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Abstract

Pricing options on a stock that pays discrete dividends has not been satisfactorily
settled because of the conflicting demands of computational tractability and realistic
modeling of the stock price process. Many papers assume that the stock price minus the
present value of future dividends or the stock price plus the forward value of future div-
idends follows a lognormal diffusion process; however, these assumptions might produce
unreasonable prices for some exotic options and American options. It is more realistic
to assume that the stock price decreases by the amount of the dividend payout at the
ex-dividend date and follows a lognormal diffusion process between adjacent ex-dividend
dates, but analytical pricing formulas and efficient numerical methods are hard to de-
velop. This paper introduces a new tree, the stair tree, that faithfully implements the
aforementioned dividend model without approximations. The stair tree uses extra nodes
only when it needs to simulate the price jumps due to dividend payouts and return to a
more economical, simple structure at all other times. Thus it is simple to construct, easy
to understand, and efficient. Numerous numerical calculations confirm the stair tree’s
superior performance to existing methods in terms of accuracy, speed, and/or generality.
Besides, the stair tree can be extended to more general cases when future dividends are
completely determined by past stock prices and dividends, making the stair tree able to
model sophisticated dividend processes.

By assuming that the stock price process follows a lognormal diffusion process, Black and

Scholes (1973) arrive at their ground-breaking option pricing formula for non-dividend-paying

stocks. Merton (1973) extends the model to the case where the underlying stock pays a

non-stochastic continuous dividend yield. The resulting formula is often called the Black-

Scholes-Merton formula. In reality, however, almost all stock dividends are paid at discrete

time points rather than continuously. Pricing options on a stock that pays discrete dividends

with known amounts seems to be investigated first in Black (1975). This dividend setting is

called the discrete dividend for simplicity.
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The discrete-dividend option pricing problem has drawn a lot of attention in the literature.

According to Frishling (2002), the stock price with discrete dividends has been modeled by

three following ways.

Model 1. This model, crystallized under the discussions of Roll (1977), Geske (1979), and

Whaley (1981), assumes that the stock price is divided into two parts: the stock price minus

the present value of future dividends over the life of the option and the present value of

future dividends. The former part (the net-of-dividend stock price) is assumed to follow a

lognormal diffusion process, whereas the latter part is assumed to grow at the risk-free rate.

Thus vanilla options can be computed by applying the Black-Scholes-Merton formula with

the stock price replaced by the net-of-dividend stock price. Cox and Rubinstein (1985) call it

“ad hoc adjustment.”

Model 2. Musiela and Rutkowski (1997), following Heath and Jarrow (1988), suggest that

the cum-forward-dividend stock price, defined as the stock price plus the forward values of

the dividends paid from the prevailing time up to maturity, follows a lognormal diffusion

process. Thus vanilla options can be computed by applying the Black-Scholes-Merton formula

by replacing the stock price with the cum-forward-dividend stock price and by adding the

forward values of the dividends prior to maturity to the exercise price.

Model 3. The stock price decreases by the amount of the dividend paid at the ex-dividend

date and follows a lognormal price process between adjacent ex-dividend dates.

Although the above three models attempt to solve the discrete-dividend option pricing

problem, Frishling (2002) shows that they generate very different option prices. Roughly

speaking, assume the volatility input to these three models is σ. Model 1 sets the volatility of

the net-of-dividend stock price at σ, while Model 3 sets the volatility of the stock price at σ.

The volatility of the stock price in Model 1 is lower than that in Model 3 because the volatility

of the present value of future dividends, a component of the stock price, is assumed to be 0 in

Model 1. Model 1 therefore produces lower option prices, and the difference becomes larger

as σ becomes larger. Similarly, Model 2 produces higher option prices than Model 3 since

Model 2 assigns the volatility of the forward values of the dividends, which is not a part of

stock price, to be σ.

Although Model 1 and Model 2 are widely accepted in the literature (see Whaley (1982),

Carr (1998), and Chance et al. (2002)) in solving the discrete-dividend problem, they suffer

from many problems. For example, Frishling (2002) shows that Model 1 and Model 2 could

incorrectly price barrier options. Bender and Vorst (2001) show that arbitrage opportunities

exist in Model 1 if the volatility surface is continuously interpolated around ex-dividend dates.

Bos and Vandermark (2002) show that both Model 1 and Model 2 violate a perfectly reasonable

continuity requirement.

Although Model 3 is much closer to reality than the other two models, there is no exact
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pricing formula for European options. Hull (2000) recommends an approximate pricing for-

mula by adjusting the volatility input to Model 1 using a simple formula. However, this paper

shows that the performance of Hull’s volatility adjustment is mixed. Bos and Vandermark

(2002) present an approach that is a mixture of the stock and exercise price adjustments (in

other words, Model 1 and Model 2). Bos and Shepeleva (2002) claim that this approach

results in some inaccuracies, especially for in- and out-of-the-money options. They suggest a

different pricing formula by adjusting the volatility input to Model 1 using a complex formula.

But their approach can not be easily extended for pricing American options. Besides, the nu-

merical results in this paper also suggest that my approach provides more accurate option

values than the aforementioned approaches for pricing European options.

Model 3 can be implemented by the tree or the related PDE method.1 But a naive

application of these methods results in combinatorial explosion. Take the well-known CRR

binomial tree proposed by Cox et al. (1979) as an example. Assume that the tree starts

at time step 0 and ends at time step n. Let R stand for the gross risk-free return per time

step. When the stock does not pay dividends, in one time step the price S becomes Su (the

up move) with probability pu and Sd (the down move) with probability pd ≡ 1 − pu, where

pu ≡ (R − d)/(u − d). The relation ud = 1 is enforced by the CRR binomial tree. The black

nodes at the first two time steps of the bushy tree in Fig. 1 forms a 2-time-step CRR binomial

tree. The CRR binomial tree recombines; thus the size of the tree is only quadratic in n.

Unfortunately, the recombination property disappears if the stock pays discrete dividends.

Assume that a dividend D is paid at time step 2. The bushy tree splits into 3 trees after the

ex-dividend date. Each such tree will be split further at each subsequent ex-dividend date. As

a result, the tree size grows exponentially with the number of ex-dividend dates. The bushy

tree implements Model 3 faithfully, but the exponential complexity renders it impractical.

