
 

 

 

 

 

 

 

 

 

Using the LIBOR Market Model to Price 

the Interest Rate Derivatives： 

A Recombining Binomial Tree Methodology



 

ii 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

以 LIBOR 市場模型評價利率衍生性商品： 

結合節點二項樹方法 

 

 

 

 

 

 

 

 



 

iii 
 

Abstract 

LIBOR market model (LMM) is a complicate interest rate model and it is hard to be 

implemented by the numerical methods. Because of the non-Markov property of the 

LMM, the size of all naive lattice models will grow explosively and would not be 

evaluated by computers. This thesis proposes a recombining LMM lattice model by 

taking advantages of lattice construction methodology proposed by Ho, Stapleton, and 

Subrahmanyam (HSS). We first rewrite the discrete mathematical models for LMM 

suggested by Poon and Stapleton. Then we derive the conditional means and the 

variances of the discrete forward rates which are important for the tree construction. 

Finally, using the construction methodology proposed by HSS we build our pricing 

model for the interest rate derivatives. Numerical results are given in Chapter 5 

suggest that our lattice method can produce convergent and accurate pricing results 

for interest rate derivatives.  
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摘  要 

LIBOR 市場模型是一個複雜的利率模型，難以利用數值方法計算之，加上該模

型具有非馬可夫的特性，導致在學術研究上使用樹狀結構評價方法來評價商品

時，會出現節點數呈現爆炸性成長的現象，而此成長現象甚至遠超過電腦所能計

算的範圍。因此，本文的研究宗旨在於採用 Ho、Stapleton 和 Subrahmanyam(HSS)

建造樹狀評價結構模型的特點，提出一個嶄新的節點重合的遠期利率樹狀結構

LIBOR 市場模型來評價利率衍生性商品。首先，本研究參考 Poon 和 Stapleton

所建議的方法，將連續型的 LIBOR 市場模型改寫成離散模型；其次，藉由此離

散的遠期模型導出建造遠期利率樹狀結構所需要的重要參數─條件期望值和條

件變異數後，再利用 HSS 建構樹狀結構的特點來建造遠期利率樹狀評價模型。

最後，利用本研究所提出的遠期利率樹狀模型來評價利率衍生性商品，其結果顯

示本研究的模型提供了一個準確且快速收斂的現象。 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

關鍵字：LIBOR 市場模型、結合節點樹狀結構評價法、遠期利率、 

債券選擇權、利率上限選擇權
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1 Introduction 

Many traditional interest rate models are based on instantaneous short rates and 

instantaneous forward rates. However, these rates are unobservable in the daily 

markets, in results, these models are hard to calibrate in the daily markets. Therefore, 

the most commonly used model in practice is the LIBOR market model (LMM). 

LIBOR market model is based on the forward LIBOR rate observed from daily 

markets. The model was first proposed by Brace, Gatarek and Musiella (1997) 

(abbreviate as BGM). In their assumptions, the LIBOR rate follows the lognormal 

distribution, which derives the theoretical pricing formula for the caplet that 

consistent with the Black’s model (1976). 

However, when implementing the LMM by the lattice method, the tree grows 

explosively since nodes of the tree are not recombining. That is, LMM has the 

non-Markov property as well as HJM model. The non-recombining phenomenon of 

the nodes make our lattice method inefficient and difficult to price. To address this 

problem, this research adapts the HSS methodology proposed by Ho, Stapleton, and 

Subrahmanyam (1995) to construct a recombining binomial tree for LMM. By 

applying the HSS methodology into the LMM, the lattice valuation method becomes 

feasible in pricing the interest rate derivatives. 

The lattice method we proposed here makes us have not to rely on the Monte 

Carlo simulation because our tree-based method is more accurate and efficient. 

Besides, the lattice method can take American-style features, such as early exercise or 

early redemption, which is an intractable problem in Monte Carlo simulation. 

For the following thesis in description, Chapter 2 reviews some important 

interest rate models. Chapter 3 introduces the market conventions about LMM and 

derives the drift of discrete-time version of LMM which follows the development in 
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Poon and Stapleton (2005). In chapter 4, we introduce the HSS recombining node 

methodology (1995) into the discrete-time version of LMM which derived in chapter 

3 and construct the pricing model. In chapter 5, we apply our proposed model to price 

the value of bond option and the caplet. Besides computing the derivatives numerical 

price, we also compare the prices computed by our model with the Black-model 

caplet prices. At last in chapter 6 concludes my work and make possible suggestions 

for the future work.
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2 Review of Interest Rate Models 

In this section we introduce some important interest rate models which can categorize 

into two different models: equilibrium models and no-arbitrage models. The 

no-arbitrage models can be further classified into three parts: instantaneous short rate 

models, instantaneous forward rate models and forward rate models. 

 

2.1  Equilibrium Models 

Equilibrium models are under the assumptions about economic variables derives from 

a process for the short rate r. The short rate r is governed by stochastic process, like 

geometric Brownian motion, and has the characteristic of mean reversion. In other 

words, interest rates appear to be pulled back to some long-run average level and this 

phenomenon is known as mean reversion. This section introduces some of these 

models that have aforementioned properties. 

 

Vasicek Model 

In Vasicek model, interest rate r is supposed to follow the Ornstein-Uhlenbeck 

process and has the following expression under the risk-neutral measure: 

( ) ( ( )) ( )dr t r t dt dW tα β σ= − +  

where mean reversion rate α , reversion level β , and volatility σ  are constants. 

But its short is that interest rate could be negative due to the stochastic term ( )dW t  

is normally distributed. In this model, Vasicek shows that the general pricing form of 

( , )P t T  which is the price at the time t of a zero coupon bond with principal $1 

maturing at time T: 

( , ) ( )( , ) ( , ) B t T r tP t T A t T e−=  

where 
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( )1( , )
T teB t T

α

α

− −−
=  

2 2 2 2

2

( ( , ) )( / 2) ( , )( , ) exp[ ]
4

B t T T t B t TA t T α β σ σ
α α

− + −
= −  

CIR Model 

To improve the drawback in Vasicek model, Cox, Ingersoll, and Ross have proposed 

an alternative model which make rate r always non-negative. Under the risk neutral 

measure, the CIR model follows the following process: 

( ) ( ( )) ( ) ( )dr t r t dt r t dW tα β σ= − +  

which has the same mean-reverting drift as Vasicek model. However, CIR model use 

the square root of rate r to replace the constant volatility in Vasicek model that makes 

the model have a non-central chi-squared distribution. Besides, CIR model has the 

same general form of bond prices as in Vasicek model.  

