Using the LIBOR Market Model to Price

the Interest Rate Derivatives :

A Recombining Binomial Tree Methodology
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Abstract

LIBOR market model (LMM) is a complicate interest rate model and it is hard to be
implemented by the numerical methods. Because of the non-Markov property of the
LMM, the size of all naive lattice models will grow explosively and would not be
evaluated by computers. This thesis proposes a recombining LMM lattice model by
taking advantages of lattice construction methodology proposed by Ho, Stapleton, and
Subrahmanyam (HSS). We first rewrite the discrete mathematical models for LMM
suggested by Poon and Stapleton. Then we derive the conditional means and the
variances of the discrete forward rates which are important for the tree construction.
Finally, using the construction methodology proposed by HSS we build our pricing
model for the interest rate derivatives. Numerical results are given in Chapter 5
suggest that our lattice method can produce convergent and accurate pricing results

for interest rate derivatives.

Keywords: HSS, LMM, bond option, caplet
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1 Introduction

Many traditional interest rate models are based on instantaneous short rates and
instantaneous forward rates. However, these rates are unobservable in the daily
markets, in results, these models are hard to calibrate in the daily markets. Therefore,
the most commonly used model in practice is the LIBOR market model (LMM).
LIBOR market model is based on the forward LIBOR rate observed from daily
markets. The model was first proposed by Brace, Gatarek and Musiella (1997)
(abbreviate as BGM). In their assumptions, the LIBOR rate follows the lognormal
distribution, which derives the theoretical pricing formula for the caplet that
consistent with the Black’s model (1976).

However, when implementing the LMM by the lattice method, the tree grows
explosively since nodes of the tree are not recombining. That is, LMM has the
non-Markov property as well as HIM model. The non-recombining phenomenon of
the nodes make our lattice method inefficient and difficult to price. To address this
problem, this research adapts the HSS methodology proposed by Ho, Stapleton, and
Subrahmanyam (1995) to construct a recombining binomial tree for LMM. By
applying the HSS methodology into the LMM, the lattice valuation method becomes
feasible in pricing the interest rate derivatives.

The lattice method we proposed here makes us have not to rely on the Monte
Carlo simulation because our tree-based method is more accurate and efficient.
Besides, the lattice method can take American-style features, such as early exercise or
early redemption, which is an intractable problem in Monte Carlo simulation.

For the following thesis in description, Chapter 2 reviews some important
interest rate models. Chapter 3 introduces the market conventions about LMM and

derives the drift of discrete-time version of LMM which follows the development in



Poon and Stapleton (2005). In chapter 4, we introduce the HSS recombining node
methodology (1995) into the discrete-time version of LMM which derived in chapter
3 and construct the pricing model. In chapter 5, we apply our proposed model to price
the value of bond option and the caplet. Besides computing the derivatives numerical
price, we also compare the prices computed by our model with the Black-model
caplet prices. At last in chapter 6 concludes my work and make possible suggestions

for the future work.



2 Review of Interest Rate Models

In this section we introduce some important interest rate models which can categorize
into two different models: equilibrium models and no-arbitrage models. The
no-arbitrage models can be further classified into three parts: instantaneous short rate

models, instantaneous forward rate models and forward rate models.

2.1 Equilibrium Models

Equilibrium models are under the assumptions about economic variables derives from
a process for the short rate ». The short rate » is governed by stochastic process, like
geometric Brownian motion, and has the characteristic of mean reversion. In other
words, interest rates appear to be pulled back to some long-run average level and this
phenomenon is known as mean reversion. This section introduces some of these

models that have aforementioned properties.

Vasicek Model

In Vasicek model, interest rate » is supposed to follow the Ornstein-Uhlenbeck

process and has the following expression under the risk-neutral measure:
dr(t)y=a(f—r(t))dt+ocdW (1)

where mean reversion rate o, reversion level £, and volatility o are constants.

But its short is that interest rate could be negative due to the stochastic term dW (¢)

is normally distributed. In this model, Vasicek shows that the general pricing form of

P(t,T) which is the price at the time ¢ of a zero coupon bond with principal $1

maturing at time 7
P(t,T) = A(t,T)e """

where
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B(t,T)=—F¢

B.T)-T+1)\(a’p-0’/2) o’B@,T)

A(t,T)=exp[ = 10,

]

CIR Model
To improve the drawback in Vasicek model, Cox, Ingersoll, and Ross have proposed
an alternative model which make rate » always non-negative. Under the risk neutral

measure, the CIR model follows the following process:

dr(t) = a(B —r(t))dt + o[r(t)dW (1)
which has the same mean-reverting drift as Vasicek model. However, CIR model use
the square root of rate r to replace the constant volatility in Vasicek model that makes
the model have a non-central chi-squared distribution. Besides, CIR model has the
same general form of bond prices as in Vasicek model.
P(t,T)= A(t,T)e """

butits A(¢,T7) and B(¢,T) are different:

y(T-1) _
BTy = )
(y+a) "™ =1)+2y
(a+y)T-t)/2 s
A(t,T) :[ 27/6 ]Za/i/a

(y+a)e "™ =1)+2y

where y=+a’+207 .

