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Abstract

Derivatives are popular financial instruments whose values depend on other more

fundamental financial assets (called the underlying assets). As they play essential roles

in financial markets, evaluating them efficiently and accurately is critical. Most deriva-

tives have no simple valuation formulas; as a result, they must be priced by numerical

methods such as lattice methods. In a lattice, the prices of the derivatives converge to

theoretical values when the number of time steps increases. Unfortunately, the nonlin-

earity error introduced by the nonlinearity of the option value function may cause the

pricing results to converge slowly or even oscillate significantly. The lognormal diffusion

process, which has been widely used to model the underlying asset’s price dynamics,

does not capture the empirical findings satisfactorily. Therefore, many alternative pro-

cesses have been proposed, and a very popular one is the jump-diffusion process. This

paper proposes an accurate and efficient lattice for the jump-diffusion process. Our

lattice is accurate because its structure can suit the derivatives’ specifications so that

the pricing results converge smoothly. To our knowledge, no other lattices for the jump-

diffusion process have successfully solved the oscillation problem. In addition, the time

complexity of our lattice is lower than those of existing lattice methods by at least half

an order. Numerous numerical calculations confirm the superior performance of our

lattice to existing methods in terms of accuracy, speed, and generality.

Keywords: complexity, jump-diffusion process, pricing algorithm.

1 Introduction

Derivative securities are financial instruments whose values depend on other more funda-

mental financial assets called underlying assets such as stocks, indexes, currencies, com-

modities, bonds, mortgages, other derivatives, and temperatures [19]. The most common

derivatives are futures, swaps, and options. They are essential for speculation and the man-

agement of financial risk. With the rapid growth and the deregulation of financial markets,

many complex derivatives have been structured to meet specific financial goals. But, al-

though financial innovations make the market more efficient, they create new problems in

pricing and hedging.

In this paper, the underlying asset is assumed to be stock and the derivative is assumed

to be option for convenience. By assuming that the price process of the stock follows
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Figure 1: The CRR Lattice. The initial stock price is S0. The upward and downward

multiplicative factors for the stock price are u and d, respectively. The branching probabil-

ities are Pu and Pd = 1 − Pu.

a lognormal diffusion process, Black and Scholes arrive at their ground-breaking option

pricing formula [4]. However, most financial derivatives have no analytical formulas and

thus must be priced by numerical methods like lattices. A lattice divides the time span

from now to the option’s maturity date into n time steps and specifies the stock prices

at each time step. Take a 3-time-step Cox-Ross-Rubinstein (CRR) [7] lattice in Fig. 1 as

an example. (The details of the CRR lattice will be described later.) The time interval

between now and the maturity date is evenly divided into 3 time steps. The stock price at

time step 0 is S0. From an arbitrary node with stock price S, the CRR lattice stipulates

that the stock price after one time step equals Su (the up move) with probability Pu and Sd

(the down move) with probability Pd, where d < u and ud = 1. The probabilities (Pu and

Pd) and the multiplication factors (u and d) are determined by matching the stock process’s

moments asymptotically. As n → ∞, the pricing results converge to the theoretical price

[11].

Developing efficient lattice algorithms for complex derivatives has been widely studied

[1, 3, 8, 9, 20, 24]. Although a lattice can be efficient for simple derivatives, evaluating

complex derivatives can be computationally intractable as some problems are so-called #P-

hard [6]. Another issue is that pricing some complex derivatives like barrier options by a

lattice could result in substantial oscillations in prices [5]. Oscillations can be suppressed

by tweaking the lattice structure to suit derivatives’ specifications [12].

Several empirical studies show that the distribution of stock returns has heavier tails and
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Figure 2: The Multinomial Structure of Amin’s Lattice. The stock price from node

A moves to either node B or C similar to the CRR lattice. It moves to node D or E via

the dashed lines when a jump event occurs.

higher peaks than the lognormal diffusion process employed by Black and Scholes [17, 18].

To address this problem, alternative processes such as the jump-diffusion process [23], the

GARCH process [10], and the stochastic volatility process [15] have been proposed. Despite

the ability to better model the real world stock price, these alternative processes give rise

to new problems for lattice methods. For example, a lattice for the GARCH process may

still give rise to an exponential-time pricing algorithm [22]. The major contribution of this

paper is an efficient and flexible lattice for the jump-diffusion process.