( , ) ( )( , ) ( , ) B t T r tP t T A t T e−=  

but its ( , )A t T  and ( , )B t T  are different: 
( )

( )

2( 1)( , )
( )( 1) 2

T t

T t

eB t T
e

γ

γγ α γ

−

−

−
=

+ − +
 

2
( )( ) / 2

2 /
( )

2( , ) [ ]
( )( 1) 2

T t

T t

eA t T
e

α γ
αβ σ

γ

γ
γ α γ

+ −

−=
+ − +

 

where 2 22γ α σ= + . 

 

2.2  No-Arbitrage Models 

Although equilibrium models have the mean-reverting property, it doesn’t fit today’s 

term structure of interest rates. Thus, no-arbitrage model is designed to calibrate 

today’s term structure of interest rates. Furthermore, in no-arbitrage model, today’s 

term structure of interest rate is an input and the drift of the short rate is generally 

time dependent. 
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2.2.1   Instantaneous Short Rate Models 

Ho-Lee Model 

The first model of no-arbitrage models is Ho-Lee model, which is shown under the 

risk-neutral measure: 

( ) ( ) ( )dr t t dt dW tθ σ= +  

where θ (t) is a function of time chosen to ensure that the model fits the initial term 

structure, and it is relative to the instantaneous forward rate. The relevance to 

instantaneous forward rate is 

2( ) (0, )tt f t tθ σ= +  

where (0, )tf t  is the instantaneous forward rate for maturity t as seen at time zero 

and the subscript t denotes a partial derivative with respect to t. Moreover, the price of 

the zero coupon bond at time t can be expressed as 

( )( )( , ) ( , ) r t T tP t T A t T e− −=  

where 

2 2(0, ) 1ln ( , ) ln ( ) (0, ) ( ) .
(0, ) 2

P TA t T T t f t t T t
P t

σ= + − − −  

 

Hull-White Model 

The other no-arbitrage model is Hull-White model, which is a simple but powerful 

model. It is a generalization of the Vasicek model and it provides an exact fit to the 

initial term structure. The model is shown under the risk-neutral measure: 

( ) [ ( ) ( )] ( )dr t t r t dt dW tθ α σ= − +  

where α  and σ  are constants and the function of ( )tθ can be calculated from the 

initial term structure: 
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2
2( ) (0, ) (0, ) (1 )

2
t

tt f t f t e ασθ α
α

−= + + −  

Because the Hull-White model is the general form of the Vasicek model, it has the 

same general form of bond prices as in Vasicek model: 

( , ) ( )( , ) ( , ) B t T r tP t T A t T e−=  

where 
( )1( , )
T teB t T

α

α

− −−
=  

2 2 2
3

(0, ) 1ln ( , ) ln ( , ) (0, ) ( ) ( 1)
(0, ) 4

T t tP TA t T B t T f t e e e
P t

α α ασ
α

− −= + − − −  

 

2.2.2   Instantaneous Forward Rate Model 

HJM Model 

Heath, Jarrow and Morton (1992) published an important paper described the 

evolution of the entire yield curve in continuous time. They proposed the dynamic 

form of the instantaneous forward rate and derived the stochastic process of the 

instantaneous forward rate ( , )f t T  for the fixed maturity T under risk-neutral 

measure. The form is described as follows: 

( , ) ( , ) ( , ) ( )df t T t T dt t T dW tα σ= +  

where 

1( ) ( ( ), , ( ))dW t W t W t= L  is a d-dimensional Brownian motion, 

1( , ) ( ( , ), , ( , ))dt T t T t Tσ σ σ= L  is a vector of adapted processes, 

1
( , ) ( , ) ( , ) ( , ) ( , )

dT T

i it t
i

t T t T t s ds t T t s dsα σ σ σ σ
=

= =∑∫ ∫ . 

Given the dynamics of the instantaneous forward rate ( , )f t T , we can use the Ito’s 

lemma to obtain the dynamics of the zero-coupon bond price ( , )P t T : 

( , ) ( , )[ ( ) ( ( , )) ( )]
T

t
dP t T P t T r t dt t s dW tσ= − ∫  
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where ( )r t  is the instantaneous short term interest rate at time t, that is 

0 0
( ) ( , ) (0, ) ( , ) ( , ) ( , ) ( )

t t t

u
r t f t t f t u t u s dsdu s t dW sσ σ σ= = + +∫ ∫ ∫  

From the above formula, the short rate ( )r t  in the HJM model is non-Markov and 

makes the tree of nodes construct to be non-recombined. However, one drawback of 

the HJM model is that it is expressed in terms of instantaneous forward rates, which 

are not directly observable in the market and difficult to calibrate the model to price 

the actively traded instruments. Therefore, a new model is developed to improve the 

aforementioned insufficiency. 

 

2.2.3   Forward Rate Model 

LIBOR Market Model (LMM) 

The new alternative model, LIBOR market model (LMM), was discovered by 

Brace, Gatarek, and Musiela (1997) and was initially referred to as the BGM model 

by practitioners. However, Miltersen, Sandmann, and Sondermann (1997) discovered 

this model independently, and Jamshidian (1997) also contributed significantly to its 

initial development. To reflect the contribution of multiple authors, many practitioners, 

including Rebonato(2002), renamed this model to LIBOR market model. 