In addition to Model 1 and Model 2, efficient numerical algorithms and simple formulas can

also result by approximating the discrete dividend with either (1) a fixed dividend yield on each

ex-dividend date or (2) a fixed continuous dividend yield. The first approach is followed by

Geske and Shastri (1985). They replace the discrete dividends with fixed dividend yields. The

resulting tree hence recombines and is efficient. My paper will show that this approach works

well for American options but poorly for European options. Chiras and Manaster (1978),

following Merton’s (1973) idea, adopt the second approach. They transform the discrete

dividends into a fixed continuous dividend yield and then apply the Black-Scholes-Merton

formula. As this approach is equivalent to the first approach in pricing European options, it

shares the same faults.

1Basically, the trinomial tree is analogous to an explicit finite-difference model (see Lyuu (2002)). Thus
my method for handling known dividends or path-dependent dividends can be extended to an explicit finite-
difference model.
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The major contribution of this paper is a novel tree model, the stair tree, that faithfully

implements Model 3 without combinatorial explosion. Numerical results in the paper will show

that the prices calculated by the stair tree are extremely close to those generated by the Monte

Carlo simulation for European options and those generated by the bushy tree for American

options. The stair tree is furthermore efficient and general. In contrast, the Monte Carlo

simulation cannot handle American options easily, and the bushy tree grows exponentially.

Table 1 compares the sizes of the bushy tree and the stair tree. The size difference grows

with the number of ex-dividend dates. Compared with the stair tree, existing schemes that

implement Model 3 are less accurate, less efficient, and/or less general.

The idea behind the stair tree is straightforward. The stair tree limits the stock prices

at each time step t to be of the form Puk. Here P denotes the stock price of some specific

node at time step t, u denotes the upward multiplicative factor for the stock price in the CRR

binomial tree, and k is some even integer. It therefore preserves the CRR tree structure at

each time step. Consider a 4-time-step stair tree with a dividend payout D at time step 1

and time step 3 as illustrated in Fig. 2. The price drops due to the dividend payouts (at time

step 1 and time step 3) resemble the riser. Note that the ex-dividend stock prices at nodes

X and Y are Su − X and Sd − X, respectively. The time interval between time step 0 and

time step 1 (an ex-dividend date), and the time interval between time step 2 and time step 3

resemble treads. This tree is therefore called the stair tree.

Assume S ′ denotes the largest stock price at time step 2. Because the stock prices at

time step 2 are restricted to be S ′uk for nonpositive even integers k, the stair tree remains

recombining at time step 3 and so on until the next ex-dividend date. In general, the stair

tree follows the CRR tree structure between ex-dividend dates. This idea greatly reduces the

number of tree nodes. For the nodes at the ex-dividend dates (like the gray nodes in Fig. 2),

trinomial branching schemes are devised to connect the two adjacent CRR tree structures. The

theoretical guarantee that simple and efficient branching schemes exist constitutes a major

contribution of the paper. The adaptive mesh model proposed by Figlewski and Gao (1999)

and Gao et al. (1999) also adjusts the tree structure by adding trinomial branches at certain

points in the tree. The adaptive mesh model focuses on suppressing the nonlinearity error

which makes the pricing results oscillate, while the stair tree model focuses on implementing

Model 3 faithfully without combinatorial explosion.

Pricing options whose underlying stock pays stochastic dividends is discussed in Cox and

Rubinstein (1985), Miltersen and Schwartz (1998), and Chance et al. (2002). This setting

is important since the dividend payout is in practice not perfectly predictable, especially

when the ex-dividend dates are far into the future. For example, even the so-called widow-

and-orphan AT&T stock valued for its stable dividend payouts cut its quarterly dividend

from 22 cents per share to 3.75 cents per share in the 4th quarter of 2000. Miltersen and
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Schwartz (1998) discuss pricing options on commodity futures with stochastic convenience

yields. Chance et al. (2002) show that the Black-Scholes-Merton model is upheld by assum-

ing that the discretely stochastic dividends are uncorrelated with the stock price. Cox and

Rubinstein (1985) argue that pricing options on dividend-paying stocks can be handled by

the arbitrage-based pricing theory when the future dividends are known exogenously or com-

pletely determined by past stock prices and dividends. I call their setting the path-dependent

dividends as the dividends depend solely on the past history of the stock price path. In this

setting, the dividend paid at time τ could be written as a function of stock prices and the

dividends prior to time τ . This is more general and realistic than the discrete dividend set-

ting in many ways. First, it can solve the negative stock price problem occurred under the

discrete-dividend setting. This problem happens as the stock price drop due to the discrete

dividend payment is larger than the cum-dividend stock price at the ex-dividend date. The

problem can be avoided by choosing a proper dividend-paying function so that the dividend

payment is always less than the cum-dividend stock price. Second, the path-dependent divi-

dends setting can fit the real world phenomenon by choosing a proper dividend function from

empirical studies. Although it is well-known that dividends can be explained by a variety of

factors such as the net operating profits and long-run sustainable (or permanent) earnings, a

dividend function that fits the path-dependent dividends setting can still be constructed if the

stock prices and the dividends paid previously serve as good proxies of these factors. I will

review one of such dividend models proposed by Marsh and Merton (1987). The stair tree can

incorporate such dividend models by adding extra states to keep the information necessary for

computing future dividends. A simple numerical example will be given to explain how that is

done.

The paper is organized as follows. The mathematical model is briefly covered in section

1. The stair tree for the dividend-paying stock is discussed in section 2. A sample stair tree

is given in section 3 to convey the main ideas. Experimental results given in section 4 verify

the superiority of the stair tree to other models. In section 5, I will first introduce the path-

dependent dividends settings before going on to review Marsh and Merton’s dividend model

and show how the stair tree incorporate their dividend model. Section 6 concludes the paper.

1 The Models

In Model 3, the stock price under the risk-neutral probability is assumed to follow the lognor-

mal diffusion process:

S(t + τ) = S(t)e(r−0.5σ2)τ+σωτ , (1)

where S(t) denotes the stock price at year t, r denotes the annual risk-free interest rate, σ

denotes the volatility, and ωτ denotes the standard Brownian motion. In the discrete-time tree
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model, it is assumed that there are n equal time steps between year 0 and year T . The length

of each time step ∆t is equal to T/n. Thus, time step i in the discrete-time model corresponds

to year i∆t in the continuous-time model. The upward and downward multiplicative factors

u and d for the stock price equal eσ
√

∆t and e−σ
√

∆t, respectively, for the CRR and stair trees.

