j + 2))) ] e−r∆t,

where 0 ≤ i < n, 1 ≤ j ≤ 2i + 1, and k ∈ NΣ(i, j). The dependency on parameter
N(i, j) is dropped from pu, pm, and pd for brevity. American-style options can be
handled similarly:

V (i, j, k) = max{ k

i + 1
−X,

[ pu V (i + 1, j, k + S(N(i + 1, j))) +

pm V (i + 1, j + 1, k + S(N(i + 1, j + 1))) +

pd V (i + 1, j + 2, k + S(N(i + 1, j + 2))) ] e−r∆t}.
See Figure 6 for illustration. Both options have payoff

V (n, j, k) = max[ k/(n + 1) −X, 0 ]

at maturity.
The advantage of the integral lattice over alternative approximation schemes is

now crystal clear. Observe that the state space at each node is finitely enumerable
because of the finitude and integrality of NΣ(i, j). As a consequence, backward induc-
tion can be carried out exactly as above, and no interpolations are required. The only
source of error compared with the continuous-time model is therefore discretization
error arising from using a discrete-time model. In contrast, suppose the asset prices
are real numbers instead. Then the sum of the price sum k and the asset price to
follow node N(i, j) in backward induction, S(N(i+1,m)) where m ∈ { j, j+1, j+2 },
will produce real numbers. Although the price sum k + S(N(i + 1,m)) is bounded
between Nmin(i + 1,m) and Nmax(i + 1,m) at node N(i + 1,m) as before, the

(
i+1
m

)
possible sums at node N(i + 1,m) cannot be identified without exhaustive search,
which takes exponential time. Two alternatives are open. We can obtain the price
sums by going through all possible paths. But this results in combinatorial explosion
as just mentioned. For example, the number of paths ending at node N(160, 161) is
about 8.429 × 1074. The second alternative is to resort to approximation schemes,
for which interpolation is a popular choice. But it introduces errors. Both alterna-
tives have their disadvantages, which are unavoidable as long as asset prices are real
numbers.
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2 Lattice Construction

We now turn to the issue of finding integral asset prices for the lattice. Let

µ(N) = S(N) er∆t,

Var(N) = S(N)2e2r∆t(eσ2∆t − 1)(2)

denote the mean and variance of the asset value one period from node N , respectively.
To guarantee that every asset price is an integer, we impose

S(u(N)) = S(N) + uN ,

S(d(N)) = S(N) − dN

for some positive integers uN and dN for node N . Courtesy of the flat branches, the
asset prices in the interior nodes such as nodes C, F, G, and H in Figure 5 are uniquely
determined by the asset prices in the boundary nodes such as nodes B, A, and D in
the same figure.

The positive integers uN and dN will be found by the following considerations. To
guarantee convergence to the continuous-time option value, the lattice is calibrated
to the first and second moments of the underlying asset price at each node N :

µ(N) = pu(N)(S(N) + uN) + pm(N)S(N) + pd(N)(S(N) − dN)(3)

Var(N) = pu(N)[S(N) + uN − µ(N) ]2 + pm(N)[S(N) − µ(N) ]2 +

pd(N)[S(N) − dN − µ(N) ]2(4)

1 = pu(N) + pm(N) + pd(N)(5)

0 < pu(N), pm(N), pd(N) < 1(6)

But two issues have been glossed over. First, the trinomial lattice as stated is un-
derdetermined because there are more variables (five) than equations (three) at each
node. Second, what happens if integral, positive displacements uN and dN satisfying
conditions (3)–(6) cannot be found? We proceed now to show how the extra freedom
of the lattice—the first issue—can actually be utilized to address the second issue.

The algorithmic idea will be expounded with reference to the lattice in Figure 5.
We only need to work on boundary nodes E, B, A, D, and I as the interior nodes’ asset
prices follow automatically. Because the root node A has asset price S, the interior
nodes C and G at the same level must also have the same asset price S. Now choose

(7)
⌈√

Var(N)
⌉

for the up displacement u ≡ uN and the down displacement d ≡ dN from the root
node N ≡ A. This determines the asset prices at B and D as well as the interior nodes
at their levels: nodes F and H. From node D, the integral down displacement f can be
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determined by formula (7), which then implies the asset price at I. The computation
from node B is symmetric to that from node D in determining node E’s asset price.