There are two common versions of the LMM, one is the lognormal forward 

LIBOR model (LFM) for pricing caps and the other is the lognormal swap model 

(LSM) for pricing swaptions. The LFM assumes that the discrete forward LIBOR rate 

follows a lognormal distribution under its own numeraire, while the LSM assumes 

that the discrete forward swap rate follows a lognormal distribution under the swap 

numeraire. The two assumptions do not match theoretically, but lead to small 

discrepancies in calibrations using realistic parameterizations. The following 

derivations are based on the LFM. 
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The LFM specifies the discrete forward rate 1( ; , )i if t T T +  which is seen at time t 

during the period between time iT  and time 1iT +  that is different from the 

instantaneous forward rate ( , )f t T  as seen at time t for a contract maturing at time 

T  and follows zero-drift stochastic process under its own forward measure: 

1

1

( ; , ) ( ) ( )
( ; , )

i i
i i

i i

df t T T t dW t
f t T T

σ+

+

=  

where ( )idW t  is a Brownian motion under the forward measure 1iTQ +  defined with 

respect to the numeraire asset 1( , )iP t T +  and where ( )i tσ  measures the volatility of 

the forward rate process. Using Ito’s lemma, the stochastic process of the logarithm of 

the forward rate is given as follows: 

                  
2

1
( )ln ( ; , ) ( ) ( )

2
i

i i i i
td f t T T dt t dW tσ σ+

−
= +             (2.3.1) 

The stochastic integral of equation (2.3.1) can be given as follows. For all 0 it T≤ ≤ , 

        
2

1 1 0 0

( )ln ( ; , ) ln (0; , ) ( ) ( )
2

t ti
i i i i i i

uf t T T f T T du u dW uσ σ+ +

−
= − +∫ ∫       (2.3.2) 

Since the volatility function ( )i tσ  is deterministic, the logarithm of forward 

rate is normally distributed, implying that the forward rate is lognormally distributed. 

For it T= , equation (2.3.2) implies that the future LIBOR rate 

1 1( , ) ( ; , )i i i i iL T T f T T T+ +=  is also lognormally distributed. This explains why this 

model is called the lognormal forward LIBOR model. Thought each forward rate is 

lognormally distributed under its own forward measure, it is not lognormally 

distributed under other forward measure. 
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3 Market Conventions of the LMM and the Discrete-Time 

Version of the LMM 

To enter the world of LMM, we have to be familiar with the terminologies and 

instruments that used by the market practitioners. We first introduce the basic terms 

and some instruments such like caplets and FRAs, and then use the important results 

in the Poon and Stapleton (2005) to derive the discrete-time version of the LMM. 

 

3.1 Market Conventions of the LMM 

The relationship between the discrete LIBOR rate 1( , )i iL T T +  for the term 

1i i iT Tδ += −  and the zero-coupon bond price 1( , )i iP T T +  is given as follows: 

1
1

1( , )
1 ( , )i i

i i i

P T T
L T Tδ+

+

=
+

                    (3.1.1) 

where 0 1 2 nt T T T T≤ < < < <L  is the time line and iδ  is called the tenor or accrual 

fraction for the period iT  to 1iT + . 

The time t discrete forward rate for the term 1i i iT Tδ += −  is related to the price 

ratio of two zero-coupon bonds maturing at times iT  and  1iT +  as follows: 

                      1
1

( , )1 ( ; , )
( , )

i
i i i

i

P t Tf t T T
P t T

δ +
+

+ =                    (3.1.2) 

The forward rate converges to the future LIBOR rate at time iT , or: 

                      1 1lim ( ; , ) ( , )
i

i i i iT
f T T L T T

τ
τ + +→

=                    (3.1.3) 

We can rewrite equation (3.1.2) as follows: 

1 1 1
1( ; , ) ( , ) [ ( , ) ( , )]i i i i i

i

f t T T P t T P t T P t T
δ+ + += −   

Then, we define some of the basic terms we often used in the market and 
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illustrate as follows: 

1( , , )nFor t T T : the forward price at time t to invest a zero coupon bond matured at 

time nT  at time 1T  and can be expressed as 1( , ) / ( , )nP t T P t T . 

1( , )y t T : the annual yield rate at time t to time 1T  and its relation with the zero 

coupon bond is givens as 1 1 1( , ) 1/(1 ( , ))P t T y t Tδ= + . 

1( ; , )n nf t T T + : the forward rate at time t for the time period nT  to 1nT +  and its 

relation with forward price of a zero coupon bond is given as 

1 1( ; , ) 1/(1 ( ; , ))n n n n nFor t T T f t T Tδ+ += + . 

After introducing the basic terms, here, we introduce a popular interest rate 

option- an interest rate cap. A cap is composed of a series of caplets. For a 

iT -maturity caplet, the practitioners widely use the Black’s formula to obtain its value. 

Following is the Black’s formula for the i-th caplet valued at time t: 

           1 1 1 2( ) ( , )[ ( ; , ) ( ) ( )]i i i i icaplet t A P t T f t T T N d KN dδ + += × × −       (3.1.4) 

where 

2
1

1

2
1

2

ln( ( ; , ) / ) ( ) / 2 ,

ln( ( ; , ) / ) ( ) / 2 ,

i i i i

i i

i i i i

i i

f t T T K T td
T t

f t T T K T td
T t

σ
σ

σ
σ

+

+

+ −
=

−

− −
=

−

 

       A : the notional value of the caplet, 

iδ : the length of the interest rate reset interval as a proportion of a year, 

1( , )iP t T + : the zero coupon bond price paying 1 unit at maturity date 1iT + , 

K : the caplet strike price, 

iσ : the Black implied volatility of the caplet, 
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( )N ⋅ : the cumulative probability distribution function for a standardized 

normal distribution. 

Furthermore, under the LIBOR basis, we can derive the same theoretical pricing 

equation for the caplet as equation (3.1.4) from the LFM model. Because both of 

LFM and Black’s model are assuming that the forward rate follows the lognormal 

distribution and we get the consistent results. 

Another instrument we illustrate here as a key to derive out the discrete-time 

version of the LMM is the forward rate agreement (FRA). A FRA is an agreement 

made at time t to exchange fixed-rate interest payments at a rate K  for variable rate 

payments, on a notional amount A , for the loan period nT  to 1nT +  equal to one year. 