Si denotes the stock price at year i∆t (or, equivalently, time step i for a tree). The stock is

assumed to pay m dividends Dt1 , Dt2 , . . . , Dtm , where Dti is paid out at time step ti. I further

assume t1 < t2 < · · · < tm for convenience. Under the discrete dividend assumption, any

arbitrary dividend Dti is already known at time step 0. In general, Dti can be determined

by a function of stock prices and/or the dividends paid up to time step ti under the path-

dependent dividends assumption. The stock price simultaneously falls by the amount αDti .

For simplicity, α is assumed to be 1 throughout the paper, but a general α poses no difficulties

to the stair tree. When the ex-dividend stock price becomes negative, it is assumed to stay

at zero from that point onward. Harvey and Whaley (1992), in contrast, assume that the

dividend is not paid if its amount exceeds the prevailing stock price. The stair tree can easily

incorporate their assumption, too.

The option is assumed to start at time step 0 and mature at time step n. The exercise

price for this option is K. Define (A)+ to denote max(A, 0) for simplicity. The payoff for a

European option at maturity is

final payoff =

{
(Sn − K)+, for a call,

(K − Sn)+, for a put.

An American option gives the holder the right to exercise the option before maturity. The

exercise value for an American option at a non-dividend-paying time step i is

exercise value =

{
Si − K, for a call,

K − Si, for a put.

The exercise strategy for an American option at an ex-dividend date is only slightly more

complicated. It is never optimal to exercise an American call immediately after the underlying

stock pays a dividend because it is dominated by the strategy of exercising the call immediately

before. Similarly, it is never optimal to exercise a put before the stock pays a dividend.

Consequently, the exercise value for an option at a dividend-paying time step i is

exercise value =

{
S∗

i − K, for a call,

K − Si, for a put,
(2)

where S∗
i and Si denote the cum-dividend stock price and the net-of-dividend stock price

at time step i, respectively. An option will be exercised early by the owner if the option’s

continuation value (i.e., the value to hold the option) is smaller than its exercise value.
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2 Construction of the Stair Tree

I illustrate the main ideas by the 4-time-step tree in Fig. 2. This 4-time-step stair tree contains

two ex-dividend dates: one at time step 1 and the other at time step 3. For simplicity, the

same D-dollar dividend is paid at each ex-dividend date. The price drop due to the dividend

payout is represented by a riser. Each tread covers a time interval between two adjacent

ex-dividend dates except the first tread, which covers the time interval between time step 0

and the first ex-dividend date. The branches follow the CRR tree structure except those from

the nodes at the ex-dividend dates. For example, the stock price at the root node is S. The

stock prices for its two successor nodes are Su and Sd, where ud = 1. Because of the CRR

tree structure, the stock prices at the same time step are Puk, where P is the stock price of

some specific node at that time step and k is an even integer. For example, the stock price

for each node at time step 4 can be represented as S ′′uk, where S ′′ denotes the largest stock

price at time step 4 and k is parenthesized. Technically, any node’s stock price can be picked

for P because the stock prices at the same time step are part of the geometric sequence

. . . , Pu−4, Pu−2, P, Pu2, Pu4, . . .

Note that the first tread contains a single, complete CRR tree. The tree structure on each

subsequent tread is composed of a CRR binomial tree with the initial section truncated.

I next construct the branches out of the gray nodes at an ex-dividend date to complete

the stair tree. Fig. 3 illustrates what happens at an ex-dividend date by zooming in the first

three time steps of the stair tree in Fig. 2. Nodes X and Y are from the first ex-dividend date.

The ex-dividend stock price at node X is SX = Su−D. The two branches from X follow the

CRR tree structure. S ′, the stock price for the top node at time step 2, therefore equals SXu.

Define the V -log-price of stock price V ′ as ln(V ′/V ); a V -log-price of z implies a stock price

of V ez. Since the stock price for each node on the second tread can be expressed in terms of

S ′uk for some even integer k, the S ′-log-prices for nodes at time step 2 in Fig. 3 are integral

multiples of 2σ
√

∆t .

The branches from node Y are constructed as follows. Let the ex-dividend stock price

for node Y be SY . At least three branches are required for node Y so it has enough degrees

of freedom to match the first two moments of the logarithmic stock price process and to

satisfy the constraint that the sum of branching probabilities is 1. Three nodes at time step

2 follow node Y . By the log-normality of the stock price, the mean and the variance of the

SY -log-prices of these nodes (under the risk-neutral probability) equal

µ ≡ (r − σ2/2) ∆t,

Var ≡ σ2∆t,
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which can be obtained by substituting ∆t for τ into Eq. (1). Note that the distance between

two adjacent nodes’ SY -log-prices at time step 2 is 2σ
√

∆t . Thus there exists a unique node

Z at time step 2 whose SY -log-price µ̂ lies in the interval

[ µ − σ
√

∆t, µ + σ
√

∆t). (3)

In other words, the SY -log-price of node Z, i.e., µ̂, is closest to µ among the SY -log-prices of

the nodes at time step 2. I call µ̂ the mean tracker of node Y . The middle branch from node

Y will be connected to node Z. Figure 3 illustrates the case where µ̂ = ln(S ′/SY ) − 4σ
√

∆t

(or, 2 nodes below S ′).

In general, the SY -log-prices of the two nodes connected by the upper and lower branches

from node Y can be expressed as µ̂+ �uσ
√

∆t and µ̂− �dσ
√

∆t for some even positive integers

�u and �d. It is clear that the jump sizes �u and �d should be as small as possible to minimize

the size of the stair tree. And �u and �d should also be properly selected to make the branching

probabilities of node Y valid. Let pu
Y , pm

Y , and pd
Y denote the risk-neutral probabilities for the

upper, middle, and lower branches from node Y , respectively. Define β, α, and γ as the

SY -log-prices minus the mean µ of the nodes connected by the middle, the upper, and the

lower branches as follows:

β ≡ µ̂ − µ,

α ≡ β + �uσ
√

∆t ,

γ ≡ β − �dσ
√

∆t .

Note that the first equation implies that β ∈ [−σ
√

∆t, σ
√

∆t). Note also that α > β > γ.