In general, at any given time, only the top boundary node (like nodes B and E)
and the bottom boundary node (like nodes D and I) need to have their displacements
calculated. The displacements at the interior nodes (like C, F, G, and H) are given
by the leftmost boundary node at the same level. The same holds for the branching
probabilities. In fact, only the up displacements at the top boundary nodes need to
be calculated, and only the down displacements at the bottom boundary nodes need
to be calculated. These properties follow from the lattice topology.

Consider the lattice in Figure 5 with S = 50, r = 10%, σ = 30%, τ = 0.5, and
n = 30. The asset prices at nodes A, C, and G are automatically 50. The variance
of the asset price at the end of the first period is 3.76534 by formula (2). The up
and down displacements u and d are then determined by formula (7) to be 2. The
branching probabilities can be solved via (3)–(5) to be pu(A) = 0.492, pm(A) = 0.057,
and pd(A) = 0.451. They are indeed valid probabilities. The asset prices at nodes B
and D are hence 52 and 48, respectively. The asset price at node F is then 52 and
that at node H is 48. Continuing with the calculations, we will find that the asset
price at node E is 55 and that at node I is 46.

One problem remains. It may happen that the integral displacement given by
formula (7) does not satisfy all the conditions (3)–(6). This can only occur along
the bottom path of decreasing asset prices like (A,D, I) in Figure 5. The obvious
reason is that, compared to a larger asset price, a smaller asset price entails a smaller√

Var(N) , which, when rounded, induces a bigger percentage error.
The key to solving the problem is that the option value is homogeneous of degree

one in the asset price. Hence, we may construct the lattice for m times the asset
prices for some integer m > 0 and divide the computed option value by m later.
Since m is an integer, the asset prices remain integers. Specifically, when formula
(7) fails to give branching probabilities satisfying (3)–(6) at a node N along the
bottom path on the lattice, we search for an m > 1 so that, after all the current
asset prices are multiplied by it, an integral down displacement that satisfies all the
said conditions can be found among { 1, 2, . . . ,m− 1 }. For ease of use on the binary
computer, integers 2, 4, 8, 16, . . . are tried for m, in that order. When an m which
results in a valid choice for the positive down displacement is found, all asset prices
on the lattice are multiplied by it. In general, if m1,m2, . . . ,m� are used for m during
the construction, the lattice will be one for

∏�
i=1 mi times the asset prices, and the

resulting option value must be divided by the same number.
In practice, the multiplication of asset prices is not actually carried out for effi-

ciency’s reasons. As the value of m is some power of two, the multiplication step
is replaced by extending the precision bits. More precisely, if m is found to be 2j,
multiplication by m is equivalent to allocating j additional precision bits after the
decimal point to the asset price. As a bonus, the computed option value need no
longer be divided by m at the end.
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To give a more precise explanation for the above ideas, define

Aj ≡
{

i

2j

∣∣∣∣ i = 1, 2, . . .

}
, j is a positive integer,

the set of numbers with j precision bits after the decimal point. Note that A0 is the
set of positive integers and A0 ⊂ A1 ⊂ A2 ⊂ · · · . The crucial property to note is
that Aj, like positive integers, is closed under addition: A sum of numbers from Aj

remains in Aj. Define �x�k as the number which results from rounding up x to k
precision bits after the decimal point. For example, �1.0101�3 = 1.011 (base 2) and
�1.0100�3 = 1.010 (base 2).

