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Abstract

Asian options are popular path-dependent options and it has been a long-
standing problem to price them efficiently and accurately. Since there is no
known exact pricing formula for Asian options, numerical pricing formulas like
lattice models must be employed. A lattice divides a certain time interval
into n time steps and the pricing results generated by the lattice (called de-
sired option values for convenience) converge to the theoretical option value
as n → ∞. Since a brute-force lattice pricing algorithm runs in subexponen-
tial time in n, some heuristics, like interpolation method, are used to strike
the balance between the efficiency and the accuracy. But the pricing results
might not converge due to the accumulation of interpolation errors. For pricing
European-style Asian options, the evaluation on the major part of the lattice
can be done by a simple formula, and the interpolation method is only required
on the minor part of the lattice. Thus polynomial time algorithms with con-
vergence guarantee for European-style Asian options can be derived. However,
such a simple formula does not exist for American-style Asian options. This pa-
per suggests an efficient range-bound algorithm that bracket the desired option
value. By taking advantages of the early exercise property of American-style
options, We show that part of the lattice can be evaluated by a simple formula.
The interpolation method is required on the remaining part of the lattice and
the upper and the lower bounds option values produced by the proposed algo-
rithm are essentially numerically identical. Thus the theoretical option value
is said to be obtained practically when the range bound algorithm runs on a
lattice with large number of time steps.

Running title: Range-Bound Algorithm for American Asian Options

Keywords: Asian option, option pricing, lattice, path-dependent derivative,
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1 Introduction

Options are financial derivatives that give their buyers the right but not obligation to
buy or sell the underlying asset for a contractual price (called the exercise price) at a
certain date (called the maturity date). The underlying asset is assumed to be stock
for convenience. Take a European-style call option for example. An option holder
will exercise the option (i.e. the right to buy a stock) at the maturity date if the stock
price S exceeds the exercise price X. Thus he can realize a payoff of S − X. On the
other hand, if S is below X at the maturity date, he can simply junk the call option.
To meet different requirements of financial markets, various options are developed.
For example, an American-style option allows an option holder to exercise the option
prior to maturity date. A path-dependent option is the option whose payoff depends
nontrivially on the stock price history. Asian options are path-dependent options
since their payoffs depend on the average stock prices. They play important rules in
financial markets because their prices are less subject to price manipulation. However,
it has been a long-standing problem to price them efficiently and accurately [1].

There is no exact analytical pricing formula for Asian options. Approximate
closed-form solutions are suggested in [2, 3, 4, 5, 6, 7, 8]. But most approximate
analytical formulas lack the accuracy guarantees and even produce large pricing errors
under certain cases [9, 10, 11]. Some papers use Monte Carlo and related quasi-Monte
Carlo methods [12, 13, 14, 15]. But they produce probabilistic results and are usually
inefficient. Besides, the aforementioned approaches are hard to handle the American-
style Asian options.

Lattice methods and the related discretized partial-differential-equation ap-
proaches are more general than the aforementioned schemes because they can handle
American-style options more easily. A lattice divides the time horizon of the option
into n discrete time steps and specifies the stock prices discretely at each time step.
Take a 2-time-step CRR lattice [16] in Fig. 1 as an example. (The details of the CRR
lattice will be described later.) The time interval is evenly divided into 2 time steps.
The stock price at time step 0 is S0 (at node N(0, 0)). The stock price can either
move up to S0u (at node N(1, 0)) with probability p or down to S0d (at node N(1, 1))
with probability 1 − p at the first time step. Similarly, each stock price can either
move up or move down in subsequent time steps. The pricing results generated by
the lattice (called the desired option values) converge to the theoretical option value
as n → ∞ [17].

The difficulty to price Asian options with the lattice lies in its exponential nature:
Consider the binomial random walk of the stock price illustrated in Fig. 1. After n
time steps, the history contains 2n possible price paths, each with its own average
stock price. As the payoff of the Asian option depends on the average stock price,
there are 2n possible payoffs at time step n. Up to now, the best algorithm to
price an Asian option on a lattice exactly runs in subexponential time [18]. Its
superpolynomial nature forbids the use of very large n to approximate the theoretical
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option value.
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Figure 1: The Binomial Lattice Model (a) The stock price is placed above the node,
where u and d denote the upward and the downward multiplication factors. (b) The node
name is above the node. The probability of reaching each node from the root is listed under
the node.

To strike a balance between efficiency and accuracy, Hull and White limit the num-
ber of possible average stock prices at each node of the lattice to be some manageable
magnitude k [19]. These average stock prices are called representative averages for
convenience. The option value for a missing average stock price at an arbitrary node is
then estimated by interpolation. This popular method is widely accepted [20, 21, 22].
However, Forsyth et. al. show that the pricing results might not converge due to ac-
cumulations of interpolation errors [23]. Roughly speaking, this is because the range
of average stock prices, defined as the range between the maximum and the minimum
average stock prices, grows exponentially in n. To keep the pricing algorithm runs in
polynomial time, the number of representative averages at each node must be a poly-
nomial function in n. Therefore, the distance between two representative averages
and the interpolation errors grows explosively. Aingworth et. al. prove that a simple,
exact pricing formula for European-style Asian options exists at a node of the lattice
if the average stock price exceeds a certain numerical bound [24]. (Their analysis of
American-style Asian options seems mistaken.) There formula is useful in deriving
polynomial-time algorithms with rigorous convergent proofs since the interpolation
method is now required in a small portion (that grows only polynomially in n) of
the range of average stock prices. Thus the interpolation error introduced at each
node can be decreased with n by putting polynomially many representative averages
at that node. Aingworth et. al. derive a O(kn2) algorithm with a error bound of
O(n/k), where k now denotes the average number of representative averages allo-
cated at a node. Note that k can be varied for any desired trade-off between time and
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accuracy. Dai et. al. determine the number of representative average stock prices
allocated at each node by Lagrange multipliers so the accumulated interpolation error
is minimized [27]. Their algorithm runs in O(kn2) with an error bound of O(1/k2).
Thus they claim their algorithm runs in O(n2.5) with a convergence rate O(n−1).