2.2 No-Arbitrage Models

Although equilibrium models have the mean-reverting property, it doesn’t fit today’s
term structure of interest rates. Thus, no-arbitrage model is designed to calibrate
today’s term structure of interest rates. Furthermore, in no-arbitrage model, today’s
term structure of interest rate is an input and the drift of the short rate is generally

time dependent.



2.2.1 Instantaneous Short Rate Models
Ho-Lee Model
The first model of no-arbitrage models is Ho-Lee model, which is shown under the
risk-neutral measure:

dr(t)=0(t)dt +ocdW(t)
where 6 (?) is a function of time chosen to ensure that the model fits the initial term
structure, and it is relative to the instantaneous forward rate. The relevance to

instantaneous forward rate is

0@t) = £.(0,t)+c’t
where f(0,7) is the instantaneous forward rate for maturity t as seen at time zero

and the subscript # denotes a partial derivative with respect to £. Moreover, the price of

the zero coupon bond at time t can be expressed as
P(t,T)= A(t,T)e""" ™"

where

_ .. PO,7) 3 TIPS
lnA(t,T)—ln—P(O t)+(T 0SO.0- (T =1y

3

Hull-White Model

The other no-arbitrage model is Hull-White model, which is a simple but powerful

model. It is a generalization of the Vasicek model and it provides an exact fit to the

initial term structure. The model is shown under the risk-neutral measure:
dr(t)=[0(t)—ar(t)]ldt+ocdW (1)

where o and o are constants and the function of &(#) can be calculated from the

initial term structure:



2
0(t)= f;(o,t)+af(0,f)+o-_(1_e—2at)
2a
Because the Hull-White model is the general form of the Vasicek model, it has the

same general form of bond prices as in Vasicek model:
P(t,T) = A(t,T)e” ?"

where

_ a(T-1)
B(t,T)=1=¢

lnA(t,T)=lnm+3(t,T)f(0,t)— 1

02 e—aT _e—m 2 eZat _1
P(0,1) ppeidl ) )

2.2.2 Instantaneous Forward Rate Model

HJIM Model

Heath, Jarrow and Morton (1992) published an important paper described the
evolution of the entire yield curve in continuous time. They proposed the dynamic
form of the instantaneous forward rate and derived the stochastic process of the

instantaneous forward rate f(¢,7) for the fixed maturity 7 under risk-neutral
measure. The form is described as follows:

df (t,T)=a(t,T)dt+o(t,T)dW (t)
where

W(t)=W\¢),---,W,(t)) isad-dimensional Brownian motion,
o(t,T)=(o,,T),--,0,(T)) isa vector of adapted processes,
T d T
at,T)=o(t,T) j o(t,s)ds =Y o, (t,T)L o.(t,5)ds .
i=1

Given the dynamics of the instantaneous forward rate f(¢,7), we can use the Ito’s

lemma to obtain the dynamics of the zero-coupon bond price P(z,T):
dP(t,T)=P(t,T)[r(t)dt - (J.tT o(t,s))dw(1)]

6



where r(¢) is the instantaneous short term interest rate at time ¢, that is

0= 160 =1O0.0+] o0 o(usysdu+ [ o(s,0dW(s)
From the above formula, the short rate r(¢) in the HIM model is non-Markov and
makes the tree of nodes construct to be non-recombined. However, one drawback of
the HIM model is that it is expressed in terms of instantaneous forward rates, which
are not directly observable in the market and difficult to calibrate the model to price
the actively traded instruments. Therefore, a new model is developed to improve the

aforementioned insufficiency.

2.2.3 Forward Rate Model
LIBOR Market Model (LMM)

The new alternative model, LIBOR market model (LMM), was discovered by
Brace, Gatarek, and Musiela (1997) and was initially referred to as the BGM model
by practitioners. However, Miltersen, Sandmann, and Sondermann (1997) discovered
this model independently, and Jamshidian (1997) also contributed significantly to its
initial development. To reflect the contribution of multiple authors, many practitioners,
including Rebonato(2002), renamed this model to LIBOR market model.

There are two common versions of the LMM, one is the lognormal forward
LIBOR model (LFM) for pricing caps and the other is the lognormal swap model
(LSM) for pricing swaptions. The LFM assumes that the discrete forward LIBOR rate
follows a lognormal distribution under its own numeraire, while the LSM assumes
that the discrete forward swap rate follows a lognormal distribution under the swap
numeraire. The two assumptions do not match theoretically, but lead to small
discrepancies in calibrations using realistic parameterizations. The following

derivations are based on the LFM.