The jump-diffusion process has a jump component superimposed on a diffusion compo-

nent. The diffusion component is the lognormal diffusion process, and the jump component

is composed of lognormal jumps driven by a Poisson process. The lognormal diffusion pro-

cess, the lognormal jumps, and the Poisson process are assumed to be independent. Since

most derivatives have no simple valuation formula under the jump-diffusion process, pricing

them by a lattice is one of several alternatives. But lattice algorithms for the jump-diffusion

process remain few. Amin uses the multinomial structure to approximate the jump-diffusion

process as shown in Fig. 2 [2]. His lattice first constructs a CRR lattice for the lognormal

diffusion process. Then it allows each node on the CRR lattice to jump to other nodes at

the next time step. For example, the stock price at node A in Fig. 2 can move to either

node B or C when no jump occurs, or can jump to nodes D or E when a jump event occurs.

However, as mentioned in Hillard and Schwartz’s paper, the results are less accurate when

the volatility of the lognormal jumps is relatively larger than that of the diffusion compo-
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nent [16]. This is due to the fact that only the nodes on the CRR lattice, which are related

to the diffusion component, are used to approximate the jump component. To address this

problem, Hilliard and Schwartz’s (HS) lattice matches the first few local moments of the

lognormal jumps to generate accurate pricing results. Towards that end, they position extra

nodes in their lattice and allow each node to jump to these extra nodes. Their lattice is

sketched in Fig. 3 by assuming that jump events can only occur between time step 0 and

time step 1 to simplify the presentation. The white nodes (called the diffusion nodes) and

solid branches describe the lognormal diffusion process (i.e., stock process without jump

events), while the gray nodes (called the jump nodes) and dashed branches describe the

lognormal jumps (i.e., stock process with jump events alone). The jump nodes at time step

1 are positioned to match the first few local moments of the lognormal jumps. The stock

price at the diffusion node at time step 0 can either move to the diffusion nodes at time

step 1 or jump to the jump nodes at time step 1. Then the nodes at time step 1 follow the

CRR structure to move to the diffusion nodes at time step 2. It will be proved that the

node count of their lattice grows at a rate of O(n3). Their lattice lacks the flexibility to

suppress the price oscillations.

This paper proposes a new lattice to more efficiently and accurately price a wide range of

derivatives under the jump-diffusion setup. We first develop a feasible trinomial structure.

We then make a truncated CRR lattice align with the derivatives’ specifications and use

the trinomial structure to complete the diffusion part of our lattice. Additionally, this

trinomial structure is used to connect the jump nodes to the diffusion nodes after one time

step to lower the node count of the lattice. Figure 4 describes connecting the jump nodes

to the diffusion nodes by the trinomial structures with the same assumption in Fig. 3. The

branches of the jump nodes at time step 1 are trinomial, and the jump nodes are connected

to the diffusion nodes at time step 2. Therefore, the number of nodes at the second time

step and consequently the node count of the whole lattice are smaller than those of the HS

lattice. This paper will prove that our lattice grows as O(n2.5). In addition, the trinomial

structure gives the diffusion part of our lattice more degrees of freedom to address the

oscillation issue.

Our paper is organized as follows: The mathematical models and background financial

knowledge are introduced in Section 2. We review how to construct a CRR lattice and the

HS lattice, and why the pricing results oscillate significantly in Section 3. Section 4 describes

a simple trinomial structure that can be easily incorporated into a CRR lattice and shows

how this structure is used in our lattice. Section 4 also proves the time complexities of our

lattice. Numerical results given in Section 5 show the superior performance of our lattice.

Section 6 concludes.
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Figure 3: The Structure of the HS Lattice. The white nodes and solid branches describe

the dynamics of the diffusion process. The gray nodes and dashed branches describe the

dynamics of stock price process when a jump occurs. The branches from the gray nodes

and white nodes at time step 1 follow the CRR binomial-branch structure as illustrated in

Fig. 1.
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Figure 4: The Structure of Our Lattice. The white nodes and solid branches describe

the dynamics of the diffusion process. The gray nodes and dashed branches describe the

dynamics of the stock price process when a jump occurs. The branches from gray nodes at

time step 1 are trinomial.
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2 Modeling and Definitions

2.1 The Mathematical Model of the Jump-Diffusion Process

Define St as the stock price at time t. The risk-neutralized version of the underlying asset’s

jump-diffusion process is

St = S0e
(r−λk̄−0.5σ2)t+σz(t)Y (n), (1)

where Y (n) =
∏n(t)

i=0 (1 + ki) and k0 = 0 [23]. In the above equation, z(t) denotes a standard

Brownian motion, r denotes the risk-free rate, and σ denotes the volatility of the diffusion

component of the stock price process. Jump events are governed by the Poisson process

n(t) with jump intensity λ. The random jump magnitude ki (i > 0) satisfies ln (1 + ki) ∼
N (γ, δ), where k̄ ≡ E (ki) = eγ+0.5δ2 − 1. Recall that the diffusion component, the random

jump magnitude, and the Poisson process are assumed to be independent.