Unfortunately, Aingworth’s formula does not work for pricing American-style
Asian options because of the need to estimate the exercise boundary — a threshold of
average stock price that determines whether the option is exercised immediately— at
each node. Up to now, rigorous convergence analysis for pricing American-style Asian
options is even scarcer than that for European-style Asian options. To address this
problem, this paper proposes approximation algorithms that produce provable up-
per and lower bounds (called range bounds) that bracket the desired option value.
The range bound idea is previously adopted by [24, 25, 26] for pricing European-style
Asian options. The hope is that the desired option value becomes practically available
when the upper bound and the lower bound are essentially identical. Furthermore,
the difference between the upper bound and the lower bound, call it e, gives an upper
limit on the uncertainty surrounding the desired option value (see Fig. 2). This paper
modifies Dai’s algorithm in [27] to serve the upper bound algorithm and proposes a
lower bound algorithm by taking advantages of Jensen’s inequality. The error e of the
proposed range bound algorithm converges to 0 for European-style Asian options if
Aingworth’s formula is applied. To obtain accurate pricing algorithm for American-
style Asian options, the error e is reduced by using the exercise boundary (estimated
by the upper bound pricing algorithm) to play a similar role as Aingworth’s formula.
Average stock prices above the estimated exercise boundary will force the option to
be exercised immediately, whose contribution to the option value is known exactly
and trivially computable. We circumvent the difficulty of finding the exact exercise
boundary with a way to estimate it while respecting the desired range bounds. It
gives rise to a two-phase computational framework in which phase one calculates the
estimated exercise boundary and phase two apply the range-bound algorithm to a
portion of the range of average stock price. Thus phase two is expected to offer
substantially more accurate results than if phase one is not in place. The numerical
results suggest that this two-phase range bound algorithm provides tight upper and
lower bounds that the desired option value is practically available.

Upper bound

e

Lower bound

Desired option value

Figure 2: Range bound and uncertainty e about the desired but unknown
option value.

This paper is organized as follows. Section 2 reviews required background knowl-
edge for pricing Asian options on the lattice. Section 3 proposes accurate and efficient

4



two-phase range-bound algorithms for pricing both European-style and American-
style Asian options. Rigorous proofs for the proposed range-bound algorithms are
given in Section 4. Numerical results in section 5 verify the accuracy of our algo-
rithms. Section 6 concludes the paper.

2 Basic Terms

Assume that an Asian option initiates at time 0 (in year) and matures at time T
(in years). Define S(t) as the stock price at year t. S(t) follows the continuous-time
stock price dynamics

S(t + dt) = S(t) exp[(r − 0.5σ2) dt + σ dWt], (1)

where r, σ, and Wt denote the risk-free interest rate, the volatility of the stock price,
and the standard Wiener process, respectively.

The payoff to exercise an Asian option at time τ (τ ≤ T ) depends on the average

stock price from time 0 to time τ defined as Aτ ≡
∫ τ
0 S(t)dt

τ
. Let X be the exercise

price. The payoff to exercise an Asian call option at time τ is (Aτ − X)+, where
(a)+ denotes max(a, 0). The theoretical option value is equal to expected discounted
payoffs [28]. Thus the value of a European-style Asian call option is

E[e−rT (AT − X)+] (2)

since a European-style option can only be exercised at the maturity date. On the
other hand, the value of an American-style Asian call option is

max
τ≤T

E[e−rτ (Aτ − X)+], (3)

where τ is a random stopping time for exercising the option. This paper focuses on
Asian call options; the extension to Asian put options is straightforward.

The above problem can be numerically solved by discrete-time models like lattice
models. A lattice partitions the time between time 0 and time T into n equal-length
time steps. The length of a time step ∆t is therefore T/n. Let Si denote the stock price
at time step i, which corresponds to S(i∆t) in the continuous-time model. Define a
prefix sum of a price path from time step 0 to time step j as

∑j
i=0 Si. The average

stock price is then A(j) ≡
∑j

i=0 Si

j+1
. The desired option values of European-style and

American-style Asian options evaluated by lattice are

E
[
e−rT (A(n) − X)+

]
(4)

and
max
j≤n

E
[
e−jr∆t(A(j) − X)+

]
, (5)
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respectively. Note that Eqs. (4) and (5) converge to Eqs. (2) and (3), respectively, as
n → ∞ [17].

This paper adopts the CRR lattice model suggested in [16]. A 2-time-step CRR
lattice is depicted in Fig. 1(a). In the CRR lattice model, Si+1 equals Siu with
probability p and Sid with probability 1−p, where d = 1/u. The probability p for an

up move is set to (er∆t − d)/(u − d), where u = eσ
√

∆t. The stock price at time step
i that results from j down moves and i − j up moves therefore equals S0u

i−jdj. For
convenience, the lattice nodes are labelled in Fig. 1(b). Let node N(i, j) stand for
the node at time step i reachable from the root with j cumulative down moves. Its
associated stock price is S0u

i−jdj. The stock price can move from N(i, j) to N(i+1, j)
with probability p and to N(i + 1, j + 1) with probability 1 − p. Node N(i, j) can
therefore be reached from the root node with probability

(
i
j

)
pi−j(1 − p)j.

Evaluating Eqs. (2) and (3) can be done by backward induction as follows. The
option value at the maturity date is (AT − X)+. Let (i, j, A) denote the bucket
with an average stock price A (from time step 0 to time step i) at node N(i, j) and
v(i, j, A) denote the corresponding option value. If this stock price moves up to node

N(i+1, j) at time step i+1, the average stock price becomes A′ ≡ (i+1)A+Sui+1−jdj

i+2
. If

the stock price moves down to node N(i + 1, j + 1), the average stock price becomes

A′′ ≡ (i+1)A+Sui−jdj+1

i+2
. For pricing European-style options, the desired option value

v(i, j, A) then equals

v(i, j, A) = e−r∆t [p × v(i + 1, j, A′) + (1 − p) × v(i + 1, j + 1, A′′)] . (6)

On the other hand, an American-style option holder maximizes his profit by choosing
whether to hold the option (with the value in Eq. (6)) or to exercise the option (with
the payoff (A − X)+). Thus the desired option value v(i, j, A) for American-style
options at (i, j, A) is

v(i, j, A) = e−r∆t max
{
(A − X)+, [p × v(i + 1, j, A′) + (1 − p) × v(i + 1, j + 1, A′′)]

}
.

(7)
The above formula can be applied inductively from time step n− 1 back to time step
0 with v(0, 0, S0) at the root node giving the desired price under the lattice model.

The aforementioned algorithm is computationally intractable since there are
(

i
j

)
price paths that reach node N(i, j) and each such path gives rise to a distinct average
price (bucket). The sum of number of buckets of the nodes at time i is

∑i
j=0

(
i
j

)
= 2i.