The LFM specifies the discrete forward rate f(¢;7;,7,,) which is seen at time ¢

during the period between time 7, and time 7, that is different from the

i+l
instantaneous forward rate f(¢,7) as seen at time ¢ for a contract maturing at time
T and follows zero-drift stochastic process under its own forward measure:

df (6T,T,

CAGAY Y
f@&T,T,) = 0,()dW(0)

where dW,(t) is a Brownian motion under the forward measure Q" defined with

respect to the numeraire asset P(#,7,,,) and where o,(f) measures the volatility of

the forward rate process. Using Ito’s lemma, the stochastic process of the logarithm of

the forward rate is given as follows:
o (1)
dIn [(T.T,,) = =752 di+0,(0)d (1) 23.1)

The stochastic integral of equation (2.3.1) can be given as follows. Forall 0<z<T,

In (6,1, 7T,

') =Inf(0;T.T.) —J‘;#a’u +[ 0w w) (2.32)

Since the volatility function o,(¢) is deterministic, the logarithm of forward
rate is normally distributed, implying that the forward rate is lognormally distributed.
For t=7 , -equation (2.3.2) implies that the future LIBOR rate

L(T,T,)=f(T;T,T,) is also lognormally distributed. This explains why this

model is called the lognormal forward LIBOR model. Thought each forward rate is
lognormally distributed under its own forward measure, it is not lognormally

distributed under other forward measure.



3 Market Conventions of the LMM and the Discrete-Time

\Version of the LMM

To enter the world of LMM, we have to be familiar with the terminologies and
instruments that used by the market practitioners. We first introduce the basic terms
and some instruments such like caplets and FRAs, and then use the important results

in the Poon and Stapleton (2005) to derive the discrete-time version of the LMM.

3.1 Market Conventions of the LMM

The relationship between the discrete LIBOR rate L(7,,7;,,) for the term

0, =T,,—T, and the zero-coupon bond price P(7,,T,,,) is given as follows:

l

1
P(T,T,)=————— 3.1.1
(7. T) 1+6.L(T,T,,) ( )

where ¢<T <7, <T,<---<T, 1is the time line and &, is called the tenor or accrual
fraction for the period 7, to T,,.

The time ¢ discrete forward rate for the term o, =7,,, —T, is related to the price

ratio of two zero-coupon bonds maturing at times 7, and 7, as follows:

P@T)
1+6,f(t;T.,T,)= 3.1.2
S G 1) =3 1) (3.1.2)
The forward rate converges to the future LIBOR rate at time 7}, or:
hmf(r T 1+1) L(Tﬂ 1+1) (313)

We can rewrite equation (3.1.2) as follows:

ST T)PGT., ) =~ {P@T)-PT,)

l

Then, we define some of the basic terms we often used in the market and



illustrate as follows:

For(t,T,,T ) : the forward price at time ¢ to invest a zero coupon bond matured at
time 7, attime 7, and can be expressed as P(¢,T,)/ P(t,T}).
y(¢,T)) : the annual yield rate at time ¢ to time 7, and its relation with the zero
coupon bond is givens as  P(¢,7)) =1/(1+0,y(t,T})) .

f&T,T.,,): the forward rate at time ¢ for the time period 7, to 7, and its

relation with forward price of a zero coupon bond is given as
For(t;T,,T,,))=1/(1+6,f(t:T,,T,.))).

After introducing the basic terms, here, we introduce a popular interest rate

option- an interest rate cap. A cap is composed of a series of caplets. For a

T’ -maturity caplet, the practitioners widely use the Black’s formula to obtain its value.
Following is the Black’s formula for the i-th caplet valued at time #:

caplet,(t)= Ax 8, x P(.T )/ (T.T.ON@)~KN(d,)]  (3.1.4)
where

_In(f(tT,T,) K)+ 07 (T, -1)/2
Gi\/T;'_t
g I GT.T)K) -0/ (T,-1)/2
L=

oI —t ’

A : the notional value of the caplet,

dl

5

0. : the length of the interest rate reset interval as a proportion of a year,

P(¢t,T,,) : the zero coupon bond price paying 1 unit at maturity date 7,

+1°
K : the caplet strike price,

o, : the Black implied volatility of the caplet,

10



N(-) : the cumulative probability distribution function for a standardized
normal distribution.

Furthermore, under the LIBOR basis, we can derive the same theoretical pricing
equation for the caplet as equation (3.1.4) from the LFM model. Because both of
LFM and Black’s model are assuming that the forward rate follows the lognormal
distribution and we get the consistent results.

Another instrument we illustrate here as a key to derive out the discrete-time
version of the LMM is the forward rate agreement (FRA). A FRA is an agreement

made at time ¢ to exchange fixed-rate interest payments at a rate K for variable rate

payments, on a notional amount A, for the loan period 7, to 7, equal to one year.

The settlement amount at time 7, on a long FRA is

A(y(T;nTnH)_K)
1+y(]—;1’7;1+1)

FRA(T,) = (3.1.5)

where y(T,T,,,) is the annual yield at time 7, to 7. At the time of the contract

n+l *®
inception, a FRA is normally structured so that it has zero value. To avoid the

arbitrage, the strike rate K is set equal to the market forward rate f(t;7,,7,,,). We

denote the value of the FRA at time # as FRA(¢,7,) which can be expressed as

raT ) = (RO T L) G T, 616

1+ (T, T,..)

3.2 The Discrete-Time Version of the LMM
Now, we restate the most important results which are under the “risk neutral” measure
in the Poon and Stapleton text (2005).