The settlement amount at time nT  on a long FRA is 

                       1

1

( ( , ) )( )
1 ( , )

n n
n

n n

A y T T KFRA T
y T T

+

+

−
=

+
                 (3.1.5) 

where 1( , )n ny T T +  is the annual yield at time nT  to 1nT + . At the time of the contract 

inception, a FRA is normally structured so that it has zero value. To avoid the 

arbitrage, the strike rate K  is set equal to the market forward rate 1( ; , )n nf t T T + . We 

denote the value of the FRA at time t as ( , )nFRA t T  which can be expressed as  

                1 1

1

( ( , ) ( ; , ))( , ) [ ] 0
1 ( , )

n n n n
n t

n n

A y T T f t T TFRA t T E
y T T
+ +

+

−
= =

+
        (3.1.6) 

 

3.2 The Discrete-Time Version of the LMM 

Now, we restate the most important results which are under the “risk neutral” measure 

in the Poon and Stapleton text (2005). 

1. For a zero-coupon bond price is given by 

                     1 1( , ) ( , ) ( ( , ))n t nP t T P t T E P T T=                 (3.2.1) 
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or we can write   

1 1
1

( , )( ( , )) ( , , )
( , )

n
t n n

P t TE P T T For t T T
P t T

= =  

2. The drift of the forward bond price is given by 

       
1

1
1 1

[ ( , , )] ( , , )
( , )                                     cov [ ( , , ), ( , )]
( , )

t i n i n

t i n n
n

E For T T T For t T T
P t T For T T T P T T
P t T

−

= −
  (3.2.2) 

 

3. The drift of nT -period forward rate is obtained from the equation (3.1.6) and 

given by 

 

1 1 1

1 1
1 2 1 2 3 1 1

1 2 2 3 1

[ ( ; , )] ( ; , )
1 1 1cov [ ( ; , ), ]

1 ( , ) 1 ( ; , ) 1 ( ; , )
  (1 ( ; , )) (1 ( ; , )) (1 ( ; , ))

t n n n n

t n n
n n

n n

E f T T T f t T T

f T T T
y T T f T T T f T T T

f t T T f t T T f t T T

+ +

+
+

+

− =

− × × ×
+ + +

× + ⋅ + ⋅ ⋅ +

L

L

(3.2.3) 

After restating the important results, we now apply the results to the LIBOR basis for 

the FRA and rewrite the equation (3.1.5) as follows 

                   1

1

( ( ; , ) )( )
1+ ( ; , )

n n n n
n

n n n n

A f T T T KFRA T
f T T T

δ
δ

+

+

− ⋅
=               (3.2.4) 

where 1n n nT Tδ += −  and we assume all the tenors are same (i.e. δ1 = δ2 =…= δn = δ) 

and the notional amount A  equal to one to make the equation briefer. And using the 

above results and similar steps to derive out the FRA value at time t of the equation 

(3.2.4) to generalize the nT -maturity forward rate 

         

1 1 1

1 1
1 1 2 1 1

1 2 2 3 1

[ ( ; , )] ( ; , )
1 1 1cov [ ( ; , ), ]

1 ( ; , ) 1 ( ; , )
(1+ ( ; , )) (1+ ( ; , )) (1 ( ; , ))

t n n n n

t n n
n n

n n

E f T T T f t T T

f T T T
f T T T f T T T

f t T T f t T T f t T T

δ
δ δ δ

δ δ δ

+ +

+
+

+

− =
−

⋅ ⋅
+ +

× ⋅ ⋅ ⋅ +

L

L

   (3.2.5) 

 

We assume that the forward rate 1 1( ; , )n nf T T T +  is the lognormal for all forward 
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maturities, nT . Then, we use the approximate result for the covariance term, that is 

for the small change around the value ,  X a Y b= = , we have cov( , )X Y ≈  

cov(ln , ln )ab X Y . Here we take 1 2( ; , )a f t T T= and 1 21/(1 ( ; , ))b f t T T= + to evaluate 

1 1 2
1 1 2

1cov ( ( ; , ), )
1 ( ; , )t f T T T

f T T T+
, then we have 

            
1 1 2

1 1 2

1 2 1 2
1 2 1 2

1cov ( ( ; , ), )
1 ( ; , )
1 1( ; , )( ) cov (ln ( , ), ln )

1 ( ; , ) 1 ( , )

t

t

f T T T
f T T T

f t T T y T T
f t T T y T T

=
+

+ +

 

and substitute it into the equation (3.2.5) use the property of logarithms to express the 

drift of nT -maturity forward rate as the sum of a series of covariance terms. Finally, 

to make our covariance terms in a recognizable form, we use the extension of Stein’s 

lemma to evaluate the term with a form 1 1
1 1 2

1cov (ln ( ; , ), ln( ))
1 ( ; , )t n nf T T T

f T T T+ +
. 

 

Stein’s Lemma for lognormal variables 

For joint-normal variables x and y 

cov( ,g( )) (g'( )) cov( , )x y E y x y= ⋅  

Hence, if lnx X=  and lny Y= , then 

1cov(ln , ln ) ( ) cov(ln , ln )
1 1

YX E X Y
Y Y

−
= ⋅

+ +
 

Then we have  

1 1
1 1 2

1 1 2
1 1 1 1 2

1 1 2

1cov (ln ( ; , ), ln( ))
1 ( ; , )

( ; , )( ) cov (ln ( ; , ), ln ( ; , ))
1 ( ; , )

t n n

t t n n

f T T T
f T T T

f T T TE f T T T f T T T
f T T T

+

+

=
+

−
+

 

 

Here, we apply the result we mention above to the equation (3.2.5) and derive out the 

drift of the forward LIBOR rate as the sum of a series of covariance terms as follows: 
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1 1 1

1 2
1 1 1 1 1 2

1 2

1
1 1 1 1 1

1

[ ( ; , )] ( ; , )
( ; , )     ( ; , ) cov [ln ( ; , ), ln ( ; , )]

1 ( ; , )
   