Thus Eq. (6) (or Eq. (7)) should be evaluated
∑n

i=0 2i times, which leads the pricing
algorithm runs in exponential time. To address this problem, Hull and White limits
the number of buckets at each node to a manageable magnitude [19]. When bucket
(i, j, A) is missing, its corresponding option value is estimated by linear interpolation
from its two nearest allocated buckets (i, j, A−) and (i, j, A+) via:

v(i, j, A) =
A − A−

A+ − A−v(i, j, A+) +
A+ − A

A+ − A−v(i, j, A−), (8)
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where A− < A < A+. The aforementioned method may not converge due to accu-
mulations of interpolation error [23]. Note that the maximum of the average stock

price at time step n (i.e. S+Su+...+Sun

n
=

S(un+1−1)
n(u−1)

) grows exponentially in n. Indeed,
the range between the maximum and the minimum average stock price also grows
exponentially in n. However, the number of representative averages at each node
must grow polynomially in n to make the pricing algorithm run in polynomial time.
Thus the distance between two representative averages (like A+ and A− in Eq. (8))
and the interpolation error grows explosively with n.

Aingworth et. al. [24] derive a simple pricing formula for European-style Asian
options for a node N(i, j) at the lattice if the average stock price exceeds a certain
amount as follows:

Theorem 2.1 Note that the corresponding prefix sum for bucket (i, j, A) is (i + 1)A.
If the prefix sum is larger than (n + 1)X by ε. Then the option value v(i, j, A) equals

• [ ε + (n − i)S0u
i−jdj ] /(n + 1) when r = 0, and

• e−rT
[
ε + S0u

i−jdjer∆t 1−e(n−�)r∆t

1−er∆t

]
/(n + 1) when r > 0.

This formula limit the use of the interpolation (i.e. Eq. (8)) on a smaller range of the

average stock price: [0, (n+1)X
i+1

] since v(i, j, A) can be exactly solved by aforementioned

formulas if A > (n+1)X
i+1

. They then derive an O(kn2) algorithm with an error bound of
O(n/k), where k now denotes the average number of representative averages allocated
at a node.

Dai et. al. determine the number of representative average stock prices allocated
at each node by Lagrange multipliers so the accumulated interpolation error is min-
imized [27]. Let ki,j stand for the number of buckets allocated at node N(i, j). The
total number of buckets is equal to

∑
0≤j≤i≤n ki,j ≈ k(n2/2) as there are approxi-

mately n2/2 nodes. These ki,j buckets (the average stock prices) shall divide the
range [0, (n + 1)X/(i + 1)] evenly. For example, let b(i, j, �) denote the �th bucket at
node N(i, j). Then the corresponding average stock price and the prefix sum for this

bucket are �(n+1)X
(i+1)kij

and �(n+1)X
kij

, respectively.1 Note that the difference between two

average stock prices of two adjacent buckets is (n+1)X
(i+1)ki,j

≤ 2nX
(i+1)ki,j

. The linear inter-

polation error to estimate an arbitrary bucket at node N(i, j) by Eq. (8) is bounded

above by M(2nX/iki,j)
2, where the constant M denotes the upper bound of

∣∣∣∂2v(i,j,A)
∂A2

∣∣∣
for 0 ≤ j ≤ i ≤ n [23]. Thus the accumulated interpolation error is bounded above
by ∑

0≤j≤i≤n

(
i
j

)
pi−j(1 − p)jM(2nX/iki,j)

2. (9)

1The root node N(0, 0) is a special case with k00=1. The average stock price and the prefix sum
for this bucket is S0.
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The aforementioned formula can be minimized by Lagrange multipliers by setting

ki,j =
n2k

2
× [B(i, j; p)/i2]

1/3∑
0≤m≤l≤n [B(l,m; p)/l2]1/3

, (10)

where B(i, j, p) ≡ (
i
j

)
pi−j(1 − p)j. They find that the error converges at a rate of

O(k−2).

3 The Range Bound Algorithm

The aforementioned algorithms do not work well for American-style Asian options
since Theorem 2.1 is not valid. This section will propose approximation algorithms
that produce provable upper and lower bounds (called range bounds) that bracket
the desired option value. We will first modify Dai’s algorithm [27] to price American-
style Asian options and then prove that the resulting algorithm Up1 overestimates the
desired option values. To further reduce the pricing error, the early exercise property
for American-style options is used to tighten the range of average stock price (or
equivalently, the range of prefix sum for ease of later discussion) that requires inter-
polation. We use Up1 to tighten the range of prefix sum that requires interpolation
and apply the same algorithm to the remaining portion of prefix sum. The resulting
algorithm, called Up2, provides a tighter upper bound for the desired option value. On
the other hand, the lower bound algorithm DownE for European-style Asian option is
constructed by taking advantages of Jensen’s inequality. The lower bound algorithm
for American-style Asian options DownA is then constructed by modifying DownE.

3.1 Some useful terminologies

Some terms are introduced here for ease of later discussions. Let Rmax(i, j) and
Rmin(i, j) denote the largest and the smallest prefix sums among all the paths that
end at node N(i, j). Obviously, Rmax(i, j) is achieved by the path that makes i − j
up moves followed by j down moves, whereas Rmin(i, j) is achieved by the path
that makes j down moves followed by i − j up moves. Both are straightforward to
calculate [1]. The prefix-sum range (or the range of average stock price) at node

N(i, j) is [Rmin(i, j),Rmax(i, j) ] (or
[

Rmin(i,j)
i+1

, Rmax(i,j)
i+1

]
).

Then we define the ideal lattice, a critical concept for deriving range bounds. The
ideal lattice has an uncountably infinite number of buckets. A bucket exists at node
N(i, j) for each real number s ∈ [Rmin(i, j),Rmax(i, j) ]. Any prefix sum encountered
by the approximation pricing algorithms must correspond to some bucket at the same
node in the ideal lattice. Practical lattices refer to the necessarily finite-sized,
bucket-based lattices used by approximation pricing algorithms.

For any bucket b, we use Pb and Eb to denote its associated prefix sum and the
option value for brevity. Because the option value for bucket b evaluated by the ideal
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lattice may differ from that in the practical lattice, the superscripts I and P are
added to distinguish them. The option value at bucket b in the ideal lattice and that
in the practical lattice, if b exists, become EI

b and EP
b , respectively. Because the ideal

lattice contains any possible average stock prices, no interpolation is required in the
ideal lattice. Thus the value computed by the ideal lattice equals the desired option
value, which is denoted by DesiredValue for convenience.