1. For a zero-coupon bond price is given by

P(t,T,) = P(t. ) E,(P(T,,T,)) (3.2.1)

11



or we can write

P, T
E(P@, 1) =280) gyt )

- P(LT)
2. The drift of the forward bond price is given by
Et[FOI’(Tl,Y;,Tn)]—FOI"(t,];,Tn)
P(,T)

=——"1"cov,[For(T,,T,,T,),P(T,,T,
P(t,T) AFor LT L)

(3.2.2)

3. The drift of T, -period forward rate is obtained from the equation (3.1.6) and
given by

Ef(T:T, T, )]~ f(6T,.T,,)) =

1 1
L+ yT.5) 1+ (IG5 A+ f(TLT,.T,,)
x(I+ f(LT. ) (14 f(6 T 1) (14 f(6T,.T,.,))

—COV[[f(Tl;TnaTnﬁ-l)’

1(3.2.3)

After restating the important results, we now apply the results to the LIBOR basis for

the FRA and rewrite the equation (3.1.5) as follows
T .

Fra(T,) = A LT L) = K00,
’ 146, f(T,;T,,T,.,)

n

(3.2.4)

where 6, =T, —T and we assume all the tenors are same (i.e. 6; = 0, =...= J, = 0)

and the notional amount A4 equal to one to make the equation briefer. And using the

above results and similar steps to derive out the FRA value at time ¢ of the equation

(3.2.4) to generalize the T, -maturity forward rate

E[f(T:T,. T, )1-f(tT,.T,,) =
1 1

’T+ 9
) I+ f(T;T,,T,) 1+5f(T1;Tn,T+1)]

n

-1
oy [5f (T, (3.2.5)

xA+6 f(GTL,T))-(IH0 f (6T, 1)) - (A+ 0 f (6T, T, 1))

We assume that the forward rate f(7};7,,7,,,) is the lognormal for all forward

12



maturities, 7, . Then, we use the approximate result for the covariance term, that is
for the small change around the value X =a, Y=b, we have cov(X,Y)~

abcov(ln X,InY). Here we take a= f(t;7,,7,)andb=1/(1+ f(t;1;,T,)) to evaluate

1
cov T;T,T),——— ), then we have
(T 2)1+f(T1;T1,T2))
1
cov,(f(T;1..T,),————) =
T, 2)1+f(T1;T1,T2))
1 1
t.T,T, —— ) Ccov, Iny(T.7,),In——
f@1, »(Hf(t;ﬂ@) (In (7,,T,) 1+y(TI’T2))

and substitute it into the equation (3.2.5) use the property of logarithms to express the

drift of 7, -maturity forward rate as the sum of a series of covariance terms. Finally,

to make our covariance terms in a recognizable form, we use the extension of Stein’s

lemma to evaluate the term with a form cov,(In f(7;7,,7,.,), ln(;)) .

I+ f(T;T.T,)

Stein’s Lemma for lognormal variables

For joint-normal variables x and y

cov(x,g(v)) = E(g(»))-cov(x, y)

Hence, if x=InX and y=InY, then

1 -Y
cov(ln X,In =F -cov(ln X,InY
( 1+Y) (1+Y) ( )

Then we have

1
cov,(In f(7;;T,,T, ), In(—————)) =
[( f(l n 1) (l—i—f(]—;,]—;,Tz)))

SSOLL) ) cov, (0 £ (17,07

Et( . n+l
I+ f(T;;T,T,)

). In f(T; T3, T,))

Here, we apply the result we mention above to the equation (3.2.5) and derive out the

drift of the forward LIBOR rate as the sum of a series of covariance terms as follows:

13



ELTT T, 0I-fGTT,0) =

P T x ST ETT)
5% nd " n+l

1 SF(+T T I 1T .T )l T:T.T.
146 /(T T,) cov [In f(T;T,,T,,,).In f(T;;T,,T,)]
4

Sf T, T,.)
1+5f(t;Tn’T;:+1)

+ /(6T T, % -cov,[In f(T;;7,,T,.,), In f(T;; T, T,,.,)]

(3.2.6)

We also assume that the covariance structure is inter-temporally stable and

cov,[In f(T;;T.,T,,),In f(T;;T,,T,,,)] is a function of the forward maturities and is

not dependent on ¢. Then we define

cov,[In f(T;;T.,T,,,),In f(T};T,,T,,))1=6,, i=1 2,---,n

where &, is the covariance of the log i-period forward LIBOR and the log

in

n -period forward LIBOR. Finally, we can rewrite equation (3.2.6) as follows:
EUIL, L= 6T, T,.) _ _of@h.T) .  ofh.T)
ST, T 1+8f(6T.T) " 1+8f(5T,.T)

é‘f(t;T;NT;Hl) &
1+5f(t:T,,T,,) ™

2,n

(3.2.7)

14



4 Introducing the HSS Recombining Node Methodology

and Applying to The LIBOR Market Model

Ho, Stapleton, and Subrahmanyam (1995) suggest a general methodology for creating
a recombining multi-variate binomial tree to approximate a multi-variate lognormal
process. Our assumption about the LMM satisfies the required conditions of the HSS
methodology. Therefore, we apply the HSS methodology to construct the recombining
trees for LMM. Now, we introduce the HSS methodology first and then apply it in the

LMM.