( ; , )   ( ; , ) cov [ln ( ; , ), ln ( ; , )]
1 ( ; , )

t n n n n

n n t n n

n n
n n t n n n n

n n

E f T T T f t T T
f t T Tf t T T f T T T f T T T

f t T T

f t T Tf t T T f T T T f T T T
f t T T

δ
δ

δ
δ

+ +

+ +

+
+ + +

+

− =

× ⋅
+

+

+ × ⋅
+

L

 
(3.2.6) 

We also assume that the covariance structure is inter-temporally stable and 

1 1 1 1cov [ln ( ; , ), ln ( ; , )]t i i n nf T T T f T T T+ +  is a function of the forward maturities and is 

not dependent on t. Then we define 

1 1 1 1 ,cov [ln ( ; , ), ln ( ; , )]     1,  2, ,t i i n n i nf T T T f T T T i nσ+ + ≡ =% L  

where ,i nσ%  is the covariance of the log i -period forward LIBOR and the log 

n -period forward LIBOR. Finally, we can rewrite equation (3.2.6) as follows: 

    

1 1 1 2 31 2
1, 2,

1 1 2 2 3

1

[ ( ; , )] ( ; , ) ( ; , )( ; , )
( ; , ) 1 ( ; , ) 1 ( ; , )

( ; , )                                                                               
1

t n n n n
n n

n n

n n

E f T T T f t T T f t T Tf t T T
f t T T f t T T f t T T

f t T T

δδ σ σ
δ δ

δ

+ +

+

+

−
= ⋅ + ⋅

+ +

+ +

% %

L ,
1( ; , ) n n

n nf t T T
σ

δ +

⋅
+

%

 

(3.2.7)
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4 Introducing the HSS Recombining Node Methodology 

and Applying to The LIBOR Market Model 

Ho, Stapleton, and Subrahmanyam (1995) suggest a general methodology for creating 

a recombining multi-variate binomial tree to approximate a multi-variate lognormal 

process. Our assumption about the LMM satisfies the required conditions of the HSS 

methodology. Therefore, we apply the HSS methodology to construct the recombining 

trees for LMM. Now, we introduce the HSS methodology first and then apply it in the 

LMM.  

 

4.1 The HSS Methodology 

The HSS methodology assumes the price of underlying asset X  follows a lognormal 

diffusion process: 

                    ln ( ) ( ( ), ) ( ) ( )d X t X t t dt t dW tμ σ= +               (4.1.1) 

where μ  and σ  are the instantaneous drift and volatility of ln X , and ( )dW t  is a 

standard Brownian motion. They denote the unconditional mean at time 0 of the 

logarithmic asset return at time it  as iμ . The conditional volatility over the period 

1it −  to it  is denoted 1,i iσ −  and the unconditional volatility is 0,iσ . 

To approximate the underlying asset process in equation (4.1.1) with a binomial 

process at time it , 1, ,i m= L , given the means iμ , conditional volatilities 1,i iσ − , 

and the unconditional volatilities 0,iσ , HSS denote the conditional volatilities of the 

approximated binomial process as 1,ˆ ( )i i inσ − , where in denotes the number of 

binomial stages between time 1it −  and it , and they require that 

                         1, 1,ˆlim ( ) ,   
i

i i i i in
n iσ σ− −→∞

= ∀                   (4.1.2) 



 

16 
 

It is similar to both the approximated unconditional volatility 0, 1 2ˆ ( , , , )i in n nσ L  and 

the approximated mean ˆ iμ  of the approximated binomial process, which require that 

                 0, 1 2 0,ˆlim ( , , , ) ,   , ,   1, ,
l

i i in
n n n i l l iσ σ

→∞
= ∀ =L L            (4.1.3) 

                              ˆlim
i

i in
μ μ

→∞
=                         (4.1.4) 

Their method involves the construction of m separate binomial distribution, 

where the time periods are denoted 1, , , ,i mt t tL L , and have the set of a discrete 

stochastic for iX , where iX  is only defined at time it . In general they have the 

form of iX  at node r: 

                            , 0
iN r r

i r i iX X u d−=                       (4.1.5) 

where 
1

i
i ll

N n
=

=∑ , and they have to determine the up and down movements ,  i iu d  

and the branching probabilities that satisfy the equations (4.1.2), (4.1.3) and (4.1.4). 

They denote  

0ln( / )i ix X X=  

and the probabilities to reach ix  given a node 1,i rx −  at 1it −  as  

1 1,( | )i i i rq x x x− −=  or ( )iq x  

An example, where 2m =  and we have 0 1 2,   and X X X  is illustrated in Figure 1.   

Lemma 1 Suppose that the up and down movements iu  and id  are chosen so that  

               

1

0

1, 1

2( ( ) / ) ,     1, 2, , ,
1 exp(2 ( ) / )

iN
i

i
i i i i i

E X Xd i m
t t nσ − −

= =
+ −

L          (4.1.6) 

               
1

02( ( ) / ) ,     1, 2, , ,iN
i i iu E X X d i m= − = L                               (4.1.7) 
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where 
1

i
i ll

N n
=

=∑ , then if , for all i, the conditional probability ( ) 0.5lq x →  as 

ln →∞ , for 1, ,l i= L , then the unconditional mean and the conditional volatility of 

the approximated process approach respectively their true values: 

1, 1,
0 01, ,

ˆ ( ) ( ) ˆlim ,     lim
l i

i i
i i i in n

l i

E X E X
X X

σ σ− −→∞ →∞
=

→ →
L

 

 
Figure 1 A discrete process for X1, X2 

There are n1+1 nodes at t1 numbered r = 0, 1,…, n1. There are n1+ n2+1 nodes at t2 numbered r = 0, 1,…, 

n1+ n2. X0 is the starting price, X1 is the price at time t1, and X2 is the price at time t2. u1, d1, u2 and d2 are 

the proportionate up and down movements. 

Since 0ln( / )i ix X X=  is normally distributed, it follows that the regression 

1 1,     ( ) 0i i i i i i ix a b x Eε ε− −= + + =  

is linear with 

2 2 2
0, 1 1, 1 0, 1[ ( ) ] /i i i i i i i i ib t t t tσ σ σ− − − −= − − , 
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and  

1( ) ( )i i i ia E x b E x −= −  

They determined the conditional probabilities ( )iq x  so that  

1 1,( )i i i i i rE x a b x− −= +  

held for the approximated variables ix  and 1ix − . 