We are now able to give a fuller account of the transition to extra precision bits.
Suppose we are working under Ak when either dN = �√Var(N) �k > 0 fails to give

valid probabilities or
√

Var(N) < 2−(k+1). When this happens, we will proceed to
extend the precision. Let

2−(�+1) ≤
√

Var(N) < 2−�

for some � > k. Then for each j = �, � + 1, . . . we locally search the following 2j−k−1

numbers in Aj for a number dN that leads to valid probabilities:

2−j + 0 × 2−j+1 = 0.

j︷ ︸︸ ︷
0 · · · 0 0 · · · 0001 (base 2)

2−j + 1 × 2−j+1 = 0. 0 · · · 0 0 · · · 0011 (base 2)
2−j + 2 × 2−j+1 = 0. 0 · · · 0 0 · · · 0101 (base 2)
2−j + 3 × 2−j+1 = 0. 0 · · · 0 0 · · · 0111 (base 2)
2−j + 4 × 2−j+1 = 0. 0 · · · 0 0 · · · 1001 (base 2)

...
...

...
2−k − 2−j = 0. 0 · · · 0︸ ︷︷ ︸

k

1 · · · 1111 (base 2)

Call this set A∗
j . We stop the moment such a j is found. The construction can now

continue, working under Aj.
In practice, the need to add precision happens only occasionally. In the 160-period

lattice of Figure 2, for example, it happens four times. Furthermore, when it does
happen, usually only one bit of precision is added as testified by the lack of bigger-
than-one jumps in Figure 2(b). This implies that, usually, dN = 2−(k+1). Both work
to our advantage.

3 Additional Optimization: Multiresolution

When an asset price is multiplied by m (equivalently, has log2 m extra precision bits
after the decimal point), it increases the state space, and thus the running time, m-
fold because |NΩ | becomes m times as large. Fortunately, such scaling does not have
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to be applied to the whole lattice. Refer to the MR lattice in Figure 7(a). Let node
I be the first node along the bottom path from the root to have a fractional asset
price, say from set A1. Clearly, the price sums at nodes not reachable from I remain
in A0. These nodes lie to the “north” and “west” of the path (I,N). Only those nodes
reachable from node I need to have at least 1 bit of precision after the decimal point
for their price sums. This results in an MR lattice.

The above idea can be generalized naturally. In Figure 8, let node A be the first
node from the root along the bottom path L3 to have an asset price in Aa (a > 0),
node B be the first node from the root along the bottom path to have an asset price
in Ab (b > a), etc. Every node to the north and west of line L1 has price sums in
A0; every node to the north and west of line L2 but below L1 (inclusive) has price
sums in Aa; every node below L2 (inclusive) has price sums in Ab; and so on. The
savings are substantial as shown in Table 1 based on the parameters in Figure 2. The
reason is also evident from looking into Figure 2(b): Although the asset prices need
to be conceptually multiplied by up to 24 = 16 to achieve integrality, the majority
are multiplied by the much smaller 1, 2, 4, and 8 if the idea of multiresolution is
incorporated.

As an example to illustrate the above ideas, we now verify that the number 57887
stated in the introductory section is the number of states at the middle terminal node
N(160, 161). According to our computer program, the maximum price sum is 36414
and the minimum price sum is 7471. Since Figure 2(b) reveals that this node’s price
sums belong in A1, the maximum and minimum price sums are to be multiplied by two
to yield Nmax(160, 161) = 72828 and Nmin(160, 161) = 14942, respectively. A price
sum at node N(160, 161)—after the multiplication of all asset prices by two—must
be an integer between Nmax(160, 161) and Nmin(160, 161), inclusively. The number of
allocated states at node N(160, 161) thus equals

|NΣ(160, 161) | = Nmax(160, 161) −Nmin(160, 161) + 1 = 57887,

as claimed.