4.1 The HSS Methodology
The HSS methodology assumes the price of underlying asset X follows a lognormal
diffusion process:

dIn X(¢t) = pu(X(t),t)dt + o (t)dW (1) (4.1.1)
where 1 and o are the instantaneous drift and volatility of In X, and dW(¢) isa

standard Brownian motion. They denote the unconditional mean at time 0 of the

logarithmic asset return at time ¢, as ;. The conditional volatility over the period

t,, to t, isdenoted o, , and the unconditional volatility is o;.

i-1

To approximate the underlying asset process in equation (4.1.1) with a binomial

process at time ¢, i=1,---,m, given the means y,, conditional volatilities o,

i—1,i %

and the unconditional volatilities o,,, HSS denote the conditional volatilities of the
approximated binomial process as &, ,(n,), where n, denotes the number of

binomial stages between time ¢, and ¢, and they require that

limo, ,(n)=0,,, Vi (4.1.2)

15



It is similar to both the approximated unconditional volatility &,,(n,n,,---,n;) and

the approximated mean 4, of the approximated binomial process, which require that

lim 6, ,(n,n,,-+,n)=0,,, Vi,l, [=1--i (4.1.3)
lim g, =y, (4.1.4)

Their method involves the construction of m separate binomial distribution,

where the time periods are denoted ¢,---,¢,---,¢,, and have the set of a discrete

m?>

stochastic for X,, where X, is only defined at time ¢ . In general they have the
form of X, atnoder:

X, = Xud! (4.1.5)

where N, = Z;:l n, , and they have to determine the up and down movements u,, d,

and the branching probabilities that satisfy the equations (4.1.2), (4.1.3) and (4.1.4).

They denote

x,=In(X,/ X,)
and the probabilities to reach x; givenanode x_,, at 7 as
g5, 1%, =x,) or q(x)
An example, where m =2 and we have X, X, and X, is illustrated in Figure 1.

Lemma 1 Suppose that the up and down movements u, and d, are chosen so that

1

2E(X,)/ X,)" _
d = D/ X Cicl2eem
" lvexpQo, N —1)/n) (4.1.6)
i
ui=2(E(Xi)/X0)Ni_di’ i:1,2,'-',m, (417)
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where N, 22221 n,, then if , for all 7, the conditional probability ¢(x,) —0.5 as
n, >, for /=1,---,i, then the unconditional mean and the conditional volatility of

the approximated process approach respectively their true values:

E(X) | E(X)

lim limo, . —>o.,.
4 i—1,i i—1,i
e X, X, et :
I=1,00
TIME 0 1, 4
X X, X,
Kol
o
l/l,
,.r" .'\“ -
XUy :
o ., -~
0 o~ -
o (\“‘
A “
/'/ ’ .
Kl
- . /.’
<. Xguyrdy .
y h - "
- .
xn\"__ ’_.v"
&
4'-."
. -
. .
-
"-\ -»‘
n. o T,
Xd,! .
\.__\‘ p
o
™,
\l\
e
Xy

Figure 1 A discrete process for Xy, X
There are n;+1 nodes at 1, numbered » =0, 1,---, n;. There are n;+ n,+1 nodes at , numbered r =0, 1,---,

ny+ ny. Xy is the starting price, X is the price at time ¢, and )X, is the price at time . u;, d;, u, and d, are

the proportionate up and down movements.

Since x, =In(X,/X,) isnormally distributed, it follows that the regression
x,=a,+bx,_ +¢&, E_(&)=0

1s linear with

2 2 2
b, = \/[tiao,i —(t, =t o1/t 00, ,
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and

a =E(x)-bE(x, )
They determined the conditional probabilities ¢(x;) so that

E (x)=a,+bx,

i—lr
held for the approximated variables x, and x,_,.
Theorem 1 Suppose that the X, are joint lognormally distributed. If the X, are

approximated with binomial distributions with N, =N, , +n, stages and u, and d,

given by equations (4.1.6) and (4.1.7), and if the conditional probability of an up

movement at node r at time i—1 1is
a;,+bx_,,—(N,,—r)lnu,—rind, Ind,

n(Inu, —Ind) CInu, —Ind,’

Q(xi |xi71 = xj71,r) = Vi, r

(4.1.8)

then 4 —y and 6, >0, and 6, ,, >0, as n,—> o, Vi

i

4.2 Applying the HSS Methodology to the LMM

After introducing the HSS methodology, we now apply this methodology into the
LMM and make some change to satisfy our conventions. We have the following
propositions.

Proposition 1 For the forward LIBOR rate which follows the lognormal distribution,

we can choose the proper up and down movements to determine the i-th period of the

T, -maturity forward LIBOR rate and have the form

G, = O, T u'"d], i=T.T,,.T,

n

4.2.1)

where
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1

g - AEG G L)) fOT, 1)1

1+exp(20, ,, \/(1: =T ,)/n) (4.2.2)
u =20E(fT, T, ) f(0,T,T. )]-d, (4.2.3)
Nt (4.2.4)

r: node’s number from top to bottom at time 7,
The structure of the binomial tree can be shown as Figure 2, with 7, +1nodes at

7. numbered” = @1, ®1-There are nodes at 7, numbered »=0,1,...,n +n, .