Theorem 1 Suppose that the iX  are joint lognormally distributed. If the iX  are 

approximated with binomial distributions with 1i i iN N n−= +  stages and iu  and id  

given by equations (4.1.6) and (4.1.7), and if the conditional probability of an up 

movement at node r at time 1i −  is  

    1, 1
1 1,

( ) ln ln ln( | ) ,     ,  
(ln ln ) ln ln

i i i r i i i i
i i i r

i i i i i

a b x N r u r d dq x x x i r
n u d u d

− −
− −

+ − − −
= = − ∀

− −
 

(4.1.8) 

then ˆi iμ μ→  and 0, 0,ˆ i iσ σ→  and 1, 1,ˆ i i i iσ σ− −→  as ,  in i→∞ ∀  

 

4.2 Applying the HSS Methodology to the LMM 

After introducing the HSS methodology, we now apply this methodology into the 

LMM and make some change to satisfy our conventions. We have the following 

propositions. 

Proposition 1 For the forward LIBOR rate which follows the lognormal distribution, 

we can choose the proper up and down movements to determine the i-th period of the 

nT -maturity forward LIBOR rate and have the form 

               1 1 1 2( ; , ) (0; , ) ,  , , ,iN r r
n n r n n i i nf i T T f T T u d i T T T−

+ += = L         (4.2.1) 

where 
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1

1 1

1, 1

2[ ( ( ; , )) / (0; , )]
1 exp(2 ( ) / )

iN
n n n n

i
i i i i i

E f i T T f T Td
T T nσ

+ +

− −

=
+ −

                            (4.2.2) 

    1 12[ ( ( ; , )) / (0; , )]i n n n n iu E f i T T f T T d+ += −                            (4.2.3) 

 1i i iN N n−= +                                                 (4.2.4) 

r: node’s number from top to bottom at time iT  

The structure of the binomial tree can be shown as Figure 2, with 1 1n + nodes at 

1T  numbered There are  nodes at 2T numbered 1 20,1, ,r n n= +K . 

Here we write the forward rate  in abbreviated form  and take n1 = 

n2 = 2, r1 = r2 = 2. 

 
Figure 2 The binomial tree for the forward rate (0;2,3)f  
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After determining the structure of the forward LIBOR tree, we then have to 

choose the probability to satisfy the Proposition 1. 

Proposition 2 Suppose that the forward LIBOR rate 1( ; , )n nf i T T +  are joint 

lognormally distributed. If the 1( ; , )n nf i T T + , 1 2, , , ni T T T= L  are approximated with 

binomial distributions with 1i i iN N n−= +  stages and iu  and id  given by equations 

(4.2.2) and (4.2.3), and if the conditional probability of an up movement at node r at 

time iT  is  

      1 1
1 1,

( ) ( ) ln ln ln( | )   ,  
(ln ln ) ln ln

i i i i i i
i i i r

i i i i i

E x N r u r d dq x x x i r
n u d u d

− −
− −

− − −
= = − ∀

− −
(4.2.5) 

where 

 1

1

( ; , )ln
(0; , )

n n
i

n n

f i T Tx
f T T

+

+

=                                            (4.2.6) 

    1 1, 1 1,( ) ( ) ( )i i i i i r i i i i i rE x a b x E x b E x b x− − − −= + = − +                                             (4.2.7) 

For determining the conditional probability, it has some skills to use for the term 

of 1( )i iE x−  and following are the procedures to derive 1( )i iE x− . We first derive 

( )iE x  term in equation (4.2.7). Since the forward rate 1( ; , )n nf i T T +  is lognormally 

distributed, we have  

                    21
0,

1

( ( ; , )) 1( ) ln[ ]
(0; , ) 2

n n
i i

n n

E f i T TE x
f T T

σ+

+

= −               (4.2.8) 

Second, we use the result of equation (3.2.7) obtained from the last section, and 

rewrite it as follows:  

1 1 2 2 31 1 2
1, 2,

1 1 1 2 2 2 3

1
,

1

[ ( ; , )] ( ; , )( ; , )1
( ; , ) 1 ( ; , ) 1 ( ; , )

( ; , )                                                              
1 ( ; , )

t n n
n n

n n

n n n
n n

n n n

E f T T T f t T Tf t T T
f t T T f t T T f t T T

f t T T
f t T T

δδ σ σ
δ δ

δ σ
δ

+

+

+

+

= + ⋅ + ⋅
+ +

+ + ⋅
+

% %

%L

         (4.2.9) 

Then multiple the 1 1( ; , ) / (0; , )n n n nf t T T f T T+ +  term on both side to get the general 
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form of 1 1 1( ( ; , )) / (0; , )t n n n nE f T T T f T T+ + : 

1 1 1

1 1

1 2 2 3 11 1 2
1, 2, ,

1 1 1 2 2 2 3 1

( ; , ) [ ( ; , )]
(0; , ) ( ; , )
( ; , ) ( ; , ) ( ; , )( ; , )(1 )
(0; , ) 1 ( ; , ) 1 ( ; , ) 1 ( ; , )

n n t n n

n n n n

n n n n n
n n n n

n n n n n

f t T T E f T T T
f T T f t T T
f t T T f t T T f t T Tf t T T
f T T f t T T f t T T f t T T

δ δδ σ σ σ
δ δ δ

+ +

+ +

+ +

+ +

× =

× + ⋅ + ⋅ + + ⋅
+ + +

% % %L

 

                                                               (4.2.9) 

Finally, we substitute it into the formula (4.2.8) to obtain ( )iE x  term. Then, we 

take the value of ( )iE x  into equation (4.2.7) to compute the up movement 

probability at time iT  given the node 1( 1; , )n n rf i T T +− . 