4 Example: A 3-Period Integral Trinomial Lattice

We use the 3-period lattice in Figure 7 to illustrate our ideas. At the root node A
and working under A0, the standard deviation one period forward can be found to be√

0.2641 = 0.514 > 2−1 by formula (2). So the candidate up and down displacements
equal 1 by formula (7). As they produce the valid probabilities in the A-C-G row of
Figure 7(b), we move down to node D. The standard deviation one period forward
from node D is

√
0.1690 = 0.4112 by formula (2). Since 2−2 ≤ 0.4112 < 2−1, we look

first for a solution in A∗
1 = { 2−1 }. The only candidate for down displacement dD

is 2−1, and it results in valid probabilities in the D–H row of Figure 7(b), satisfying
conditions (3)–(6). Node I’s asset price is hence 4− 2−1 = 3.5, which is 11.1 (base 2).
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Now go further down the bottom path and work under A1. The standard deviation
one period forward from node I equals

√
0.1294 = 0.3598. Since 2−2 ≤ 0.3598 < 2−1,

again 2−1 is selected as the candidate down displacement from node I. As it leads
to valid probabilities in the I row of Figure 7(b), the asset price at node P equals
3.5− 2−1 = 3.0, which equals 11.0 (base 2). The calculations for top boundary nodes
B, E, and J are similar.

After the lattice is constructed, we allocate the state space NΣ(i, j) for each node
N(i, j) and proceed to carry out backward induction. Consider node G in Figure 9,
extracted from Figure 7. The maximum price sum at node G equals 101+110+101 =
10000 (base 2) or 16 (base 10), and the minimum price sum equals 101 + 100 +
101 = 1110 (base 2) or 14 (base 10). All price sums at node G are in A0 because
the underlying asset’s prices on any path leading to G belong in A0. As a result,
the possible price sums at node G must be integers between 14 and 16, i.e., in set
NΣ(G) = { 14, 15, 16 }. The total number of allocated states is therefore 3. Take
node N that belongs in A1 as another example. The maximum price sum equals
101 + 110 + 101 + 100.0 = 10100.0 (base 2) or 20 (base 10). The minimum price sum
equals 101 + 100 + 11.1 + 100.0 = 10000.1 (base 2) or 16.5 (base 10). Because node
N belongs in A1, price sums there must be numbers between 16.5 and 20.0 with an
increment of 2−1, i.e., in set

NΣ(N) = { 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0 }.
The number of allocated states is 8. Similar computations can be carried out for
nodes L and M. The states at nodes G, L, M, and N are shown in Figure 9.

Without the use of multiple resolution, many states would be wasted, leading to
inefficiency. Consider the MR lattice in Figure 7(a) again. Because an extra precision
bit is eventually needed at node I, every asset price should add an extra precision bit,
potentially doubling the state space, if the notion of multiple resolution were not in
place. The states at node G, for example, would then be rational numbers between
14.0 and 16.0 with an increment of 2−1, or in { 14.0, 14.5, 15.0, 15.5, 16.0 } instead of
the earlier and smaller { 14, 15, 16 }.

Once the lattice is in place, backward induction can start. Assume n = 3 and the
exercise price is X = 4.8. From node G with price sum 16, the asset price can move
upward to terminal node L with price sum 16 + 6 = 22, move flatly to terminal node
M with price sum 16 + 5 = 21, or move downward to terminal node N with price
sum 16 + 4 = 20. The option value for the state corresponding to the price sum 22
at terminal node L equals (22/4) − 4.8 = 0.7. Similarly, the option values for the
states corresponding to the price sum 21 at terminal node M and the price sum 20
at terminal node N are (21/4) − 4.8 = 0.45 and (20/4) − 4.8 = 0.2, respectively. The
option value for the state corresponding to price sum 16 at node G can be computed
by applying backward-induction formula (1) as follows:

(0.203 × 0.7 + 0.720 × 0.45 + 0.077 × 0.2) × e−0.1×0.75/3 = 0.470.
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Option values corresponding to price sums 15 and 14 at node G can be computed
similarly as follows:

(0.203 × 0.45 + 0.720 × 0.2 + 0.077 × 0.0) × e−0.1×0.75/3 = 0.230,

(0.203 × 0.2 + 0.720 × 0.0 + 0.077 × 0.0) × e−0.1×0.75/3 = 0.040.