Here we write the forward rate F4%: 2.3} in abbreviated form F€%: 2} and take n =

n2=2, 7’121’2:2.

@ .24
O
@ (0, 2y O
® O
102 @ .f{ﬂ.Elﬂ,""“d;‘ @’ ©:24as
o @
@ 24 'S
O
@ ¢:24™

Figure 2 The binomial tree for the forward rate 1(0;2,3)
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After determining the structure of the forward LIBOR tree, we then have to

choose the probability to satisfy the Proposition 1.

Proposition 2 Suppose that the forward LIBOR rate f(i;7,,7,,,) are joint
lognormally distributed. If the f(i;7,,T,.,), i=1,,T,,---,T, are approximated with

binomial distributions with N, =N, +n, stages and u, and d, given by equations

(4.2.2) and (4.2.3), and if the conditional probability of an up movement at node r at
time 7, is

E_(x)-(N,_, —r)lnu,—rnd, B Ind

2051 = 5,0 = n,(nu, —Ind,) i, —ng, 4
where
x, = In LG i) (4.2.6)
f(O;T,.T,.,)
E (x)=a,+bx_, =E(x)-bE(x_)+bx_, (4.2.7)

For determining the conditional probability, it has some skills to use for the term

of E ,(x;,) and following are the procedures to derive E  (x,). We first derive

E(x;) term in equation (4.2.7). Since the forward rate f(i;7,,T,,,) is lognormally

distributed, we have

E(xi) — ln[E(f(l’]—;7’]—;’l+]))]_ 1 0_2 (428)

fO;T,.T,) © 2

Second, we use the result of equation (3.2.7) obtained from the last section, and

rewrite it as follows:
EU (LTl 8GRI o SfGT.T) o
f&T,T,) 1+6,f(t:T,T) " 1+6,f(T,.T)

SSET T
146, /(6T T,)

(4.2.9)

Then multiple the f(#7,,7,.,)/ f(0;T,T,.,) term on both side to get the general
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formof E,(f(1};T,,T,.,)/ f(0;T,,T,,):

J&T,.T,.) ELTT,,T,.)]
f;7,.7,,)  f&T,.T,,)
f(t;T:ﬂT;HI)X(l_i__ 51f(t;T1aTz) G, + §2f(t;T2>T3) .6_2"_{_.'._}_ 5nf(t;7:1’7:1+1) 'ON'”)
fO:T,.T.) I+o,f(:1,T,) — 1+6,fT.T;) ~ 1+6,/&:T,.T,.,)

(4.2.9)

Finally, we substitute it into the formula (4.2.8) to obtain E(x;) term. Then, we
take the value of FE(x,) into equation (4.2.7) to compute the up movement
probability at time 7, giventhenode f(i-LT.T ,),.

Note that when n; stages approach the infinite /=1,---,i, the sum of n; stages

also approach the infinite (i.e. N, :zjzl n, = o0). We can reduce the up and down

movements to the briefer form which is easier to calculate. That is

d,

2
" 1+expQo, (T -T )/ n,)

u =2-d.

1 1

and the conditional probability ¢(x,) 0.5 as n, - oo, for/=1,---,i.
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5 The Pricing of the Interest Rate Derivatives in the LMM

After we construct the forward tree process, it can be employed to price the
derivatives. By beginning from the bond option on zero coupon bond (ZCB), then
extend to the caplets.
5.1 The valuation of bond option on zero coupon bond in LMM
The bond option on ZCB is a bond that can be callable before maturity date with a
callable price K. For example, we have a three years maturity zero coupon bond with
a callable value K equal to 0.952381 dollar at year two. That is to say we can redeem
the ZCB at year two with 0.952381 dollar or hold it until maturity at year three with 1
dollar. Therefore, we have to price the option value Cof this callable bond at time 0
(see the Figure 3)
Co option matunty bond maturity
I | I

|
1|
Tune O ly 2y i 3y
one yeal

Figure 3 The callable bond for the 3 year maturity ZCB

To obtain the callable bond option value, we use the lattice method to price the
option value of the callable bond. To get the payoff function at year two, we need
know the zero coupon price at year two maturity at year three (i.e. P(2,3)). Comparing
to the callable value K, we take function max(P(2,3)-K,0). Then we discount it back
to the time 0 to get the option value of the callable bond. Here we take the flat

forward rate 5% and constant volatility 10% and have

C, =P(0,2)x E[max(P(2,3)— K,0)]
=0.90702948 x 0.00258128
=0.00234130

After having the option value at 10%volatility, we increase the volatility until

reach 30% to see the relationship between option value and volatility. We plot the
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results into Figure 4 to see the trend between option values and volatility.

Bond Option Value

0.008000000000

0.007000000000

0.006000000000 .—’

0.005000000000

0.004000000000 ’0
PS4 4 Bond Option...
0.003000000000 *

0.002000000000

0.001000000000

0.000000000000 . . . . . . .
000 005 010 015 020 025 030  0.3svolatility

Figure 4 Bond option values for different volatility
From the above figure, we find that when the volatility increases, the value of
bond option on ZCB increases. It is consistent with the inference for the Greek letter

vega when the underlying asset’s volatility increases the option value increases, too.