3.2 The first upper-bound algorithm: Up1

The algorithm for pricing European-style Asian options proposed in [27] allocate
buckets at the prefix sum range [ 0, (n + 1)X ]. My algorithm for American-style
Asian options adopt [Rmin(i, j),Rmax(i, j) ] instead of [ 0, (n + 1)X ] for the prefix-
sum range of any arbitrary node N(i, j). This change is needed because a prefix
sum exceeding (n + 1)X no longer results in any easily calculated option evaluation
formula as in Theorem 2.1 for American-style options.

Because the prefix sum range for each node of the lattice have changed, the number
of buckets allocate to each node must vary to minimize the accumulated interpolation
error. Define the range of prefix sum of node N(i, j) as

Rij ≡ Rmax(i, j) −Rmin(i, j).

Thus the interpolation error to estimate an arbitrary bucket at node N(i, j) is
bounded above by M(Rij/iki,j)

2. The accumulated interpolation error is then de-
rived by modifying Eq. (9) as follows:∑

0≤j≤i≤n

(
i
j

)
pi−j(1 − p)jM(Rij/iki,j)

2.

The accumulated interpolation errors can be minimized by Lagrange multipliers (like
Eq. (10) ) by setting

ki,j =
n2k

2
× [B(i, j; p)Rij/i

2]
1/3∑

0≤m≤l≤n [B(l,m; p)Rlm/l2]1/3
, (11)

My Up1 algorithm bases on the Dai’s algorithm [27] with two straightforward modi-
fications. First, the range of prefix sums and the bucket allocation scheme are changed
as mentioned above. Second, early exercise is considered at each bucket. That is, the
backward induction formula for American-style options Eq. (7) is used instead of Eq.
(6). Note that rigorous convergence analysis is not available for American-style Asian
options. This is because the prefix sum range node N(i, j) grows exponentially in i.
When the number of time steps n (of the lattice) increases, the prefix-sum ranges of
newly added nodes grows exponentially in n. The interpolation errors introduced by
newly added nodes do not decrease with n unless the number of buckets allocated at
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these nodes also grows exponentially in n. Numerical experiments in Section 5 also
suggests that pricing European-style Asian options without reducing the prefix-sum
ranges by Theorem 2.1 results in convergence problem.

3.3 The second upper-bound algorithm: Up2

As a rule, the smaller the prefix-sum ranges, the better the approximation. Note that
the payoff of an early-exercise bucket b at time step m is simply Pb/(m + 1) − X,
such buckets can be removed from the prefix-sum ranges, thus limiting the prefix-
sum ranges further. But how are the early-exercise buckets distributed within the
prefix-sum range? Before answering this key question, we state a useful lemma below.

Lemma 3.1 (Contraction lemma) Suppose that Pb1 > Pb2 at buckets b1 and b2 of
the same node in the ideal lattice at time step m. Then

Pb1

m + 1
− Pb2

m + 1
≥ EI

b1
− EI

b2
.

Proof. See Appendix A. �

The following theorem states that there exists a prefix sum at each node in the
ideal lattice that separates the early-exercise buckets from the non-early-exercise ones.

Theorem 3.2 Suppose that Pb1 > Pb2 at buckets b1 and b2 of the same node in the
ideal lattice at time step m. Assume that it is optimal to exercise the option at bucket
b2. Then it is optimal to exercise the option at b1.

Proof. It can be claimed that

0 ≥ Pb1

m + 1
− X − EI

b1
≥ Pb2

m + 1
− X − EI

b2
= 0.

That the option value is at least the exercise value proves the first inequality.2

The second inequality is by Lemma 3.1. The last equality holds because b2 is an
early-exercise bucket. As EI

b1
= Pb1/(m + 1) − X, bucket b1 is an early-exercise

bucket. �

The prefix sum at each node of the ideal lattice that separates the early-exercise
buckets from the non-early-exercise ones is called the optimal exercise boundary.
The optimal exercise boundary can be estimated by Up1. Early-exercise buckets can
be pruned, which tightens the prefix-sum range at each node N(i, j) by lowering
Rmax(i, j) to the estimated exercise boundary. The option value of an early-exercise
bucket is simply the average stock price minus the strike price X.

2This can be observed in Eq. (7). The option value v(i, j, A) is larger than or equal to the exercise
value A − X.
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We now present a two-phase algorithm, called Up2, which incorporates the idea of
tightening prefix-sum ranges with the estimated exercise boundary. Phase one uses
Up1 to estimate the exercise boundary at each node. This is done by inspecting each
node for early-exercise buckets. The prefix-sum range is then tightened by lowering
the maximum prefix sum to the lowest prefix sum whose corresponding bucket is
exercised early. Phase two runs Up1 on the tightened prefix-sum ranges. Note that
the number of buckets allocated in each node (i.e. kij) must be recalculated with Eq.
(11) because ranges Rij have been reduced in phase one. A bucket b at time step i
with a prefix sum Pb on or above the exercise boundary will be exercised in phase
two (with the option value Pb/(i + 1) − X).

Although Up2 allocates the same number of buckets as Up1, its buckets cover
more limited prefix-sum ranges. This has the effects of raising the “resolution” of
the prefix-sum range at each bucket and thus the pricing accuracy. In fact, the
exercise boundary estimated by Up1 is not useful only to Up2 in the paper. It in
fact gives rise to a general two-phase computational framework, in which any upper-
bound algorithm can be substituted in phase two to give a more accurate two-phase
upper-bound algorithm (see Section 4).

3.4 The lower-bound algorithm

We will first develop a lower-bound algorithm for pricing European-style Asian option
DownE by taking advantages of Jensen’s inequality. The algorithm for American-style
Asian options (DownA) can be viewed as a two-phase algorithm: The first phase
tightens the prefix-sum ranges by the estimated exercise boundary computed by UpA

and the second phase runs DownE on the tightened prefix-sum ranges.

The lower-bound algorithm for European-style Options: DownE

The core idea of our lower bound algorithm is to use

e−rT (E [A(n) − X] )+

to approximate the desired option value (see Eq. (4)). The approximation underes-
timates the option value because of Jensen’s inequality. To improve accuracy, our
algorithm adds bucketing to the above idea.

To implement the idea with bucketing, the prefix sum for bucket b(i, j, �) will no

longer be a fixed value �(n+1)X
kij

. Instead, it is calculated explicitly to hold the average

prefix sum of all the paths covered by bucket b(i, j, �) with range
[

�(n+1)X
kij

, (�+1)(n+1)X
kij

)
.