After similar calculations at other nodes, the final option value at node A is 0.415.
Now is a good time to see how the MR algorithm differs radically from other

lattice-based algorithms. Suppose the asset price for node L in Figure 9 is a real
number 6.43 instead of the integer 6. ¿From node G with price sum 16, the asset
price can move upward to node L with price sum 16 + 6.43 = 22.43. But there is
no state corresponding to price sum 22.43 at node L. Algorithms such as Hull and
White (1993) hence must resort to interpolation or even rounding, an extreme form
of interpolation, to obtain an approximate option value corresponding to 22.43 from,
say, option values corresponding to price sums 22 and 23.

Recall that |NΣ(i, j)|, the number of allocated states at node N(i, j), is an upper
bound on the number of valid price sums. Their difference, a measure of wasted
states, tends to be a small proportion of the total number of states in practice. In
Figure 10, for example, all nodes with a large number of states have high portions
of the states being valid price sums. This should make the overall usage ratio high.
Indeed, 94.4258% of the total states at the 61 terminal nodes correspond to valid
price sums; less than 6% of the states are wasted. The MR algorithm is therefore
highly efficient in its usage of memory and computing resources.

5 Numerical Results

There are at least two problems with most existing approaches. One is that they
may not be applicable to American-style options. The other is that most approaches
fail to get acceptable results for some cases as pointed out in Fu, Dilip, and Wang
(1998/9). Take the prominent Hull-White algorithm as an example. One version
of the algorithm is based on linear interpolation. In Table 2 the values under Hull-
White/linear increase monotonically with n and do not seem to converge. The version
with exponential interpolation also does not seem robust when n is large (see Table 2
under Hull-White/expo). Both are consistent with the analysis in Forsyth, Vetzal, and
Zvan (2001). Since exponential interpolation performs slightly better, by Hull-White
algorithm we will refer exclusively to this version unless stated otherwise. Other
algorithms are also compared in the same figure such as the algorithm of Aingworth,
Motwani, and Oldham (2000) (called AMO for brevity). The MR algorithm converges
well and does not overprice the options as do the Hull-White algorithms when n
increases. It also converges better than the AMO algorithm for the same n.

The running time of the MR algorithm is reasonable and much less than 3n. For
example, the algorithm finishes in 145 seconds for n = 141, whereas 3141 ≈ 1.88×1067,
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making the naive O(3n)-time algorithm hopeless.
Delta is key to hedging and replication. It is therefore important that the MR

algorithm compute the option delta accurately. The computing of delta is a straight-
forward by-product of option pricing in the MR algorithm. Refer to Figure 5, with
root node A. Now note that each of nodes B and D has only one state (price sum).
This means that node B has only one option value fB, corresponding to asset price
S + u, and node D has only one option value fD, corresponding to asset price S − d.
Both option values are intermediate results in the process of pricing the option. The
numerical delta is therefore given by (fB − fD)/(u+ d); see Pelsser and Vorst (1994).
Table 2 shows that the MR algorithm does a good job in the calculation of delta.
Figure 11 shows further that the numerical delta as determined by the MR algo-
rithm varies smoothly with asset price S. We therefore do not expect problems in
constructing hedge portfolios.

Additional experiments are tabulated in Table 3. With n = 30, the running time
is about 2 seconds on an Intel Pentium II 233MHz computer. Most of the values
computed by the MR algorithm are close to the value computed by Monte Carlo
simulation. Another set of experiments are focused on extreme cases mentioned in
Fu, Dilip, and Wang (1998/9). In that paper, the authors compare many proposed
algorithms and conclude that some algorithms may fail in extreme cases. We test their
extreme cases, and the results are shown in Table 4. The MR algorithm performs
well in each and every one of them.

All the experimental results up to now are for European-style Asian options. Ta-
ble 5 tabulates American-style Asian option values generated by various algorithms:
the Hull-White algorithm, the upper- and lower-bound algorithms of Chalasani et al.
(1999), and the MR algorithm. Both the Hull-White and MR algorithms generate
results that exceed the upper bounds of Chalasani et al. (1999). Since the bounds
of Chalasani et al. (1999) are valid for the CRR binomial model only, that the Hull-
White and MR algorithms’ results lie outside the bounds does not prevent them from
being closer to the continuous-time limits. In fact, judging from the MR algorithm’s
excellent convergence in the European-style case, we suggest that the bounds of Cha-
lasani et al. (1999) may actually underestimate the continuous-time limits for any
finite n. Our claim is consistent with the Hull-White algorithm’s similar tendency to
exceed their upper bounds. Lack of a benchmark like Monte Carlo simulation in the
European-style case necessarily means that our assessments are preliminary.