Note that when nl stages approach the infinite 1, ,l i= L , the sum of nl stages 

also approach the infinite (i.e.
1

i
i ll

N n
=

= →∞∑ ). We can reduce the up and down 

movements to the briefer form which is easier to calculate. That is  

1, 1

2
1 exp(2 ( ) / )i

i i i i i

d
T T nσ − −

=
+ −

   

2i iu d= −  

and the conditional probability ( ) 0.5lq x →  as ln →∞ , for 1, ,l i= L .  
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5 The Pricing of the Interest Rate Derivatives in the LMM 

After we construct the forward tree process, it can be employed to price the 

derivatives. By beginning from the bond option on zero coupon bond (ZCB), then 

extend to the caplets. 

5.1 The valuation of bond option on zero coupon bond in LMM 

The bond option on ZCB is a bond that can be callable before maturity date with a 

callable price K. For example, we have a three years maturity zero coupon bond with 

a callable value K equal to 0.952381 dollar at year two. That is to say we can redeem 

the ZCB at year two with 0.952381 dollar or hold it until maturity at year three with 1 

dollar. Therefore, we have to price the option value C0 of this callable bond at time 0 

(see the Figure 3) 

 
Figure 3 The callable bond for the 3 year maturity ZCB 

To obtain the callable bond option value, we use the lattice method to price the 

option value of the callable bond. To get the payoff function at year two, we need 

know the zero coupon price at year two maturity at year three (i.e. P(2,3)). Comparing 

to the callable value K, we take function max(P(2,3)-K,0). Then we discount it back 

to the time 0 to get the option value of the callable bond. Here we take the flat 

forward rate 5% and constant volatility 10% and have 

0  (0, 2) [max( (2,3) ,0)]
     0.90702948 0.00258128
     0.00234130

C P E P K= × −

= ×
=

 

After having the option value at 10%volatility, we increase the volatility until 

reach 30% to see the relationship between option value and volatility. We plot the 
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results into Figure 4 to see the trend between option values and volatility. 

 
Figure 4 Bond option values for different volatility 

From the above figure, we find that when the volatility increases, the value of 

bond option on ZCB increases. It is consistent with the inference for the Greek letter 

vega when the underlying asset’s volatility increases the option value increases, too. 

 
5.2 The valuation of caplets in LMM 

A popular fixed income security is an interest rate cap, a contract that pays the 

difference between a variable interest rate applied to a principal and a fixed interest 

rate (strike price) applied to the same principal whenever the variable interest rate 

exceeds the fixed rate.  We consider a cap with total life of T and let the tenor δ , the 

notional value A  and the strike price K  be fixed positive values. Note that the 

reset dates are T1, T2, … , Tn and define Tn+1 = T. Define the forward rate 

1( ; , )i i if T T T + as the future spot interest rate for the period between iT  and 1iT +  

observed at time iT  (1 )i n≤ ≤ . The payoff function of a caplet at time 1iT +  is 

                     1max( ( ; , ) ,0)i i iA f T T T Kδ +× × −                 (5.2.1) 

Equation (5.2.1) is a caplet on the spot rate observed at time iT  with payoff 
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occurring at time 1iT + . The cap is a portfolio consisted of n such call options which 

the underlying is known as caplet. 

 To derive out the price of the cap, we have to price the caplet first and then sum 

up the n caplets value to get the price of a cap. For a caplet price at time t, we use the 

Black’s formula mentioned in chapter 3 (Equation (3.1.4)) to get the theoretical value. 

Thus, we restate the as follows:   

            1 1 1 2( ) ( , )[ ( ; , ) ( ) ( )]i i i i icaplet t A P t T f t T T N d KN dδ + += × × −       (5.2.2) 

where 
2

1
1

2
1

2

ln( ( ; , ) / ) ( ) / 2 ,

ln( ( ; , ) / ) ( ) / 2 ,

i i i i

i i

i i i i

i i

f t T T K T td
T t

f t T T K T td
T t

σ
σ

σ
σ

+

+

+ −
=

−

− −
=

−

 

After having the theoretical value as our benchmark, we use the payoff function 

to compute the price in the lattice method. To get the payoff function at time 1iT + , we 

have to know the evolution of the forward rate 1(0; , )i if T T +  at time iT . We construct 

the binomial tree of 1(0; , )i if T T +  and known the 1( ( ; , ) )i i i rf T T T K +
+ − , r = 0, 1, …, i.  

Calculating the expectation of the payoff at time 1iT + , and then multiple the ZCB of 

1( , )iP t T +  to get the caplet value at time t.  

In the followings, we take the 10 maturity of cap to compute the individual 

caplet from 1 period to 10 periods with the assumption of tenor δ  and notional 

value A are equal to one and the volatility is constant and equal to 10%. Here the 

strike price K is 5%, the forward curve is flat 5% and the stages ni for every period are 

equal to 25. We calculate one period caplet at time 0 (caplet1(0)). 
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1(0) (0,2) [max( (1;1,2) ,0)]
                 1 1 (0, 2) 0.0020112666
                 0.90702948 0.0020112666
                 0.0018242781

caplet A P E f K
P
δ= × × × −

= ⋅ ⋅ ⋅
= ⋅
=  

 
 
Table 1 Volatility is 10% and Stage ni for Every Period is 25 

Maturity Black  Lattice Difference 
Relative 

Difference (%)
1  0.0018085085 0.0018242781 0.0000157696  0.8719669656 
2  0.0024348117 0.0024407546 0.0000059429  0.2440786919 
3  0.0028388399 0.0028374958 -0.0000013441 0.0473484800 
4  0.0031206153 0.0031282191 0.0000076038  0.2436631792 
5  0.0033214311 0.0033204098 -0.0000010214 0.0307505629 
6  0.0034637453 0.0034664184 0.0000026731  0.0771737036 
7  0.0035616356 0.0035658574 0.0000042219  0.1185369137 
8  0.0036247299 0.0036200240 -0.0000047059 0.1298286011 
9  0.0036600091 0.0036633313 0.0000033221  0.0907678678 
10  0.0036727489 0.0036743568 0.0000016079  0.0437804213 
    RMSE 0.0000063671   

1. Caplet assume δ = 1 and stage 25 
2. Assume volatility is 10%, the forward curve is flat 5% 

Table 1 is the results for different maturity caplets. Besides the relative 

difference, we also use the RMSE to see the difference between the lattice value and 

Black’s model for the whole maturity. The definition of the RMSE is given as follows: 

RMSE (Root Mean Square Error) 

A frequently-used measure of the differences between values predicted by a model 

or an estimator and the values actually observed from the thing being modeled or 

estimated. For the comparing difference between two models, the formula of 

RMSE can be expressed as  

2
1, 2,2 1

1 2 1 2 1 2

( )
( , ) ( , ) (( ) )

n
i ii

x x
RMSE MSE E

n
θ θ θ θ θ θ =

−
= = − = ∑  



 

26 
 

where 

        

Here, θ1 and θ2 represent the lattice value and Black’s model respectively which 

maturity form one to ten. 