Define the S-log-price of the stock price S′ as ln(S′/S) and the log-distance between

stock prices S and S′ as | ln(S) − ln(S′)|. Hilliard and Schwartz decompose the S0-log-

price of St (called Vt throughout this paper) into the diffusion component and the jump

component by rewriting Eq. (1) as follows:

Vt ≡ ln

(

St

S0

)

≡ Xt + Yt, (2)

where the diffusion component

Xt ≡
(

r − λk̄ − 0.5σ2
)

t + σz(t) (3)

is an Ito process, and the jump component

Yt ≡
n(t)
∑

i=0

ln (1 + ki) (4)

is normal under Poisson compounding.

2.2 Background Financial Knowledge

Vanilla options give their owners the rights to buy or sell the underlying stocks for the

exercise price X and have no other unusual features. European-style vanilla options allow

holders to exercise the options only at the maturity date T with the payoff

P(T ) = max(θ (ST − X) , 0),

where θ = 1 for call options and θ = −1 for put options.

Barrier options are a kind of options whose payoffs depend on whether the underlying

stock’s price path ever touches certain price levels called the barriers. There are many

different types of barrier options. Our paper focuses on the evaluation of the knock-out

barrier options. Such options cease to exist when the underlying stock’s price touches one
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of the barrier(s). The payoff of a single-barrier option with a low barrier L (where L < S0)

at the maturity date is

P(T ) =

{

max (θ (ST − X) , 0) , if Sinf(T ) > L,

0, otherwise,

where Sinf(T ) = inf0≤t≤T St. The payoff of a double-barrier option with a low barrier L

and a high barrier H (where L < S0 < H) at the maturity date T is

P(T ) =

{

max (θ (ST − X) , 0) , if Ssup(T ) < H and Sinf(T ) > L,

0, otherwise,

where Ssup(T ) = sup0≤t≤T St. A fundamental theorem in finance says that a European

option’s value at time 0 equals the discounted expected payoff at time T [13], i.e.,

e−rT E [P(T ) ] . (5)

3 Preliminaries

We first review the principles underlying building a lattice that converges to the lognormal

diffusion process as the number of time steps n goes to infinity. Next, we explain how to

price an option on the lattice. Then we proceed to describe how Hilliard and Schwartz

incorporate the jump component into the CRR lattice. Finally, we describe a mechanism

to solve the oscillation problem.

3.1 Constructing a Lattice under the LognormalDiffusion Process

The well-known Cox-Ross-Rubinstein (CRR) binomial lattice forms the foundation of our

and the HS lattices. A lattice partitions the time span from time 0 to time T into n equal

time steps and specifies the stock price at each time step. The length of one time step ∆t

thus equals T/n. A 3-time-step CRR binomial lattice is illustrated in Fig. 1. At each time

step, the stock price S can either make an up move to become Su with probability Pu or a

down move to become Sd with probability Pd ≡ 1 − Pu. The relation

ud = 1 (6)

is enforced by the CRR binomial lattice.

As the lognormal diffusion process is a special case of the jump-diffusion process with

λ = 0, the S0-log-price of Si∆t can be represented by Xt (see Eq. (3)) with λ = 0 under the

lognormal diffusion process. The mean (µ) and variance (Var) of the St-log-price of St+∆t

are derived from Eq. (3) thus:

µ ≡
(

r − 0.5σ2
)

∆t, (7)

Var ≡ σ2∆t. (8)
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To make sure the lattice converges to the lognormal diffusion process Xt, the mean and

variance of the lattice should match µ and Var, respectively, asymptotically:

Pu ln u + Pd ln d → µ, (9)

Pu (lnu − µ)2 + Pd (ln d − µ)2 → Var. (10)