The probabilities can be derived by solving

pu
Y α + pm

Y β + pd
Y γ = 0, (4)

pu
Y α2 + pm

Y β2 + pd
Y γ2 = Var, (5)

pu
Y + pm

Y + pd
Y = 1. (6)

Equations (4) and (5) match the first two moments of the logarithmic stock price, and Eq. (6)

ensures that pu
Y , pm

Y , pd
Y as probabilities sum to one. The three equations do not automatically

guarantee 0 ≤ pu
Y , pm

Y , pd
Y ≤ 1. A proof to show that they actually do with �u = �d = 2 is given

in Appendix A. The stair tree hence does not lead to branches with huge jump sizes. This

finding is essential to the efficiency of the algorithm. The same procedure can be repeated for

nodes below Y .2 To handle multiple dividends, just apply the procedure to each ex-dividend

date.

2The aforementioned method can also be done by first adding CRR binomial branches to the bottom node
(like node Y ), and then inserting trinomial branches to other nodes without efficiency and accuracy penalties.
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Because the first and the second moments are matched via Eqs. (4)–(6), the stair tree

converges to Model 3. Unlike the bushy tree illustrated in Fig. 1, the stair tree faithfully

implements model 3 without combinational explosion.

3 A Sample Stair Tree

Consider an American vanilla call with an exercise price of 70 that initiates at year 0 and

matures at year 0.75. A 3-time-step stair tree is constructed in Fig. 4 to price this call. Thus

the length of each time step ∆t is 0.25 year. The initial stock price is 100, the risk-free interest

rate is r = 10%, and the volatility of the stock price is σ = 30%. The multiplicative factors

for the CRR binomial tree are u = e0.3×√
0.25 ≈ 1.162 and d = e−0.3×√

0.25 ≈ 0.861. The

branching probabilities are pu = (R − d)/(u − d) ≈ 0.5466 and pd = 1 − pu ≈ 0.4534, where

R = e0.1×0.25 ≈ 1.02532 denotes the gross risk-free return per time step. In the figure, the

number at the upper cell of a node denotes the stock price at that node, whereas the number

at the lower cell denotes the call option price.

Assume a five-dollar dividend per share is paid at year 0.25 (time step 1). Note that nodes

X and Y (marked by dotted ellipses) are at time step 1. The stock prices at X and Y before

the dividend is paid are 100×u ≈ 116.183 and 100×d ≈ 86.071, respectively. The ex-dividend

prices at X and Y are therefore 111.183 and 81.071, respectively. The stock price for the top

node at time step 2 is then 111.183 × u ≈ 129.177. The stock prices at time step 2 can be

represented as 129.177 × uk for nonpositive even integers k.

Let us move on to the branching scheme of node Y . Node Z at time step 2 has a stock

price of 70.894. Hence the SY -log-price of node Z equals ln(70.894/81.071) ≈ −0.13414. It is

the mean tracker (i.e., µ̂) of Y because

−0.13414 ∈ [ µ − σ
√

∆t, µ + σ
√

∆t),

where µ = (r − σ2/2)∆t = (0.1 − 0.32/2) × 0.25 = 0.01375 and σ
√

∆t = 0.3 × √
0.25 =

0.15. Thus the SY -log-prices of the nodes at time step 2 that will be connected to Y are

µ̂ + 2σ
√

∆t ≈ 0.1659, µ̂ ≈ −0.1341, and µ̂ − 2σ
√

∆t ≈ −0.4341. To compute the branching

probabilities from node Y , I substitute 0.1659−µ, −0.1341−µ, and −0.4341−µ into α, β, and

γ, respectively, in Eqs. (4)–(6). The branching probabilities are illustrated in the lower-left

table of the figure. The value of the vanilla call is obtained by backward induction on the

tree. For example, the continuation option value at node Y is

e−0.1×0.25 × (0.49299 × 27.425 + 0.50698 × 6.593 + 0.00002 × 0) ≈ 16.447,

and the continuation option value at node X is

e−0.1×0.25 × (0.5466 × 60.905 + 0.4534 × 27.425) ≈ 44.597.
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Note that an American call will be exercised early only at an ex-dividend date. Note also that

it is more beneficial for an option holder to exercise a call immediately before the underlying

stock pays a dividend than immediately after (see Eq. (2)). The call will be exercised early

at node X since the exercise value 46.183(=116.183-70) is larger than the continuation value

44.597. The call value computed by the stair tree is 31.893.

4 Numerical Evaluations

I first compare Geske and Shastri’s fixed dividend yield model, Hull’s volatility adjustment

model, the stair tree model, Model 1, Model 2, and Model 3 for pricing European options.

Geske and Shastri (1985) use fixed dividend yields to approximate discrete dividends. The

fixed dividend yield is defined as the discrete dividend amount divided by the initial stock

price. For example, the dividend yield is 5% if the initial stock price is 100 and the discrete

dividend is 5. I use FDY to denote their approach. Note that Chiras and Manaster (1978)

approximate the discrete-dividend problem by transforming the discrete dividends into a fixed

continuous dividend yield. This approach is equivalent to the FDY model in pricing a European

option. Frishling (2002) argues that Model 1 generates lower option prices than Model 3. To

remove this difference, Hull (2000) recommends that the volatility of the net-of-dividend stock

price be adjusted by the volatility of the stock price multiplied by S(0)/(S(0)−D), where D

denotes the present value of future dividends over the life of the option. I use Hull to denote

Hull’s volatility adjustment approach. Besides, I use Model1 and Model2 to denote the option

prices generated by Model 1 and Model 2, respectively. Stair denotes the prices generated

by the stair tree model. Model3 denotes the prices generated by Model 3 that based on the

Monte Carlo simulation with 100,000 trials.

The numerical results for these models are listed in Table 2 and 3, where Table 2 focuses

on the single-discrete-dividend case and Table 3 focuses on the two-discrete-dividend case.

All the prices that deviate from Model3 by 0.3 are marked by asterisks. Frishling (2002)

claims that Model 1, Model 2, and Model 3 generate very different option prices. This can

be verified in Table 2 and 3 that the option prices generated by Model 2 are higher than

the prices generated by Model 3. On the other hand, Model 1 generates lower option prices

than Model 3. The difference among these three models becomes larger as volatility increases.

FDY does not approximate Model 3 well as it produces lower option prices than Model 1.

The option prices generated by Hull’s volatility adjustment approach do not approximate the

prices generated by Model 3 well. It can be observed that only the stair tree model produces

options prices that are close to Model 3.