Now we change the stages from 25 to 50 to figure out the relationship between 

stages and RMSE. The results are shown in Table 2. 

Table 2 Volatility is 10% and Stage ni for Every Period is 50 
Maturity Black  Lattice Difference Relative Difference (%)

1 0.0018085085  0.0018099405 0.0000014320 0.0791823392  
2 0.0024348117  0.0024397802 0.0000049685 0.2040608652  
3 0.0028388399  0.0028434461 0.0000046061 0.1622542164  
4 0.0031206153  0.0031230795 0.0000024643 0.0789673074  
5 0.0033214311  0.0033207434 -0.0000006878 0.0207066243  
6 0.0034637453  0.0034620815 -0.0000016638 0.0480341136  
7 0.0035616356  0.0035626664 0.0000010308 0.0289416315  
8 0.0036247299  0.0036267433 0.0000020134 0.0555455781  
9 0.0036600091  0.0036617883 0.0000017792 0.0486107386  
10 0.0036727489  0.0036734197 0.0000006708 0.0182649876  
    RMSE 0.0000025690   

1. Caplet assume δ = 1 and stage 50 
2. Assume volatility is 10%, the forward curve is flat 5% 

We also plot the RMSE with different stages between periods from 25 to 50 to 

see the convergence behavior of RMSE. Figure 5 shows that the convergence 

behavior of RMSE for the different stages. We find that when we increase stages 

between periods, both relative difference and RMSE decrease and RMSE converge to 

zero with the stages go to infinite.  

To see the impact of volatility on the value of different caplets and the 

convergence behavior of RMSE, we change the volatility from 10% to 20%. We do 
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the same procedures as we do in volatility 10%, and results for the 25 and 50 stages 

are presented in Table 3 and Table 4 respectively. Finally, we plot the RMSE with 

different stages from 25 to 50 for volatility 20% in Figure 6.  

Figure 5 RMSE with Volatility 10% 

 
Table 3 Volatility is 20% and Stage ni for Every Period is 25 
Maturity Black  Lattice Difference Relative Difference (%)

1 0.003612502 0.003629702 0.0000171997 0.4761162723  
2 0.004857485 0.004880545 0.0000230598 0.4747275803  
3 0.005656481 0.005664503 0.0000080217 0.1418144294  
4 0.006210206 0.006193504 -0.0000167019 0.2689425754  
5 0.006601645 0.006606642 0.0000049969 0.0756919625  
6 0.006875986 0.006885656 0.0000096703 0.1406382089  
7 0.007061574 0.007064876 0.0000033018 0.0467579666  
8 0.007177804 0.007167478 -0.0000103258 0.1438570619  
9 0.007238738 0.007241022 0.0000022831 0.0315395992  
10 0.007255004 0.007260387 0.0000053836 0.0742052974  
    RMSE 0.0000120045   

1. Caplet assume δ = 1 and stage 25 
2. Assume volatility is 20%, the forward curve is flat 5% 
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Table 4 Volatility is 20% and Stage ni for Every Period is 50 
Maturity Black  Lattice Difference Relative Difference (%)

1 0.0036125022 0.0036270258 0.0000145236 0.4020371797  
2 0.0048574848 0.0048648548 0.0000073700 0.1517253656  
3 0.0056564814 0.0056507415 -0.0000057399 0.1014746318  
4 0.0062102056 0.0062167021 0.0000064965 0.1046097077  
5 0.0066016455 0.0066036633 0.0000020178 0.0305658301  
6 0.0068759861 0.0068743634 -0.0000016227 0.0235991644  
7 0.0070615740 0.0070656730 0.0000040990 0.0580467885  
8 0.0071778037 0.0071775957 -0.0000002080 0.0028984108  
9 0.0072387385 0.0072386556 -0.0000000829 0.0011446687  
10 0.0072550037 0.0072576598 0.0000026562 0.0366117075  
    RMSE 0.0000060911   

1. Caplet assume δ = 1 and stage 50 
2. Assume volatility is 20%, the forward curve is flat 5% 

 

 
Figure 6 RMSE with Volatility 20% 

We find that with the volatility increases, the value of caplets increases, and the 
convergence rate of RMSE decreases. It is consistent with high volatility makes the 
option value more valuable and convergence rate slower.    
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6 Conclusions 

Implementing the LIBOR market model with lattice method is difficult. To make the 

pricing procedure by lattice method feasible, we construct a recombining binomial 

tree to depict the evolution of the forward LIBOR rate. In this model, we have all the 

forward rates for the different maturity at any node of the recombining binomial tree. 

With these rates on the nodes, we can easily figure out the early exercise decision for 

the American style derivatives which is a tough work in the Monte Carlo simulation. 

After constructing the recombining binomial tree, the payoff of the interest rate 

derivatives on each node can be obtained. The pricing value of the derivatives can be 

calculated by backward induction method. We use the proposed model to calculate the 

value of bond option on zero coupon bond and caplets. Comparing to the theoretical 

value, we find the theoretical value and lattice method is close. However, with the 

stage between period by period increases, the difference between theoretical value and 

lattice method decreases. Besides, as the volatility increases the converge rate of 

RMSE decrease. 

In the future, we have to find out the joint probability between different maturity 

forward rates and adjust the stages between period by period to fit the strike price to 

reduce the nonlinearity error. Trying to change the constant volatility to stochastic 

volatility to fit the volatility term structure will make the model more complete. 
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