In addition,

Pu + Pd = 1 (11)

must hold. The four parameters Pu, Pd, u, and d are uniquely obtained by solving Eqs. (6)

and (9)–(11). The CRR lattice adopts this solution: u = eσ
√

∆t, d = e−σ
√

∆t, Pu = er∆t−d
u−d

and Pd = er∆t−u
d−u . The requirements 0 ≤ Pu, Pd ≤ 1 can be met by suitably increasing n

[21]. Moreover, with a small enough ∆t, Eq. (7) implies

−σ
√

∆t ≤ µ ≤ σ
√

∆t. (12)

In general, each node on a lattice can branch into ` nodes at the next time step, which

will be called an `-nomial lattice. Ideas similar to the above can be applied to construct an

`-nomial lattice. ` ≥ 2. Note that 2` degrees of freedom are provided by an `-nomial lattice.

They include ` price multiplicative factors (like the u and d of the CRR binomial lattice)

and ` branching probabilities (like the Pu and Pd of the CRR binomial lattice). As a result,

2` linearly independent equations are needed to determine these 2` variables uniquely. The

matching of the mean and variance provides 2 equations. The branching probabilities sum

to 1, providing another one. Note that the branching probabilities must lie between 0 and

1. An additional 2`−3 equations are added to modify the structure of the lattice or to meet

more constraints. For example, Eq. (6) is used in the CRR lattice to have flat price levels

(i.e., S0ud = S0). In this paper, we construct trinomial structures (i.e., ` = 3) to connect

the jump nodes to the diffusion nodes after one time step to reduce the node count of the

lattice. We also use the trinomial structures and additional techniques to make a lattice

align with the derivatives’ specifications to suppress price oscillations.

3.2 Hilliard and Schwartz’s Lattice for the Jump-Diffusion Process

In the HS lattice, the diffusion component is modeled by a binomial lattice as in Section

3.1 except that the mean of the St-log-price of St+∆t (see Eq. (7)) is replaced by

µ ≡
(

r − λk̄ − 0.5σ2
)

∆t (13)

to account for the jump contributions. The jump component is modeled by positioning

extra jump nodes to match the first few local moments of the lognormal jumps. Motivated

by the decomposition in Eq. (2), the S0-log-prices of the 2 × (2m + 1) nodes at time step

i + 1 following node Vi∆t can be represented by

V(i+1)∆t = Vi∆t + cσ
√

∆t + jh, c = ±1, j = 0,±1,±2, . . . ,±m. (14)
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Above, c ∈ {−1, 1} denotes the upward or the downward movement of the stock price

driven by the diffusion component (called the diffusion move), and j denotes the number of

positions above or below the node Vi∆t + cσ
√

∆t (called the jump move). Note that j = 0

corresponds to the diffusion moves. In addition, the magnitude of the basic jump unit is

set to

h =
√

γ2 + δ2 . (15)

The probabilities qj (j = 0,±1,±2, . . . ,±m) are chosen to match the first 2m local moments

of the continuous-time distribution of the jump component. Formally, we set

j=m
∑

j=−m

(jh)iqj = µ′
i ≡ E





n(∆t)
∑

w=0

ln(1 + kw)





i

, i = 1, 2, . . . , 2m,

where µ′
i is the ith local moment of Y∆t (see Eq. (4)). In addition,

j=m
∑

j=−m

qj = 1

must hold. By solving the above 2m + 1 equations, we obtain 2m + 1 probabilities qj (j =

0,±1,±2, . . . ,±m). Since the diffusion component and the jump component are assumed

to be independent, the probability of moving from node Vi∆t to node Vi∆t + σ
√

∆t + jh is

Puqj and it is Pdqj to node Vi∆t − σ
√

∆t + jh.

Pricing options is done by evaluating Eq. (5) on the lattice by the so-called backward

induction. Define F (Vi∆t, i) as the option value for the case that the stock price is S0e
Vi∆t

at time step i. In particular, F (Vn∆t, n) equals P(T ). For European-style options, the value

on the node with stock price S0e
Vi∆t at time step i can be computed by

F (Vi∆t, i) = e−r∆t
m

∑

j=−m

[

F
(

Vi∆t + σ
√

∆t + jh, (i + 1) ∆t
)

Puqj

+ F
(

Vi∆t − σ
√

∆t + jh, (i + 1) ∆t
)

Pdqj

]

.