Note that Model 3 seems to produce lower option price (generated by the Monte Carlo

simulation) in each two-discrete-dividend case (except one case) in Table 3 than that in
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the corresponding case in Table 2. The stair tree model successfully captures this trend,

but all other models fail. Note that both Model 1 and the Hull’s volatility adjustment

approach produce similar option prices in the single-discrete-dividend case and the two-

discrete-dividend case. This is because the net-of-dividend stock price in the single-discrete-

dividend case (=100 − 5e−0.03×0.6) is almost equal to that in the two-discrete-dividend case

(=100−2.5e−0.03×0.4−2.5e−0.03×0.8). Model 2 also produces similar option prices in both cases

since the cum-forward-dividend stock prices for both cases are almost equal.

To derive approximation analytical formulas for Model 3, Bos and Vandermark (2002)

present an approach (denoted as Mix) that is a mixture between the stock and the exercise

price adjustment or, in other words, Model 1 and Model 2. Bos and Shepeleva (2002) suggest

that the volatility of the net-of-dividend stock price can be adjusted by a complex formula.

I use Vol to denote their approach. These two approaches and the stair tree approach are

compared in Table 4 and 5. I use the Monte Carlo simulation that prices Model 3 (denoted as

Model3) to serve as a benchmark to compute the root mean squared error and the maximum

absolute error. Since both these two errors of the stair tree model are lower than the errors

of Mix and Vol, I conclude that the stair tree provides more accurate values than these two

approaches. Note that Model 3 seems to produce lower option price in each two-discrete-

dividend case in Table 5 than that in the corresponding case in Table 4 as I mentioned before.

Bos and Vandermark’s approach successfully catches this trend, but Bos and Shepeleva’s

approach fails.

For American calls with discrete dividends, I compare the stair tree with the popular

analytical pricing formula of Roll (1977), Geske (1979), and Whaley (1981) (abbreviated as

RGW), and the FDY model of Geske and Shastri (1985) in Table 6. The parameters are from

Cox et al. (1979). The benchmark option prices (B) are from Geske and Shastri (1985).

Note that RGW is based on Model 1 and thus underprices the options. RGW focuses on single-

dividend cases. Welch and Chen (1988) and Stephan and Whaley (1990) extend RGW for

two-dividend cases. But it is hard to extend RGW for three or more dividends because this

would have required RGW to evaluate a multivariate cumulative normal density function, whose

deterministic computational cost is prohibitive. This phenomenon is known as the curse of

dimensionality (see Lyuu (2002)). Of course, even if the multivariate integral can be computed

efficiently, there is no guarantee that the price is numerically accurate. Geske and Shastri

(1985) claim that FDY model perform well for pricing American calls. Numerical results in

Table 6 show that the stair tree outperforms the FDY model.

The delta of a call with respect to the stock price is illustrated in Fig. 5. I use a 140-time-

step stair tree to evaluate a call option with 7 months to maturity, and the length of each

time step is 0.004167(=(7/12)/140) year. 301 tree evaluations are performed by setting the

initial stock price as 20 + 0.1x, where 0 ≤ x ≤ 300. The resulting delta curve is very smooth.
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The stair tree’s quick convergence is verified in Table 7, where the prices remain unchanged

up to pennies when the number of time steps is at least 140. These experiments confirm the

reliability of the stair tree.

The discrete dividend assumption is not so realistic since the dividend might not be per-

fectly predictable especially when the ex-dividend date is far into the future. A more realistic

and generalized assumption, the path-dependent dividends assumption, is discussed in next

section. I will also show how the stair tree model can incorporate this assumption.

5 Path-Dependent Dividends

It is more general and realistic to assume that a stock pays a stochastic dividend rather than

a dividend with known amounts at a future ex-dividend date. However, the option can only

be hedged if the dividend is known exogenously or completely determined by the stock price

process prior to the ex-dividend date as argued in Cox and Rubinstein (1985) unless one adds

nonstandard derivatives such as the forward contracts on dividends in Chance et al. (2002).

I call Cox and Rubinstein’s assumption the path-dependent dividends assumption since the

future dividend, says Dti , completely depends on the stock prices and the dividends prior to

time step ti. To be more precise, Dti can be expressed as

Dti ≡ f(S0, S1, S2 . . . , Sti , Dti−1
, Dti−2

. . .)

for some function f . In reality, dividends can be explained by a variety of factors such

as the net operating profits, long-run sustainable (or permanent) earnings, and so on. If

the stock prices and the dividends paid previously serve as good proxies for these factors,

a dividend function that fits the path-dependent dividends assumption can be constructed.

Indeed, some empirical dividend models can fit path-dependent dividends assumptions with

slight modifications. I will first review one of such dividend models proposed by Marsh and

Merton (1987). Then I will show how the stair tree can incorporate their dividend model.

Marsh and Merton (1987) derive a dividend model by following Linter’s (1962) stylized

facts established by Linter in a classic set of interviews with managers about their dividend

policies. Their dividend model can be expressed by a regression formula of the permanent

earnings and the dividends paid previously. They argue that their formula can not be directly

estimated because management assessments of changes in a firm’s permanent earnings are not

observable. Thus they assume that the permanent earning to cum-dividend stock price ratio

is a positive constant. Under this assumption, a future dividend in their dividend model can

be expressed by a regression formula in terms of stock prices and dividends prior to the ex-

dividend date. To illustrate how the stair tree incorporates the Marsh and Merton’s dividend

model, I express their dividend formula by a discrete time model and assume that the length
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between two ex-dividend dates is two time steps:

log

[
Dt+2

Dt

]
+

Dt

St−2

= a0 + a1 log

[
St + Dt

St−2

]
+ a2 log

[
Dt

St−2

]
+ u(t + 2), (7)

where the dividends are paid at time step t and t + 2, Dτ denotes the dividend amounts paid

at time step τ , Sτ denotes the net-of-dividend stock price at time step τ , and u(t+2) denotes

the disturbance term at time step t + 2. By assuming that the disturbance term u(t + 2) = 0,

Eq. (7) can be rewritten as

Dt+2 = 10
a0+a1 log

[
St+Dt
St−2

]
+a2 log

[
Dt

St−2

]
− Dt

St−2
+log Dt

. (8)

Note that Dt+2 can be expressed as a function of St−2, St, and Dt. One of their empirical

studies focuses on the value-weighted NYSE index over the period 1926–81 and they estimate

that a0 = −0.101, a1 = 0.437, and a2 = −0.042 by ordinary least squares method. A simple

numerical example is then given to demonstrate how the stair tree can incorporate the dividend

model in Eq. (8) with aforementioned numerical settings.