6 Conclusions

This paper develops a new trinomial lattice particularly with the Asian option in
mind. The lattice uses the notion of integrality of asset prices and multiple resolution
to make an exact pricing algorithm realizable and practical. The first property is
made possible by the well-known fact that the option value is homogeneous of degree
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one in the asset price, while the second property is made possible by simple causal
considerations. No errors are introduced by the algorithm in backward induction. The
algorithm can handle both European- and American-style options easily. Extensive
experiments show that the algorithm compares favorably with existing approaches.
Its practical running time means that it may be the first exact algorithm to break the
3n barrier. The source of the tremendous reduction in running time is the dramatic
decrease in the possible number of price sums.

The MR lattice can be easily modified to price Asian options when averaging is
applied to daily closing prices. It can also be used to price other path-dependent
options whose payoff depends on the average price such as average-strike options and
Asian barrier options in Zvan and Vetzal (1999).
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Figure 1: A 3-Period Trinomial Lattice with Integral Asset Prices. All paths
reaching the shaded node have integral price sums. The maximum price sum at the
shaded node is achieved by the upper path in thickened lines, whereas the minimum
price sum at the shaded node is achieved by the lower path in thickened lines.
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Figure 2: Number of Price Sums under Multiple Resolution. The upper
bounds on the number of price sums at the terminal nodes are plotted in (a), starting
from the node with the highest asset price. The sum of these upper bounds represents
the total number of states allocated by the algorithm. In this particular case, the
parameters are S0 = 100, X = 100, σ = 20%, r = 10%, τ = 1, and n = 160. There
are 2n+1 = 321 terminal nodes. The number of precision bits after the decimal point
at the 321 terminal nodes are plotted in (b), starting from the node with the highest
asset price. The maximum number of precision bits after the decimal point is 4.

50 100 150 200 250 300
Node

20000

40000

60000

80000

100000

Size

50 100 150 200 250 300
Node

1

2

3

4

Precision

(a) (b)

20



Figure 3: Convergence Behavior of the MR Lattice. The Monte Carlo simu-
lation value from Choa and Lee (1997) is plotted for reference. The parameters are
S0 = 50, X = 60, r = 10%, σ = 30%, and τ = 0.5.
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Figure 4: The Trinomial Model. Node N(i, j) has the jth largest asset price at
time i, where 1 ≤ j ≤ 2i + 1.
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Figure 5: The Trinomial Lattice. The interior nodes are C, F, G, and H, whereas
the boundary nodes are E, B, A, D, and I. Numbers pu(N), pm(N), and pd(N) denote
the branching probabilities for the up, flat, and down nodes from node N . The up
displacements are u and v, whereas the down displacements are d and f .
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Figure 6: Backward Induction for Asian Options. The possible option values
at N(i, j) are stored in an array indexed by states which denote the possible price
sums. Each option value depends on option values corresponding to specific states at
the three nodes that follow: N(i + 1, j), N(i + 1, j + 1), and N(i + 1, j + 2).
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Figure 7: A Sample MR Lattice. (a) The shaded area covers nodes with an extra
bit of precision after the decimal point (i.e., in A1) for their price sums. All asset
prices are binary numbers. The parameters are S0 = 5, r = 10%, σ = 20%, τ = 0.75,
and n = 3. (b) In the table, pu, pm and pd denote the up, flat, and down branching
probabilities for each node, respectively.
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Figure 8: Partition of the Lattice Based on Precisions. All nodes reachable from
the root but not reachable from node A have integral asset prices. All nodes reachable
from node A but not reachable from node B have asset prices with a precision bits
after the decimal point. All nodes reachable from node B have asset prices with b
precision bits after the decimal point.
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Table 1: Optimization of the State Space. The table records the total number
of states allocated by the MR lattice. The input parameters are identical to those in
Figure 2: S0 = 100, X = 100, σ = 20%, r = 10%, τ = 1, and n = 160. The number
18,280,584 under “After optimization/160,” for example, is the sum of the numbers
plotted in Figure 2(a).