Note that F (Vi∆t, i) is set to 0 if Vi∆t ≤ ln(L/S0) in pricing single-barrier options. In

double-barrier options, F (Vi∆t, i) is set to 0 if Vi∆t ≤ ln(L/S0) or Vi∆t ≥ ln(H/S0). The

backward induction for the CRR lattice is a special case by setting m = 0 and q0 = 1.

Hilliard and Schwartz argue that their lattice is efficient since a small m, says 3 or 4, results

in accurate pricing results for vanilla options. Later we will show that it is not accurate for

barrier ones.
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3.3 Complexity Analysis

In the HS lattice, according to Eq. (14), the stock prices at time step i can be represented

by

S0e
Vi∆t = S0e

V(i−1)∆t+c1σ
√

∆t+j1h,

= S0e
V(i−2)∆t+(c1+c2)σ

√
∆t+(j1+j2)h,

=
...

= S0e
V0∆t+(c1+c2+···+ci)σ

√
∆t+(j1+j2+···+ji)h,

where ck = ±1, jk = 0,±1,±2, . . . ,±m, and k ∈ { 1, 2, . . . , i }. Recall that V0∆t ≡
ln(S0/S0) = 0. Therefore, the stock prices can be represented by S0e

ασ
√

∆t+βh, where

α and β are integers. At time step i, the value of the variable α ranges from −i to i and

that of β ranges from −mi to mi. Note that the diffusion nodes and the jump nodes do

not occupy the same grid point because the log-distance between two adjacent diffusion

nodes, 2σ
√

∆t, is different from h =
√

γ2 + δ2 . As a result, the node count of the lat-

tice at time step i equals (2i + 1)(2mi + 1) = O(i2); therefore, the total node count is

Σn
i=0(2i + 1)(2mi + 1) = O(n3). This is also the time complexity of pricing vanilla options

and barrier options on the HS lattice.

3.4 The Oscillation Problem

Theoretically, the pricing results generated by the lattices converge to theoretical option

value as n → ∞ [11]; however, the pricing results may oscillate significantly. Figlewski

and Gao argue that this phenomenon is mainly due to the nonlinearity error — the error

introduced by the nonlinearity of the option value function [12]. The nonlinearity error can

be significantly reduced by making a node or a price level of the lattice coincide with the

location where the option value function is highly nonlinear. For example, the oscillation

can be suppressed by making a node coincide with the strike price at the maturity date or

by making a price level coincide with the barrier for pricing barrier options [25].

4 Lattice Construction

We first explain the trinomial structure. Next, we describe how to use this structure to fit

derivatives’ specifications and, later, how to use it on the jump nodes to reduce the node

count of our lattice. Finally, we analyze the time complexities of the HS and our lattices.

4.1 The Trinomial Structure

We shall construct a valid trinomial structure that can be easily added in front of a truncated

CRR lattice which has ∆t as the duration of one time step. A trinomial structure is valid if it

11
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Figure 5: The Trinomial Structure. The stock price can move from node X to node A

with probability Pu, node B with probability Pm, and node C with probability Pd. Above,

µ denotes the mean of the s(X)-log-price of St+∆t′ (see Eq. (16)). The s(X)-log-price of

s(X) is 0, and those of s(B), s(A), and s(C) are µ̂, µ̂+2σ
√

∆t, and µ̂−2σ
√

∆t, respectively.

The numbers β, α, and γ are defined in Eqs. (21)–(23). The length of the time step for the

trinomial structure, ∆t′, satisfies the constraint ∆t ≤ ∆t′ < 2∆t.

matches the mean and variance of the stock return; in addition, the branching probabilities

Pu, Pm, and Pd are between 0 and 1.

Let the stock price of node Z be s(Z) for convenience. Given a node X at time t and a

CRR lattice with the length of each time step equal to ∆t beginning at time t + ∆t′, the

mean (Eq. (13)) and variance (Eq. (8)) of the s(X)-log-price of St+∆t′ are adjusted thus:

µ ≡
(

r − λk̄ − 0.5σ2
)

∆t′, (16)

Var ≡ σ2∆t′. (17)

In Fig. 5, for example, the log-distance between two adjacent nodes at time t + ∆t′ is

2σ
√

∆t . Let node B be the node whose s(X)-log-price (µ̂) is closest to µ among all the

nodes at time t + ∆t′. We select two nodes A and C, which are adjacent to node B, and

then obtain three branching probabilities Pu, Pm, and Pd through matching the mean and

variance of the s(X)-log-price of St+∆t′ . That this procedure works is guaranteed by the

next theorem.