Instead of the backward induction method used in upper bound algorithms like Eq.
(6) and (7), the lower bound algorithm uses forward induction method described as
follows. For convenience, let s(i, j, �) be the average prefix sum of bucket b(i, j, �),
p(i, j, �) be the probability of reaching b(i, j, �) from the root node, and ts(i, j, �) and
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tp(i, j, �) be temporal storages for calculating the average prefix sum and the proba-
bility for b(i, j, �). The computation begins at the bucket b(0, 0, 0) with p(0, 0, 0) = 1
and s(0, 0, 0) = S0. The average prefix sums and the probabilities of the buckets at
time step i+1 are calculated by taking advantages of those information of the buckets
at time step i as follows. First, all temporal storages for the buckets at time step i+1
are set to zero. Next, adding the “prefix sum and the probability” contribution for
each bucket b(i, j, �) with prefix sum smaller than (n + 1)X to the following buckets
at time step i + 1. Specifically, at node N(i, j) with stock price S0u

i−jdj, the paths
collected at bucket b(i, j, �) are expected to move up to N(i + 1, j) with prefix sum
s(i, j, �)+S0u

i−j+1dj and down to N(i+1, j+1) with prefix sum s(i, j, �)+S0u
i−jdj+1.

The up movement from b(i, j, �) goes to the bucket

b

(
i + 1, j,

⌊
s(i, j, �) + S0u

i−j+1dj

(n + 1)X/ki+1,j

⌋)
.

Thus the temporal storages ts and tp for this bucket are updated by adding p·p(i, j, �)·
[ s(i, j, �) + S0u

i−j+1dj ] and p · p(i, j, �) to them, respectively. Similarly, the down
movement from b(i, j, �) goes to the bucket

b

(
i + 1, j + 1,

⌊
s(i, j, �) + S0u

i−jdj+1

(n + 1)X/ki+1,j+1

⌋)
.

Thus the temporal storages ts and tp for this bucket are updated by adding (1 − p) ·
p(i, j, �) · [ s(i, j, �)+S0u

i−jdj+1 ] and (1− p) · p(i, j, �) to them, respectively. After the
above is done for every bucket at time step i, the probability and the average prefix
sum for every bucket b(i + 1, j, �) can then be calculated by p(i + 1, j, �) ≡ tp(i +
1, j, �) and s(i + 1, j, �) ≡ ts(i + 1, j, �)/p(i + 1, j, �), respectively. The aforementioned
procedure can be applied forwardly from time step 1 to time step n. The option value
for the buckets with prefix sums at or above (n + 1)X is computed by Theorem 2.1.
The option value estimated by DownE is therefore∑

b∈B

p(b)v(b),

where B denotes the set of buckets with prefix sum larger than (n+1)X in DownE, p(b)
denotes the probability of bucket b, and v(b) denotes the option value of b computed
by Theorem 2.1.

To describe the core idea of our lower bound algorithm, a brief example is illus-
trated in Fig. 3 without the help of Theorem 2.1 and bucketing (i.e. each node has
only one bucket) for simplicity. Take node E for example. Its average prefix sum is
calculated by adding up the contributions of the price path A-B-E and the A-C-E.
The result (stored in ts(2, 1, 0)) is

(1 − p)p(S0 + S0u + S0) + p(1 − p)(S0 + S0d + S0)

= p(1 − p)[ (S0 + S0u + S0) + (S0 + S0d + S0) ]. (12)
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Its associated probability p(2, 1, 0) is p(1 − p) + (1 − p)p = 2p(1 − p). Finally, the
average prefix sum is computed by dividing Eq. (12) by the associated probability

(i.e. ts(2,1,0)
p(2,1,0)

) to obtain

[ (S0 + S0u + S0) + (S0 + S0d + S0) ]/2.

The average prefix sum and the probability for each node of the lattice are given in
Fig. 3. Finally, the option value computed by DownE (without the help of Theorem
2.1) is hence

e−rT
[
p2

{
(S0 + S0u + S0u

2) − X
}+

+ 2p(1 − p)

{
(S0 + S0u + S0) + (S0 + S0d + S0)

2
− X

}+

+(1 − p)2
{
(S0 + S0d + S0d

2) − X
}+

]
.

S0

S0
�A
�������

�������

1

S0u
�B S0 + S0u
�������

�������

p

S0d
�C S0 + S0d
�������

�������

1 − p

S0u
2

S0 + S0u + S0u
2�D

S0
�E [ (S0 + S0u + S0) + (S0 + S0d + S0) ]/2

S0d
2

�F S0 + S0d + S0d
2

p2

2p(1 − p)

(1 − p)2

Figure 3: DownE without bucketing. The stock prices are listed above the nodes. The
average prefix sums are listed to the right of the nodes. The probabilities for the average
prefix sums are listed under the nodes.

The lower-bound algorithm for American-style options: DownA

DownA is based on DownE and contains two phases. Phase one is identical to Up2’s
phase one. In other words, it calls upon the upper-bound algorithm Up1 to yield an
exercise boundary, and the prefix-sum ranges are subsequently tightened. Phase two
runs DownE over the tightened prefix-sum ranges. A bucket b with a prefix sum on
or above the exercise boundary will be exercised early with value Ab − X, where Ab

denotes the average stock price of the bucket b. The option value estimated by DownA
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is simply the sum of the values contributed by the early-exercise buckets and by the
buckets with average stock price larger than X at maturity date. These buckets are
called terminal buckets for simplicity.

4 The Range-Bound Proofs

Proofs will now be given to show that the proposed algorithms provide the claimed
lower or upper bounds for the desired option value. As the lower-bound result for
DownA is independent of how the exercise boundary is determined, it will be given
first.

Theorem 4.1 DownA ≤ DesiredValue.

Proof. The desired option value equals the discounted expected payoff of the termi-
nal buckets in the ideal lattice when buckets are exercised optimally (see Eq. (5)). It
therefore suffices to prove that DownA produces an option value that does not exceed
the one given by the ideal lattice with some exercise strategy which is not necessarily
optimal. When a bucket is terminal, all the paths that pass through it terminate
there. Let ℘b be the set of paths terminated at terminal bucket b at time tb. Every
path in ℘b has length tb. Now we use those ℘b to define an exercise strategy on the
ideal lattice: Each path in ℘b on the ideal lattice is terminated at the same node
where bucket b resides. In other words, the ideal lattice uses the same early-exercise
strategy as DownA. This exercise strategy produces an option value A that cannot
exceed the desired option value because it may not be optimal.