A 4-time-step stair tree that prices a European vanilla call option with an exercise price of

50 is illustrated in Fig. 6. The underlying stock price at time step 0 is 100, the length of each

time step of the stair tree is 0.25 year, the risk-free interest rate is 10%, and the volatility

of the stock price is 30%. Note that the upward multiplication factor u = e0.3×√
0.25 ≈ 1.162

and the downward one d = e−0.3×√
0.25 ≈ 0.861. I further assume that the historical net-of-

dividend stock prices S−1 and S−3, and the historical dividend D−1 to be 110, 80, and 5,

respectively. The underlying stock is assumed to pay two dividends (D1 and D3) at time step

1 and 3, respectively. The top cell of each node denotes the stock price (at a non-dividend

paying date) or the cum-dividend stock price (at an ex-dividend date) of that node. Each

node contains at least one state (denoted by the cell following the top cell) to keep the option

price. The nodes enclosed by dotted ellipses contain two states to keep required information

for computing D3 by Eq. (8) (to be discussed later). Note that the net-of-dividend stock prices

and the branching probabilities for the states at ex-dividend dates (time step 1 and time step

3) are illustrated in Table 8.

Now I proceed to show how this 4-time-step stair tree is constructed. The cum-dividend

stock price at time step 1 are 100 × u ≈ 116.183 and 100 × d ≈ 86.071, respectively. The

dividend D1 is obtained by substituting D−1 (=5), S−1 (=110), and S−3 (=80) into Eq. (8)

to get 4.518. Thus the net-of-dividend stock prices for states A and B are 116.183 − 4.518 ≈
111.666 and 86.071 − 4.518 ≈ 81.553, respectively. The stock price for the top node at time

step 2 is then 111.666× u ≈ 129.737. Thus the stock prices at time step 2 can be represented

as 129.737× uk for nonpositive even integers k. The branches of state A follow the CRR tree

structure. The mean tracker of state B can be found by Eq. (3) to be ln(71.201/86.071)(≡ µ̂)

(expressed in SB-log-price). Thus the stock prices of the nodes connected to state B are

13



96.112 (with SB-log-price µ̂+2σ
√

∆t), 71.201 (with SB-log-price µ̂), and 52.747 (with SB-log-

price µ̂− 2σ
√

∆t). The trinomial branching probabilities of state B can be computed by Eq.

(4)–(6). The net-of-dividend stock prices and the branch probabilities for states A and B are

illustrated in Table 8.

To compute D3 by Eq. (8), S−1, D1, and S1 are required. While S−1 and D1 are known to

be 110 and 4.518, respectively, there are two possible S1 (111.666 and 81.553) in this stair tree.

Additional states are added to the nodes enclosed by dotted ellipses to keep the information

about S1. I color all the cells and corresponding branches from time step 1 to time step 3 in

light-gray and dark-gray to denote the cases that S1 = 111.666 and S1 = 81.553, respectively.

For example, state F denotes the case that S1 = 111.666 and the cum-dividend stock price at

time step 3 is 82.724, while state G denotes the case that S1 = 81.553 and the cum-dividend

stock price at time step 3 is 82.724. Note that all the branches from the states at time step 2

follow the CRR tree structure.

Now I focus on time step 3. The dividend paid at state C is obtained by substituting

D1 = 4.518, S1 = 111.666, and S−1 = 110 into Eq. (8) to get 4.043. Thus the net-of-dividend

stock price for state C is 150.733−4.043 = 146.690. Similarly, the net-of-dividend stock prices

for states D and F are 111.666 − 4.043 = 107.622 and 82.724 − 4.043 = 78.681, respectively.

The dividend paid at state E is obtained by substituting D1 = 4.518, S1 = 81.553, and

S−1 = 110 into Eq. (8) to get 3.547. Thus the net-of-dividend stock price for state E is

111.666 − 3.547 = 108.119. Similarly, the net-of-dividend stock prices for states G, H, and I

are 82.724−3.547 = 79.177, 61.283−3.547 = 57.737, and 45.340−3.547 = 41.853, respectively.

The stock price for the top node at time step 4 is 146.690×u ≈ 170.249. All the stock prices at

time step 4 can be represented as 170.249× uk for nonpositive even integers k. The branches

for state C follow the CRR tree structure. The trinomial branching schemes for states D, E,

F , G, H, and I are constructed by following the method for constructing the branches for

state B. The trinomial branching probabilities for these states are listed in Table 8.

The value for the European vanilla call option can be obtained by backward induction.

Note that some nodes have two different option prices due to different historical stock price

paths. For example, the option price for state F is

e−0.1×0.25 × (43.553 × 0.4699 + 19.291 × 0.5296 + 1.332 × 0.0005) ≈ 29.917,

while the option price for state G is

e−0.1×0.25 × (
43.553 × 0.4905 + 19.291 × 0.5095 + 1.332 × 4.6 × 10−5

) ≈ 30.410.

The call value computed by the stair tree is 46.804.
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6 Conclusions

Pricing stock options with discrete dividend payouts has not been satisfactorily settled be-

cause of the conflicting demands of computational tractability and realistic modeling of the

stock price process. It is realistic to assume that the stock price jumps down at an ex-divided

date. However, pricing options under this stock price model can not be efficiently and/or

accurately implemented by analytical formulas and numerical methods. This paper suggests

a recombining tree, the stair tree, that efficiently and faithfully implements this model. Nu-

merical results confirm that the stair tree is both efficient and accurate. Moreover, the stair

tree can be extended to more general cases when future dividends are completely determined

by past stock prices and dividends. This extension, which is called “path-dependent dividends

assumption” in this paper, makes the stair tree model more realistic and flexible.
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A Proof of Valid Risk-Neutral Probabilities

Define

det = (β − α)(γ − α)(γ − β),

detu = (βγ + Var)(γ − β),

detm = (αγ + Var)(α − γ),

detd = (αβ + Var)(β − α).