Theorem 4.1 Given a node X at time t and a CRR lattice with the length of each time

step equal to ∆t beginning at time t + ∆t′, there is a valid trinomial structure from the

node X whose s(X)-log-price of the central node B lies in the interval [µ − σ
√

∆t, µ +

σ
√

∆t ). Furthermore, the valid branching probabilities can be found by matching the mean

and variance of the s(X)-log-price of St+∆t′ .
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Proof:

The branching probabilities for the node X (i.e., Pu, Pm, Pd) can be derived by solving

the following three equalities:

Puα + Pmβ + Pdγ = 0, (18)

Pu(α)2 + Pm(β)2 + Pd(γ)2 = Var, (19)

Pu + Pm + Pd = 1, (20)

where

β ≡ µ̂ − µ, (21)

α ≡ µ̂ + 2σ
√

∆t − µ = β + 2σ
√

∆t, (22)

γ ≡ µ̂ − 2σ
√

∆t − µ = β − 2σ
√

∆t, (23)

µ̂ ≡ ln (s(B)/s(X)).

In the above equations, α, β, and γ are the difference between µ and the s(X)-log-prices of

s(A), s(B), and s(C), respectively, where node B is bracketed by nodes A and C as in Fig.

5. Equations (18) and (19) match the mean and variance of the s(X)-log-price of St+∆t′

(see Eqs. (16) and (17)), respectively. Define

det = (β − α)(γ − α)(γ − β),

detu = (βγ + Var)(γ − β),

detm = (αγ + Var)(α − γ),

detd = (αβ + Var)(β − α).

Cramer’s rule applied to Eqs. (18) to (20) gives Pu = detu/det, Pm = detm/det, and

Pd = detd/det. Note that det < 0 because α > β > γ. To ensure that the branching

probabilities are valid, it suffices to show that Pu, Pm, Pd ≥ 0. As det < 0, it is sufficient

to show detu, detm, and detd ≤ 0 instead. Finally, as α > β > γ, it suffices to show that

βγ + Var ≥ 0, αγ + Var ≤ 0, and αβ + Var ≥ 0 under the premise β ∈ [−σ
√

∆t, σ
√

∆t ).

Indeed,

βγ + Var = β2 − 2βσ
√

∆t + σ2∆t′ ≥ β2 − 2βσ
√

∆t + σ2∆t = (β − σ
√

∆t)2 ≥ 0,

αγ + Var = β2 − 4σ2∆t + σ2∆t′ ≤ β2 − 4σ2∆t + 2σ2∆t = β2 − 2σ2∆t ≤ 0,

αβ + Var = β2 + 2βσ
√

∆t + σ2∆t′ ≥ β2 + 2βσ
√

∆t + σ2∆t = (β + σ
√

∆t)2 ≥ 0,

as desired.

4.2 Fitting the Derivative’s Specifications

After the construction of a valid trinomial structure, we next explain how to use it and

several techniques to make the lattice align with the derivatives’ specifications. Pricing a
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Figure 6: Fitting Two Barriers. The truncated CRR lattice is lying on the grid that

partitions the plane into cells. The cell width of the grid is ∆t and the cell height of the

grid is σ
√

∆t . Nodes A, B, and C are selected for constructing the trinomial branch. Pu,

Pm, and Pd denote the branching probabilities from node X, H denotes the high barrier, L

denotes the low barrier, and the log-distance between two adjacent nodes at the same time

step of the truncated CRR lattice is 2σ
√

∆t . The s(X)-log-prices of the nodes at time T

are listed next to the nodes.
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double-barrier option without regards to the alignment of the barriers causes the oscillation

problem mainly because of the nonlinearity error. To suppress it, we truncate a CRR

lattice, make two price levels of the truncated CRR lattice coincide with the barriers, and

then adjoin a trinomial structure to it. Numerical experiments show that only the diffusion

part needs to fit the barriers to yield stable pricing results. For the adjustment of the lattice

structure, the following two requirements must be satisfied: (1) the lattice is aligned with

the barriers, i.e., the barriers coincide with certain levels of nodes on the lattice; (2) at the

first time step, the trinomial structure are valid.