5.2 The valuation of caplets in LMM

A popular fixed income security is an interest rate cap, a contract that pays the
difference between a variable interest rate applied to a principal and a fixed interest
rate (strike price) applied to the same principal whenever the variable interest rate
exceeds the fixed rate. We consider a cap with total life of 7 and let the tenor ¢, the
notional value A4 and the strike price K be fixed positive values. Note that the

reset dates are Ty, T», ... , T, and define T,+; = T. Define the forward rate
f(T;T,T,,) as the future spot interest rate for the period between 7, and 7,

i i+l

observed at time 7, (1<i<n). The payoff function of a caplet at time T, is

Ax&xmax(f(T:T,T,,,)~ K,0) (5.2.1)
Equation (5.2.1) is a caplet on the spot rate observed at time 7, with payoff
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occurring at time 7;,,. The cap is a portfolio consisted of n such call options which

the underlying is known as caplet.

To derive out the price of the cap, we have to price the caplet first and then sum
up the n caplets value to get the price of a cap. For a caplet price at time #, we use the
Black’s formula mentioned in chapter 3 (Equation (3.1.4)) to get the theoretical value.

Thus, we restate the as follows:

caplet (t)= Axo, xP(t,T . ) f(;T,T,)N(d,))—KN(d,)] (5.2.2)
where
LT T K)ol (=012
1 oI —t ’
LI GTT) K)ol (T -0)/2
, =

oI —t ’
After having the theoretical value as our benchmark, we use the payoff function

to compute the price in the lattice method. To get the payoff function at time 7

i+1> WE

have to know the evolution of the forward rate f(0;7,7,,,) attime 7,. We construct
the binomial tree of f(0;7,7,,) and known the (f(7;7,T,,) —K),r=0,1, ..., 1.

Calculating the expectation of the payoff at time 7

i+l

and then multiple the ZCB of

P(t,T,,) to getthe caplet value at time ¢.

In the followings, we take the 10 maturity of cap to compute the individual
caplet from 1 period to 10 periods with the assumption of tenor ¢ and notional
value A are equal to one and the volatility is constant and equal to 10%. Here the
strike price K is 5%, the forward curve is flat 5% and the stages »; for every period are

equal to 25. We calculate one period caplet at time 0 (caplet;(0)).
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caplet, (0) = AxoxP(0,2)x E[max(f(1;1,2)-K,0)]

=1-1-P(0,2)-0.0020112666
=0.90702948-0.0020112666
=0.0018242781

Table 1 Volatility is 10% and Stage n; for Every Period is 25

Maturity Black Lattice Difference . Relative

Difference (%)
1 0.0018085085 0.0018242781 0.0000157696 0.8719669656
2 0.0024348117  0.0024407546  0.0000059429  0.2440786919
3 0.0028388399  0.0028374958 -0.0000013441 0.0473484800
4 0.0031206153  0.0031282191  0.0000076038  0.2436631792
5 0.0033214311  0.0033204098 -0.0000010214 0.0307505629
6 0.0034637453  0.0034664184  0.0000026731 0.0771737036
7 0.0035616356  0.0035658574  0.0000042219 0.1185369137
8 0.0036247299  0.0036200240 -0.0000047059 0.1298286011
9 0.0036600091  0.0036633313  0.0000033221  0.0907678678
10 0.0036727489  0.0036743568  0.0000016079  0.0437804213

RMSE  0.0000063671

1. Caplet assume 6 = 1 and stage 25

2. Assume volatility is 10%, the forward curve is flat 5%

Table 1 is the results for different maturity caplets. Besides the relative

difference, we also use the RMSE to see the difference between the lattice value and

Black’s model for the whole maturity. The definition of the RMSE is given as follows:

RMSE (Root Mean Square Error)

A frequently-used measure of the differences between values predicted by a model

or an estimator and the values actually observed from the thing being modeled or

estimated. For the comparing difference between two models, the formula of

RMSE can be expressed as

RMSE(6,,0,) = \JMSE(6,,6,) = E((6, - 6,)") = \/ 2 (%)
n
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where

T1.1 T2.1

T2 Ta2
0, = and fy =

L1n Lan

Here, 0, and 0, represent the lattice value and Black’s model respectively which
maturity form one to ten.
Now we change the stages from 25 to 50 to figure out the relationship between

stages and RMSE. The results are shown in Table 2.
Table 2 Volatility is 10% and Stage n; for Every Period is 50

Maturity Black Lattice Difference  Relative Difference (%)
1 0.0018085085 0.0018099405 0.0000014320 0.0791823392
2 0.0024348117 0.0024397802 0.0000049685 0.2040608652
3 0.0028388399 0.0028434461 0.0000046061 0.1622542164
4 0.0031206153  0.0031230795 0.0000024643 0.0789673074
5 0.0033214311 0.0033207434 -0.0000006878 0.0207066243
6 0.0034637453  0.0034620815 -0.0000016638 0.0480341136
7 0.0035616356 0.0035626664 0.0000010308 0.0289416315
8 0.0036247299 0.0036267433 0.0000020134 0.0555455781
9 0.0036600091 0.0036617883  0.0000017792 0.0486107386
10 0.0036727489 0.0036734197 0.0000006708 0.0182649876