Before optimization After optimization
n 100 160 100 135 150 160

Size 16,106,074 118,524,029 2,969,062 9,065,895 14,030,903 18,280,584
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Figure 9: A Backward-Induction Step. Nodes G, L, M, and N are from Figure 7.
The number next to a cell denotes the state (the price sum) that the cell corresponds
to. A number inside the cell denotes the option value corresponding to the cell’s price
sum. The underlying asset’s value for terminal nodes L, M, and N are 6, 5, and 4,
respectively. Recall that the parameters are S0 = 5, r = 10%, σ = 20%, τ = 0.75,
and n = 3.
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Figure 10: Ratios of the Number of Price Sums to the Number of States.
The parameters are S0 = 100, r = 10%, σ = 30%, τ = 1, and n = 30. The above
graph plots the ratio for each of the 61 terminal nodes, starting from the node with
the highest asset price.
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Table 2: Monte Carlo Simulation, Hull-White, AMO, and the MR Algo-
rithm. The parameters are S0 = 50, X = 60, r = 10%, σ = 30%, and τ = 0.5. The
Hull-White algorithms use h = 0.005 where linear denotes “linear” interpolation and
“expo” denotes exponential interpolation (see Hull and White (1993)). Monte Carlo
simulations are based on 2,000,000 trials. The AMO values are the results of an opti-
mized code with k = 50000 (see Aingworth, Motwani, and Oldham (2000)). “Lower”
and “Upper” bracket the 95% confidence interval. MR denotes the multiresolution
method. The pricing values, the computational times, and the deltas computed by
the MR algorithm are all listed in this table. Asterisks mark the cases where the
answers are out of 95% confidential interval. The computational times are in seconds
and are based on an Intel Pentium II 233MHz computer.

n Monte Carlo Hull-White AMO MR
Lower Upper linear expo Value Value Time Delta

42 0.321 0.325 0.318* 0.318* 0.315* 0.316* 1 0.1013
53 0.322 0.326 0.322* 0.321* 0.318* 0.319* 2 0.1040
64 0.323 0.327 0.326 0.324 0.320* 0.321* 3 0.1057
75 0.323 0.326 0.329* 0.325 0.321* 0.323 7 0.1068
86 0.324 0.328 0.332* 0.327 0.322* 0.324 13 0.1077
97 0.325 0.329 0.335* 0.328 0.323* 0.325 23 0.1083

108 0.324 0.328 0.337* 0.329* 0.323* 0.327 39 0.1085
119 0.326 0.330 0.341* 0.330 0.323* 0.328 61 0.1081
130 0.324 0.328 0.346* 0.330* 0.325 0.327 96 0.1081
141 0.325 0.329 0.353* 0.331* 0.324* 0.326 145 0.1083
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Figure 11: Numerical Delta. The numerical delta of the Asian call with respect
to the underlying asset’s price as determined by the MR algorithm is plotted above.
The parameters are 30 ≤ S0 ≤ 70, X = 50, r = 10%, σ = 30%, and τ = 1. For
comparison, the higher dotted curve plots the delta of the vanilla call as computed
by the Black-Scholes formula with the same parameters.
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Table 3: Comparing Various Asian Option Pricing Algorithms. The param-
eters are S0 = 50, r = 10%, and σ = 30%. HW denotes the Hull-White algorithm
based on n = 40 and h = 0.005. MC denotes Monte Carlo simulation based on n = 40
and 100,000 trials (the standard errors are in parenthesis). The MR algorithm uses
n = 30. L denotes the analytic approach described in Levy (1992). The data for the
Hull-White algorithm and Monte Carlo simulation are from Choa and Lee (1997).