Then Cramer’s rule applied to Eqs. (4)–(6) gives pu
Y = detu/det, pm

Y = detm/det, and pd
Y =

detd/det. Note that det < 0 because α > β > γ. To ensure that the branching probabilities

are valid, it suffices to show that pu
Y , pm

Y , pd
Y ≥ 0. As det < 0, it is sufficient to show
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Figure 1: The Bushy Tree.

Ex-dividend date

S

2( )Sd D−

( )S D−

2( )Su D−

Sd
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0 1 2 3 4

S

2Su

2S d

up

dp

The initial stock price is S. The upward and the downward multiplicative factors for the stock

price are u and d, respectively. The upward and the downward branching probabilities are pu

and pd, respectively. The black nodes in the first two time steps form a CRR tree. A dividend

D is paid out at time step 2. The values in parenthesis at time step 2 denote the stock prices

immediately after dividend payout. Three separate trees beginning at time step 2 are colored

in white, light gray, and dark gray, respectively.

detu, detm, detd ≤ 0 instead. Finally, as α > β > γ, it suffices to show that βγ + Var ≥ 0,

αγ + Var ≤ 0, and αβ + Var ≥ 0 under the premise β ∈ [−σ
√

∆t, σ
√

∆t). Indeed,

βγ + Var = β2 − 2βσ
√

∆t + σ2∆t = (β − σ
√

∆t)2 ≥ 0,

αγ + Var = β2 − 4σ2∆t + σ2∆t = β2 − 3σ2∆t < 0,

αβ + Var = β2 + 2βσ
√

∆t + σ2∆t = (β + σ
√

∆t)2 ≥ 0,

as desired.
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Table 1: Sizes of the Stair Tree and the Bushy Tree.

#Ex-dividend dates Stair Bushy

1 80,476 1,744,201

2 88,051 53,060,451

3 91,801 1,301,124,826

4 94,475 26,604,783,451

5 98,026 466,301,626,701

The stair tree (Stair) and the bushy tree (Bushy) are compared in terms of numbers of nodes.

The stock price is 100, the volatility is 30%, the risk-free interest rate is 10%, and the time to

maturity is 0.75 year. The number of time steps for both the stair and bushy trees is 300. The

number of ex-dividend dates is in the first column. The exdividend dates divide the 0.75-year

time span into equal-length time intervals. A 1-dollar dividend is paid at each ex-dividend

date. For example, 2 ex-dividend dates means that a 1-dollar dividend is paid at year 0.25

and year 0.5.
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Figure 2: The Structure of the Stair Tree.
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The initial stock price is S. The upward and the downward multiplicative factors for the stock

price are u and d, respectively. The gray nodes are the nodes right after the dividend is paid.

S ′ and S ′′ denote the largest stock price at time step 2 and time step 4, respectively. The

stock price for each node on the third tread is represented as S ′′uk = S ′′ekσ
√

∆t, where k is

parenthesized.
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Figure 3: Branching Scheme at the Ex-Dividend Date.
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Nodes X and Y are at the first ex-dividend date (time step 1). Both nodes are represented

by dotted ellipses. The cum-dividend stock prices at X and Y are Su and Sd, respectively,

whereas the net-of-dividend stock prices at X and Y are SX(≡ Su − D) and SY (≡ Sd − D),

respectively. The stock price for the top node at time step 2 is S ′ (= SXu). The integer k

in parentheses for each node at time step 2 means the stock price equals S ′ekσ
√

∆t. The cross

right above Z denotes the point with SY -log-price µ at time step 2. The three branches of

Y are marked with thick solid lines. pu
Y , pm

Y , and pd
Y denote the probabilities for the upper,

middle, and lower branches from node Y , respectively.
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Figure 4: A 3-Time-Step Tree for Pricing an American Vanilla Call.

   Probability

Others Y

Upper 0.5466 0.49299

Middle 0.50698

Lower 0.4534 0.00002

150.082
80.082

111.183
41.183

12.367
82.367

0.000
61.019

0.000
45.204

60.905
129.177

27.425
95.696

6.593
70.894

0.000
52.519

46.183
116.183

44.597
111.183

16.447
81.071

16.447
86.071

31.893
100

X

-5

Y Z-5

3210

The number at the upper cell of a node denotes the stock price at that node. The number at

the lower cell denotes the call value. The gray cell denotes that the American call is exercised

early. The two branches of X are marked with thick solid lines, whereas the three branches of

Y are marked with thick dotted lines. The branching probabilities are listed in the lower-left

table.
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Table 2: Pricing European Call Options with Single Discrete Dividend.

0.4 0.5

X FDY Model1 Hull Model2 Stair Model3 FDY Model1 Hull Model2 Stair Model3

95 *16.263 *16.336 17.090 17.112 16.821 16.933 *19.890 *19.969 20.901 20.937 20.570 20.843

100 *14.214 *14.270 15.044 15.048 14.758 14.754 *17.964 *18.003 *18.959 *18.971 18.591 18.584

105 *12.400 *12.439 *13.222 *13.206 12.924 12.989 *16.194 *16.222 17.194 17.182 16.829 16.929

The initial stock price is 100, the risk-free rate is 3%, the time to maturity is 1 year, and a

5-dollar-dividend is paid at year 0.6. The volatilities of the stock price are shown in the first

row. The exercise prices are listed in the first column. FDY denotes the fixed dividend yield

approach of Geske and Shastri (1985). Model1 and Model2 denote the option prices generated

by Model 1 and Model 2, respectively. Hull denotes volatility adjustment approach of Hull

(2000). Stair denotes the stair tree model in this paper. Model3 denotes the prices generated

by Model 3 that based on Monte Carlo simulation with 100,000 trials. Option prices that

deviate from Model3 by 0.3 are marked by asterisks.
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Table 3: Pricing European Call Options with Two Discrete Dividends.

0.4 0.5

X FDY Model1 Hull Model2 Stair Model3 FDY Model1 Hull Model2 Stair Model3

95 *16.303 *16.336 17.090 17.112 16.806 16.836 *19.931 *19.969 *20.901 *20.937 20.568 20.549

100 *14.250 *14.270 *15.044 *15.048 14.733 14.733 *18.001 *18.003 *18.959 *18.971 18.583 18.621

105 *12.433 *12.439 *13.222 *13.206 12.904 12.883 *16.228 *16.222 *17.194 *17.182 16.826 16.829

The numerical settings are the same as those settings in Table 2 except that a 2.5-dollar-

dividend is paid at year 0.4 and year 0.8. Option prices that deviate from Model3 by 0.3 are

marked by asterisks.
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Table 4: Pricing European Call Options with Single Discrete Dividend.