RMSE 0.0000025690

1. Caplet assume & = 1 and stage 50

2. Assume volatility is 10%, the forward curve is flat 5%

We also plot the RMSE with different stages between periods from 25 to 50 to
see the convergence behavior of RMSE. Figure 5 shows that the convergence
behavior of RMSE for the different stages. We find that when we increase stages
between periods, both relative difference and RMSE decrease and RMSE converge to
zero with the stages go to infinite.

To see the impact of volatility on the value of different caplets and the

convergence behavior of RMSE, we change the volatility from 10% to 20%. We do
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the same procedures as we do in volatility 10%, and results for the 25 and 50 stages
are presented in Table 3 and Table 4 respectively. Finally, we plot the RMSE with

different stages from 25 to 50 for volatility 20% in Figure 6.

RMSE with 10% Volatility

(0.000007000000

(0.000006000000 *

0.000005000000 -~

0.000004000000 -

(0.000003000000 == RMSE

(0.000002000000

(0.000001000000

(0.000000000000

2526272829303132333435363738394041424344454647484950 stage

Figure 5 RMSE with Volatility 10%

Table 3 Volatility is 20% and Stage n; for Every Period is 25

Maturity Black Lattice Difference  Relative Difference (%)
1 0.003612502  0.003629702 0.0000171997 0.4761162723
2 0.004857485  0.004880545 0.0000230598 0.4747275803
3 0.005656481  0.005664503 0.0000080217 0.1418144294
4 0.006210206  0.006193504 -0.0000167019 0.2689425754
5 0.006601645  0.006606642 0.0000049969 0.0756919625
6 0.006875986  0.006885656 0.0000096703 0.1406382089
7 0.007061574  0.007064876  0.0000033018 0.0467579666
8 0.007177804  0.007167478 -0.0000103258 0.1438570619
9 0.007238738  0.007241022 0.0000022831 0.0315395992
10 0.007255004  0.007260387 0.0000053836 0.0742052974

RMSE 0.0000120045

1. Caplet assume & = 1 and stage 25

2. Assume volatility is 20%, the forward curve is flat 5%
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Table 4 Volatility is 20% and Stage n; for Every Period is 50

(0.000006000000

(0.000004000000

(0.000002000000

(0.000000000000

Maturity Black Lattice Difference  Relative Difference (%)
1 0.0036125022 0.0036270258  0.0000145236 0.4020371797
2 0.0048574848 0.0048648548  0.0000073700 0.1517253656
3 0.0056564814 0.0056507415 -0.0000057399 0.1014746318
4 0.0062102056 0.0062167021  0.0000064965 0.1046097077
5 0.0066016455 0.0066036633  0.0000020178 0.0305658301
6 0.0068759861 0.0068743634 -0.0000016227 0.0235991644
7 0.0070615740 0.0070656730  0.0000040990 0.0580467885
8 0.0071778037 0.0071775957 -0.0000002080 0.0028984108
9 0.0072387385 0.0072386556 -0.0000000829 0.0011446687
10 0.0072550037 0.0072576598  0.0000026562 0.0366117075
RMSE 0.0000060911
1. Caplet assume & = 1 and stage 50
2. Assume volatility is 20%, the forward curve is flat 5%
RMSE with 20%Volatility

0.000014000000

0.000012000000 -

0.000010000000

A
0.000008000000 V
——RMSE

2526272829303132333435363738394041424344454647484950  stage

Figure 6 RMSE with Volatility 20%

We find that with the volatility increases, the value of caplets increases, and the

convergence rate of RMSE decreases. It is consistent with high volatility makes the

option value more valuable and convergence rate slower.
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6 Conclusions

Implementing the LIBOR market model with lattice method is difficult. To make the
pricing procedure by lattice method feasible, we construct a recombining binomial
tree to depict the evolution of the forward LIBOR rate. In this model, we have all the
forward rates for the different maturity at any node of the recombining binomial tree.
With these rates on the nodes, we can easily figure out the early exercise decision for
the American style derivatives which is a tough work in the Monte Carlo simulation.

After constructing the recombining binomial tree, the payoff of the interest rate
derivatives on each node can be obtained. The pricing value of the derivatives can be
calculated by backward induction method. We use the proposed model to calculate the
value of bond option on zero coupon bond and caplets. Comparing to the theoretical
value, we find the theoretical value and lattice method is close. However, with the
stage between period by period increases, the difference between theoretical value and
lattice method decreases. Besides, as the volatility increases the converge rate of
RMSE decrease.

In the future, we have to find out the joint probability between different maturity
forward rates and adjust the stages between period by period to fit the strike price to
reduce the nonlinearity error. Trying to change the constant volatility to stochastic

volatility to fit the volatility term structure will make the model more complete.
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