Maturity Algorithm Exercise price
(years) 40 45 50 55 60

0.5 HW 10.755 6.363 3.012 1.108 0.317
MC 10.759 6.359 2.998 1.112 0.324

(0.003) (0.005) (0.007) (0.005) (0.003)
MR 10.754 6.356 2.997 1.104 0.317
L 10.765 6.386 3.024 1.105 0.313

1.0 HW 11.545 7.616 4.522 2.420 1.176
MC 11.544 7.606 4.515 2.401 1.185

(0.006) (0.008) (0.010) (0.009) (0.007)
MR 11.547 7.616 4.517 2.412 1.170
L 11.576 7.662 4.557 2.431 1.172

1.5 HW 12.285 8.670 5.743 3.585 2.124
MC 12.289 8.671 5.734 3.577 2.135

(0.008) (0.010) (0.012) (0.012) (0.010)
MR 12.284 8.674 5.750 3.585 2.118
L 12.337 8.738 5.801 3.619 2.133

2.0 HW 12.953 9.582 6.792 4.633 3.057
MC 12.943 9.569 6.786 4.639 3.055

(0.010) (0.013) (0.014) (0.015) (0.013)
MR 12.944 9.577 6.786 4.625 3.045
L 13.024 9.671 6.874 4.691 3.087
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Table 4: Stress Tests. The exercise price X is 2.0, and the MR algorithm uses
n = 30. The approximation methods for comparison are: Geman-Eydeland (GE),
Shaw, Euler, Post-Widder (PW), and Turnbull-Wakeman (TW). The benchmark
values (MC10 and MC100) and the approximation values are from Fu, Dilip, and
Wang (1998/9). MC10 uses 10 periods per day, whereas MC100 uses 100. Both are
based on 100,000 trials. SE stands for standard error, also from Fu, Dilip, and Wang
(1998/9).

r σ T S0 GE Shaw Euler PW TW MC10 MC100 SE MR
5.0% 50% 1 1.9 .195 .193 .194 .194 .195 .192 .196 .004 .193
5.0% 50% 1 2.0 .248 .246 .247 .247 .250 .245 .249 .004 .246
5.0% 50% 1 2.1 .308 .306 .307 .307 .311 .305 .309 .005 .306
2.0% 10% 1 2.0 .058 .520 .056 .0624 .0568 .0559 .0565 .0008 .0558

18.0% 30% 1 2.0 .227 .217 .219 .219 .220 .219 .220 .003 .219
12.5% 25% 2 2.0 .172 .172 .172 .172 .173 .173 .172 .003 .172
5.0% 50% 2 2.0 .351 .350 .352 .352 .359 .351 .348 .007 .351

33



Table 5: American-Style Asian Options. HW denotes the Hull-White algorithm,
while UB and LB denote the upper and lower bounds on the option values given by
Chalasani et al. (1999) for the CRR model. All algorithms use n = 40. The other
parameters are S0 = 50, r = 10%, and σ = 30%.

τ X HW LB UB MR
0.5 40 12.115 12.111 12.112 12.132

45 7.261 7.255 7.255 7.275
50 3.275 3.269 3.269 3.272
55 1.152 1.148 1.148 1.147
60 0.322 0.320 0.320 0.322

1.0 40 13.153 13.150 13.151 13.194
45 8.551 8.546 8.547 8.576
50 4.892 4.888 4.889 4.901
55 2.536 2.532 2.534 2.541
60 1.208 1.204 1.206 1.210

1.5 40 13.988 13.984 13.985 14.013
45 9.652 9.648 9.650 9.669
50 6.199 6.195 6.197 6.206
55 3.771 3.767 3.770 3.786
60 2.194 2.190 2.193 2.209

2.0 40 14.713 14.709 14.712 14.756
45 10.623 10.620 10.623 10.659
50 7.326 7.322 7.325 7.358
55 4.886 4.882 4.885 4.912
60 3.171 3.167 3.170 3.195
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