σ X Mix Vol Stair Model3

95 16.802 16.792 16.821 16.933

0.4 100 14.737 14.732 14.758 14.754

105 12.899 12.899 12.924 12.989

95 20.550 20.537 20.570 20.843

0.5 100 18.584 18.578 18.591 18.584

105 16.798 16.798 16.829 16.929

RMSE 0.147 0.152 0.130

MAE 0.293 0.306 0.272

The numerical settings are the same as those settings in Table 2. Mix denotes the mixture

approach of Bos and Vandermark (2002). Vol denotes the volatility adjustment approach of

Bos and Shepeleva (2002). Model3 denotes the prices generated by Model 3 that based on

Monte Carlo simulation with 100,000 trials. RMSE denotes the root mean squared error.

MAE denotes the maximum absolute error.
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Table 5: Pricing European Call Options with Two Discrete Dividends.

σ X Mix Vol Stair Model3

95 16.801 16.795 16.806 16.836

0.4 100 14.736 14.734 14.733 14.733

105 12.898 12.901 12.904 12.883

95 20.548 20.541 20.568 20.549

0.5 100 18.583 18.581 18.583 18.621

105 16.797 16.800 16.826 16.829

RMSE 0.026 0.027 0.023

MAE 0.038 0.041 0.038

The numerical settings are the same as those in Table 3.
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Table 6: Pricing American Call Options.

$1.0 $2.0 $3.0 $4.0

X T RGW FDY Stair B RGW FDY Stair B RGW FDY Stair B RGW FDY Stair B

1 *5.07 5.09 5.09 5.09 *5.05 5.09 5.09 5.08 *5.05 5.08 5.09 5.08 *5.05 5.08 5.09 5.08

35 4 *5.38 5.41 5.40 5.40 5.15 5.19 5.18 5.17 *5.08 5.12 5.12 5.11 *5.07 5.10 5.10 5.10

7 – *5.79 5.77 5.76 – *5.29 5.26 5.24 – *5.15 5.14 5.12 – 5.11 5.11 5.10

1 *1.14 1.17 1.17 1.17 *1.03 1.08 1.08 1.07 1.03 1.04 1.04 1.04 *0.93 1.02 1.03 1.02

40 4 *2.36 2.38 2.40 2.39 *1.89 1.91 1.93 1.92 1.57 1.60 1.60 1.58 *1.35 1.39 1.40 1.38

7 – 3.05 3.08 3.06 – 2.31 2.33 2.32 – 1.83 1.83 1.81 – *1.51 *1.51 1.48

1 0.08 0.09 0.09 0.09 0.04 0.05 0.06 0.05 0.04 0.04 0.04 0.04 0.02 0.03 0.03 0.03

45 4 0.87 0.87 0.88 0.88 0.62 0.62 0.64 0.64 *0.43 0.44 0.46 0.46 0.31 0.31 0.33 0.32

7 – *1.47 1.51 1.50 – *0.99 1.03 1.02 – *0.66 0.70 0.69 – *0.43 0.46 0.46

The initial stock price is 40, the risk-free interest rate is 5%, and the volatility is 30%. The

ex-dividend dates for the stock are 0.5, 3.5, and 6.5 months. The dividends to be paid at

each ex-dividend date are shown in the first row. The exercise prices X are listed in the

first column. The times to maturity T (in months) are in the second column. The values of

American calls priced by the FDY model and the benchmark value are from Geske and Shastri

(1985). RGW denotes the analytical pricing formula of Roll (1977), Geske (1979), and Whaley

(1981) (for single-dividend cases) and the extended formula of Stephan and Whaley (1990)

(for two-dividend cases). Stair denotes the stair tree model with 140 time steps. Option

prices which deviate from the benchmark values by 0.02 are marked by asterisks.
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Figure 5: Delta.
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The x-axis denotes the initial stock price, and the y-axis denotes the delta of the vanilla call.

The exercise price is 35, the risk-free interest rate is 5%, the volatility is 30%, and the time

to maturity is 7 months. A 4-dollar dividend is paid at months 0.5, 3.5, and 6.5.
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Table 7: Convergence of Delta.

n Price Delta

56 5.13 0.97

70 5.13 0.97

84 5.13 0.96

98 5.12 0.97

112 5.12 0.97

126 5.12 0.97

140 5.11 0.97

154 5.11 0.97

The settings are identical to those in Fig. 5 except that the initial stock price is 40. The number

of time steps n is selected to be a multiple of 14 so that each ex-dividend date coincides with a

time step in the stair tree. Price and Delta denote the option price and the delta computed

by the stair tree, respectively. The numerical values remain unchanged (up to pennies) for

n ≥ 140.
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Figure 6: A 4-Time-Step Stair Tree that Incorporate the Marsh and Merton’s

Dividend Model.

0 4321

28.172

38.028

51.332

69.291

93.533

126.257

170.429

45.340
0.486

61.283
8.998

82.724
29.917

111.666
58.849
59.343

150.733
97.922

5.012

20.191

44.602
45.083

78.226

86.071
31.790

116.183
61.426

100

30.410

A
D
E

F
G

C

B

52.747

71.201

96.112

129.737

46.804

120.429

76.257

43.553

19.291

1.332

0

0

The number at the top cell of each node denotes the stock price (at a non-dividend paying

date) or the cum-dividend stock price (at a ex-dividend date) of that node. The number at the

following cell(s) denote the option price(s). Additional states are added to the nodes enclosed

by dotted ellipses to keep the required information for computing D3. The net-of-dividend

stock prices and the branching probabilities for all the states at ex-dividend dates are in Table

8.
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Table 8: The Net-of-Dividend Stock Prices and the Branching Probabilities for the

States at Ex-dividend Dates in Fig. 6.

A B C D E F G H I

Price 111.666 81.553 146.690 107.622 108.119 78.681 79.177 57.737 41.853
Upper 0.5466 0.4983 0.5466 0.0001 0.0004 0.4699 0.4905 0.4397 0.3744
Middle – 0.5017 – 0.5133 0.5280 0.5296 0.5095 0.5584 0.6165
Lower 0.4534 1.4 × 10−6 0.4534 0.4866 0.4715 0.0005 4.6 × 10−5 0.0019 0.0091
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