Now we complete the proof by showing that DownA generates an option value that
cannot exceed A. Fix any terminal bucket b. The contribution of ℘b to the option
value A is

e−rtb
∑

ρ=(S0,S1,...,Stb
)∈℘b

prob[ ρ ] ×
{

1

tb + 1

tb∑
i=0

Si − X

}+

. (13)

Recall that each bucket in DownA stores the average prefix sum of all the paths covered
by it. Hence the contribution of ℘b to DownA’s option value is3

e−rtb

{∑
ρ∈℘b

prob[ ρ ]

} {∑
(S0,S1,...,Stb

)∈℘b

1
tb+1

∑tb
i=0 Si

|℘b | − X

}+

,

which is smaller than (13) by Jensen’s inequality. By summing the contributions
over all terminal buckets b, we can conclude that DownA gives a lower bound on A. �

3Note that any path ending up at the same bucket b(i, j, �) carries the same probability pi−j(1−
p)j . Thus the average prefix sum is simple the arithmetic average of those said prefix sums.
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The next lemma says that the Asian option value is convex with respect to the
prefix sum in the ideal lattice. Before introducing this lemma, we will discuss an
importance concept in finance: arbitrage. Arbitrage denotes the situation that one
can earn extra profit without suffering any risk. Financial experts argue that the
arbitrage opportunity can not exist for long due to self-beneficial nature of human.
The following lemma will show that under certain assumption, one can construct an
arbitrage portfolio to earn money (extra profit) at the option initial date but not to
suffer any loss (or risk) in the future. Thus, this assumption must not hold due to
no arbitrage nature of financial markets. Similar arguments can be widely found in
financial text books like [29].

Lemma 4.2 (Convexity lemma) Let b1, b2, and b3 be buckets at node N(i, j) in
the ideal lattice with Pb1 > Pb2 > Pb3. If λ satisfies Pb2 = λPb1 + (1 − λ)Pb3, then

EI
b2
≤ λEI

b1
+ (1 − λ)EI

b3
.

Proof. We define the American-style bonus Asian option A(P, i) that initiates
at time step i to facilitate the proof. It pays(

P + Σ

i + � + 1
− X

)+

if it is exercised at time step i+ �, where Σ equals the prefix sum from time step i+1
to time step i + �. The option A(P, i) is identical to an Asian option at time step i
if P is set to the prefix sum of the stock price from time step 0 to time step i. Thus
the values of these two options are equal.

Consider three bonus Asian options A(Pb1 , i), A(Pb2 , i), and A(Pb3 , i) initiated at
node N(i, j) and matured at time step n. By the above discussions, the value of
option A(Pbk

, i) equals EI
bk

, k = 1, 2, 3. Assume that EI
b2

> λEI
b1

+ (1− λ)EI
b3

instead
and we proceed to construct an arbitrage portfolio. Assemble a portfolio of long λ
unit of A(Pb1 , i), long 1−λ unit of A(Pb3 , i), and short 1 unit of A(Pb2 , i). The initial
income EI

b2
−λEI

b1
− (1−λ)EI

b3
is positive. From that point on, whenever A(Pb2 , i) is

exercised at time step i+�, we exercise A(Pb1 , i) and A(Pb3 , i) to generate nonnegative
cash flow as follows:

−
(

Pb2 + Σ

i + � + 1
− X

)+

+ λ

(
Pb1 + Σ

i + � + 1
− X

)+

+ (1 − λ)

(
Pb3 + Σ

i + � + 1
− X

)+

≥ 0.

If A(Pb2 , i) is never exercised, we junk A(Pb1 , i) and A(Pb3 , i) at time step n to
generate zero cash flow. �

We next establish that Up1 is an upper-bound algorithm.

Theorem 4.3 DesiredValue ≤ Up1.
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Proof. For every bucket b, we prove that EI
b ≤ EP

b by induction, where the practical
lattice here refers to the lattice constructed by Up1. The theorem holds at time step
n as the option value equals {Pb/(n+1)−X}+ at any bucket b. So EI

b ≤ EP
b at time

step n. The induction hypothesis is that EI
b ≤ EP

b for any bucket b in the practical
model at time step t. We next show that this remains true at time step t − 1 for
t ≥ 1.

Consider any bucket b in the ideal lattice at time step t − 1. Let the upward
and downward movements from bucket b lead to buckets u(b) and d(b), respectively.
But buckets u(b) and d(b) may not exist in the practical lattice. Let bucket u(b) be
sandwiched between buckets u(b1) and u(b2) in the practical lattice. With λ satisfying

Pu(b) = λPu(b1) + (1 − λ)Pu(b2),

we have

EI
u(b) ≤ λEI

u(b1) + (1 − λ)EI
u(b2)

≤ λEP
u(b1) + (1 − λ)EP

u(b2)
= EP

u(b).

The first inequality is by Lemma 4.2, and the second inequality is by the induction
hypothesis. The equality holds because Up1 computes EP

u(b) as the linear interpolation

of EP
u(b1) and EP

u(b2) with the said weights (see Eq. (8)). By the same argument,

EI
d(b) ≤ EP

d(b). We next consider three cases.

Case 1: Suppose that b is not an early-exercise bucket in both lattices. Then

EI
b =

[
pEI

u(b) + (1 − p)EI
d(b)

]
e−r∆t ≤ [

pEP
u(b) + (1 − p)EP

d(b)

]
e−r∆t = EP

b .

Case 2: Suppose that b is an early-exercise bucket in the practical lattice. Then[
pEI

u(b) + (1 − p)EI
d(b)

]
e−r∆t ≤ [

pEP
u(b) + (1 − p)EP

d(b)

]
e−r∆t ≤ (Pb/t) − X.

So it is also optimal to exercise b in the ideal lattice. The option values at b are
identical in both lattices.

Case 3: Suppose that b is an early-exercise bucket in the ideal lattice but not an
early-exercise bucket in the practical lattice. Then, trivially, EI

b = (Pb/t)−X <
EP

b .

Hence, EI
b ≤ EP

b in all cases and the induction step is complete. �

Theorem 4.3 holds for a large class of algorithms, not just Up1. This is because
the proof only requires that the option value at a non-existing bucket be linearly
interpolated from the option values of its two bracketing buckets. Neither the number
of buckets allocated per node nor the way the buckets are distanced in the prefix-sum
range matters. It follows that all popular approximation algorithms that follow Hull
and White’s algorithm [19] with linear interpolation (see Eq. (8)) are upper-bound
algorithms.
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Corollary 4.4 The approximation algorithm that follows Hull and White’s algorithm
[19] with linear interpolation is an upper-bound algorithm.

The next result states a general property that the exercise boundary determined
by Up1 satisfies.

Corollary 4.5 A bucket with a prefix sum equal to or larger than the exercised bound-
ary determined by Up1 must be an early-exercise bucket in the ideal lattice.

Proof. By case 2 in the proof of Theorem 4.3, an early-exercise bucket under Up1

must also be an early-exercise bucket in the ideal lattice. Theorem 3.2 completes the
proof. �

The above corollary implies that the exercise boundary determined by Up1 cannot
be lower than the exercise boundary of the ideal lattice. In fact, any upper-bound
algorithm can be substituted in phase two to produce a new two-phase upper-bound
algorithm. Because this two-phase algorithm takes advantage of the tightened prefix-
sum ranges made possible by the exercise boundary estimated in phase one, it should
outperform the original one-phase algorithm.

Theorem 4.6 An upper-bound algorithm that uses the estimated exercise boundary
given by Up1 remains an upper-bound algorithm as long as it works on the same
lattice.

Proof. If bucket b lies above the tightened prefix-sum range, then EP
b = EI

b because
b must be an early-exercise bucket in both the practical and the ideal lattices by
Corollary 4.5. If bucket b lies within the tightened prefix-sum range, then EI

b ≤ EP
b

because of the algorithm being an upper-bound one and induction. �

We finally prove that Up2 is an upper-bound algorithm.

Corollary 4.7 DesiredValue ≤ Up2.

Proof. It is immediate from Theorem 4.3 and Theorem 4.6. �

5 Numerical results

Tightening the prefix-sum ranges that require interpolation is a key factor to obtain
a convergent lattice algorithm for pricing Asian options as illustrated in Table 1 and
Table 2. Table 1 illustrates convergent pricing results for pricing European-style Asian
options by tightening the prefix-sum ranges by Theorem 2.1. Dai’s algorithm [27]
serves as the upper bound algorithm and DownE serves as the lower bound algorithm.
The pricing error denotes the difference between the upper bound and the lower
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bound. Dai et. al. claim that the pricing errors converge at a rate of O(k−2) by
adopting their bucket allocation scheme (see Eq. (10)). Their claim is verified by
observing that the pricing errors converge at a rate of O(n−2).4 On the other hand,
Table 2 illustrates the pricing results of Dai’s algorithm and DownE without applying
Theorem 2.1. Note that the average number of buckets used in this case is eight times
larger than that in Table 1. But the pricing errors do not converge especially when
the volatility of the stock price and the time to maturity are high.

For pricing American-style options, the prefix-sum ranges can be tightened by
taking advantages of the early exercise property. The advantages for tightening the
prefix-sum ranges are illustrated in Table 3. The pricing errors under tightened prefix-
sum ranges are bounded above by the differences between the pricing results of Up2
and DownA, while the pricing errors for original prefix sum ranges are bounded above
by the differences between the pricing results of Up1 and DownA. Obviously, the range
bound algorithm with tightened prefix-sum ranges is more competitive.

Finally, we investigate the convergence behavior of the proposed two-phase range-
bound algorithm. The pricing results tabulated in Table 4 suggested that the pro-
posed algorithm converges well even when the volatility of the stock price and the
time to maturity are high.

6 Conclusions

How to price Asian options efficiently and accurately is a long-standing problem.
While polynomial time lattice algorithms with convergence guarantee are available
for pricing European-style Asian options, rigorous convergence analysis for pricing
American-style Asian options is even scarcer. This paper suggests an efficient two-
phase range-bound algorithm that bracket the desired option value, whose brute-force
computation is prohibitive. By taking advantages of the early exercise property of the
American-style Asian options, the pricing error can be significantly reduced. Numeri-
cal experiments show that the upper and the lower bounds option values produced by
the proposed range-bound algorithm are essentially numerically identical. Thus the
desired option values for American-style Asian options can be obtained practically
and efficiently by the proposed range-bound algorithm.
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A Proof of the Contraction Lemma

Lemma A.1 Under the assumptions given in Lemma 3.1,

Pb1

m + 1
− Pb2

m + 1
≥ EI

b1
− EI

b2
. (14)

Proof. The lemma will be proved by induction backwardly from time step n to time
step 0. The base case involves the buckets allocated at maturity (i.e. time step n).

Note that EI
bi

=
(

Pbi

n+1
− X

)+

= max
(

Pbi

n+1
, X

)
− X, i = 1, 2. Thus

EI
b1
− EI

b2
= max

(
Pb1

n + 1
, X

)
− max

(
Pb2

n + 1
, X

)
≤ Pb1 − Pb2

n + 1

because Pb1 > Pb2 . Assume that Eq. (14) is valid at time steps m+ 1. The followings
will show that Eq. (14) is valid at time step m. Assume that buckets b1 and b2 are
located at node N(m, j) at time step m. Bucket bi moves up to bucket u(bi) (at node
N(m + 1, j)) and down to bucket d(bi) (at node N(m + 1, j + 1)) in the ideal lattice.
The induction step is divided into the following four cases.

Case 1: Neither b1 nor b2 is exercised immediately. Then

Pb1

m + 1
− Pb2

m + 1
≥ Pb1 − Pb2

m + 2

= p
Pu(b1) − Pu(b2)

m + 2
+ (1 − p)

Pd(b1) − Pd(b2)

m + 2
(15)

≥ {
p[ EI

u(b1) − EI
u(b2) ] + (1 − p)[ EI

d(b1) − EI
d(b2) ]

}
e−r∆t (16)

=
{[

pEI
u(b1) + (1 − p)EI

d(b1)

] − [
pEI

u(b2) + (1 − p)EI
d(b2)

]}
e−r∆t

= EI
b1
− EI

b2
. (17)

Note that Eq. (15) holds since

Pu(b1) − Pu(b2) =
(
Pb1 + S0u

m+1−jdj
) − (

Pb2 + S0u
m+1−jdj

)
= Pb1 − Pb2

and

Pd(b1) − Pd(b2) =
(
Pb1 + S0u

m−jdj+1
) − (

Pb2 + S0u
m−jdj+1

)
= Pb1 − Pb2 .

Equation (16) is by the induction hypothesis Eq. (14). Equation (17) is by the back-
ward induction formula Eq. (7). Note that neither b1 nor b2 is exercised immediately.
Thus the value to exercise the option early is less than the value to hold the option.

Case 2: b1 is exercised immediately, but b2 is not. Then

EI
b1

=
Pb1

m + 1
− X,

EI
b2

>
Pb2

m + 1
− X.
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Subtract the inequality from the equality to obtain inequality (14).
Case 3: Both b1 and b2 are exercised immediately. In this case, EI

bi
= Pbi

/(m +
1) − X for i = 1, 2, and inequality (14) holds as an equality.

Case 4: b1 is not exercised, but b2 is. We will show that this is impossible.
Assume otherwise. Then

Pb1

m + 1
− X <

[
pEI

u(b1) + (1 − p)EI
d(b1)

]
e−r∆t, (18)

Pb2

m + 1
− X ≥ [

pEI
u(b2) + (1 − p)EI

d(b2)

]
e−r∆t. (19)

Subtracting inequality (19) from inequality (18) results in

Pb1

m + 1
− Pb2

m + 1
<

{
p[ EI

u(b1) − EI
u(b2) ] + (1 − p)[ EI

d(b1) − EI
d(b2) ]

}
e−r∆t. (20)

But

Pb1

m + 1
− Pb2

m + 1
≥ Pb1 − Pb2

m + 2

= p
Pu(b1) − Pu(b2)

m + 2
+ (1 − p)

Pd(b1) − Pd(b2)

m + 2

≥ {
p[ EI

u(b1) − EI
u(b2) ] + (1 − p)[ EI

d(b1) − EI
d(b2) ]

}
e−r∆t

contradicts the inequality (20). �
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σ τ n DownE Dai Pricing Error
10% 0.25 50 1.800870 2.175705 0.374835

100 1.839875 1.932832 0.092957
200 1.847834 1.870414 0.022580
400 1.850455 1.855982 0.005527

50% 1.00 50 13.179130 13.210789 0.031659
100 13.193776 13.202119 0.008343
200 13.200312 13.202382 0.002070
400 13.203293 13.203823 0.000530

50% 5.00 50 28.386460 28.395814 0.009354
100 28.395902 28.398327 0.002425
200 28.400568 28.401189 0.000620
400 28.402879 28.403038 0.000159

100% 1.00 50 23.407397 23.422099 0.014702
100 23.434382 23.438502 0.004120
200 23.447782 23.448835 0.001053
400 23.454417 23.454680 0.000263

Table 1: Pricing European-Style Asian Options with Tightened Prefix-Sum
Ranges. The data are: S0 = X = 100 and r = 10% per annum. σ, τ , and n denote the
volatility of the stock price, time to maturity, and the number of time steps, respectively.
The average number of buckets k allocated at each node is set to n. Dai denotes Dai’s
algorithm in [27]. The pricing errors converge at a rate of O(n−2).
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σ τ n DownE Dai nUnifSpl− nUnifCvg
10% 0.25 50 1.848515 1.848533 0.000018

100 1.850035 1.850044 0.000009
200 1.850809 1.850813 0.000004
400 1.851199 1.851201 0.000002

50% 1.00 50 13.185396 13.185639 0.000243
100 13.195530 13.195701 0.000171
200 13.200738 13.200898 0.000160
400 13.203354 13.203612 0.000258

50% 5.00 50 28.387935 28.389159 0.001224
100 28.395811 28.398385 0.002574
200 28.397866 28.413588 0.015722
400 28.370135 28.920558 0.550423

100% 1.00 50 23.410075 23.411095 0.001020
100 23.434776 23.436654 0.001878
200 23.446473 23.453710 0.007237
400 23.442168 23.561833 0.119665

Table 2: Pricing European-Style Asian Options without Tightening the
Prefix-Sum Ranges. The setup is identical to Table 1 except that the average number
of buckets k allocated at each node is set to 8n.
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σ X r DownA Up2 Up1 Up1 Up2
−DownA −DownA

0.1 95 0.05 8.088364 8.088422 8.088522 0.000158 0.000058
0.1 95 0.15 11.267781 11.267846 11.267954 0.000173 0.000065
0.1 105 0.05 1.344226 1.344292 1.344403 0.000177 0.000066
0.1 105 0.15 3.623832 3.623887 3.623980 0.000148 0.000055
0.3 95 0.05 12.358376 12.358517 12.359182 0.000806 0.000141
0.3 95 0.15 14.428086 14.428229 14.428934 0.000848 0.000143
0.3 105 0.05 6.311839 6.311984 6.312741 0.000902 0.000145
0.3 105 0.15 8.208416 8.208553 8.209280 0.000864 0.000137
0.5 95 0.05 17.341037 17.341237 17.344196 0.003159 0.000200
0.5 95 0.15 18.922948 18.923150 18.926233 0.003285 0.000202
0.5 105 0.05 11.623434 11.623636 11.627077 0.003643 0.000202
0.5 105 0.15 13.214077 13.214273 13.217725 0.003648 0.000196
0.7 95 0.05 22.536275 22.536540 22.552333 0.016058 0.000265
0.7 95 0.15 23.775811 23.776080 23.792101 0.016290 0.000269
0.7 105 0.05 17.065704 17.065979 17.084335 0.018631 0.000275
0.7 105 0.15 18.382506 18.382779 18.401274 0.018768 0.000273
0.9 95 0.05 27.841546 27.841955 27.952798 0.111252 0.000409
0.9 95 0.15 28.797383 28.797804 28.908081 0.110698 0.000421
0.9 105 0.05 22.587415 22.587869 22.719667 0.132252 0.000454
0.9 105 0.15 23.650191 23.650639 23.779582 0.129391 0.000448

Table 3: Comprehensive tests for Applying the Range-Bound Algorithm on
the Original or Tightened Prefix-Sum Ranges. The data are: S0 = 100, n = 300,
k = 500 and τ = 1. σ, X, and r listed in the first three columns denote the volatility, the
strike price, and the risk-free interest rate, respectively.
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σ τ n DownA Up2 Up2− DownA
10% 0.25 50 1.937256 1.937271 0.000015

100 1.947621 1.947626 0.000005
200 1.953399 1.953401 0.000002
400 1.956484 1.956485 0.000001

50% 1.00 50 14.763087 14.763184 0.000097
100 14.912143 14.912180 0.000037
200 14.996588 14.996602 0.000014
400 15.042595 15.042600 0.000005

50% 5.00 50 33.444456 33.444608 0.000152
100 33.837743 33.837809 0.000066
200 34.062623 34.062648 0.000025
400 34.184574 34.184584 0.000010

100% 1.00 50 27.595989 27.596134 0.000145
100 27.963737 27.963799 0.000062
200 28.175147 28.175170 0.000023
400 28.290796 28.290804 0.000008

Table 4: Convergence of the Two-Phase Range-Bound Algorithm for Pric-
ing American-Style Asian Options. The data are: S0 = X = 100 and r = 10%
per annum. σ, τ , and n denote the volatility of the stock price, time to maturity, and the
number of time steps, respectively. The average number of buckets k allocated at each node
is set to 8n.
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