We use Fig. 6 to explain how to make a lattice align with the barriers (i.e., H and L)

and how to find the nodes on the CRR lattice to adjoin a trinomial structure. In this figure,

the first two time steps of the CRR lattice are truncated. The truncated CRR lattice is laid

on the grid that partitions the plane into cells. The cell width of the grid is ∆t, and the cell

height of the gird is σ
√

∆t . The truncated CRR lattice emanates from three nodes: A, B,

and C at time ∆t′ and They are connected to the root node X at time 0 with branching

probabilities Pu, Pm, Pd. We now show how to choose the length of a time step, ∆t, to

make two levels of nodes on the truncated CRR lattice coincide with H and L. In order to

make the two barrier H and L coincide with levels of nodes on the lattice, h′−l′

2σ
√

∆t
needs to

be some integer k, where h′ ≡ ln(H/s(X)) and l′ ≡ ln(L/s(X)). For example, k = 3 in Fig.

6. Although ∆τ ≡ T/n is a natural choice for an n-time-step lattice, the problem is h′−l′

2σ
√

∆τ

may not be an integer. Therefore, we pick a ∆t that is close to, but does not exceed, ∆τ

and this ∆t makes h′−l′

2σ
√

∆t
an integer. This means ∆t = (h′−l′

2κσ )2, where κ ≡
⌈

h′−l′

2σ
√

∆τ

⌉

. The

number of time steps is b T
∆tc because the truncated CRR lattice has b T

∆tc − 1 time steps.

As a result, the length of the first time step, ∆t′, is the remaining amount of time to make

the whole lattice span T , i.e.,

∆t′ = T −
(⌊

T

∆t

⌋

− 1

)

∆t.

Clearly, ∆t ≤ ∆t′ < 2∆t.

Now, lay out the grid from barrier L upward. Automatically, barrier H coincides with

one level of nodes because of the above condition. Each node at time ∆t′ is represented by
{

l′ + 2jσ
√

∆t , if the truncated CRR lattice has an even number of time steps,

l′ + (2j + 1)σ
√

∆t , otherwise,

for some integer j. For example, the truncated CRR lattice in Fig. 6 has 3 time steps, so

the nodes at time ∆t′ are represented by l′ + (2j + 1)σ
√

∆t .

To create a valid trinomial structure from the root node X, Theorem 4.1 says that

at time ∆t′, there exists a node B whose corresponding s(X)-log-price is in the interval

[µ − σ
√

∆t, µ + σ
√

∆t ); moreover, we can also obtain two adjacent nodes, A and C, and

three valid branching probabilities Pu, Pm, Pd from node X.

By means of a similar strategy mentioned above, we can also modify the lattice for a

single-barrier option with lower barrier L. There is no need to adjust the length of the
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time step (∆t) because only one barrier (L) needs to coincide with a level of nodes on the

truncated CRR lattice. (Recall that the reason we needed to adjust ∆t for a double-barrier

option is because h′−l′

2σ
√

∆t
may not be an integer without the adjustment.) So we can simply

set ∆t = T/n. Then we lay out the grid form barrier L upward and obtain the trinomial

structure from root node according to Theorem 4.1.

4.3 Jump Nodes

The node count of our lattice can be significantly reduced by connecting the jump nodes

to the diffusion nodes after one time step via the aforementioned trinomial structure. In

our lattice, each time step is decomposed into two phases: the diffusion phase (for the

diffusion component Eq. (3)) and the jump phase (for the jump component Eq. (4)). This

decomposition is feasible due to the fact that the diffusion and the jump components are

assumed to be independent. Define d(`) as the number of diffusion nodes at time step `;

the total number of nodes (including the diffusion and the jump nodes) at time step ` is

(2m + 1)d(`). Our proposed lattice construction method will make the total number of

nodes at each time step grows at a milder rate than that of the HS lattice.

Figure 7 illustrates our two-phase lattice construction procedure. In the diffusion phase,

a diffusion node X at time step ` − 1 with stock price S will move upward to Su with

probability Pu and downward to Sd with probability Pd. In the ensuing jump phase, the

node with stock price Su (like node A) can jump to Suejh, and the node with stock price

Sd (like node B) can jump to Sdejh, where −m ≤ j ≤ m and h is from Eq. (15). Note that

at j = 0, no jump event occurs and the stock price is unchanged (like nodes a and b). Then,

in the diffusion phase of the next time step, we construct valid trinomial structures (dashed

lines) for the jump nodes (like the gray nodes at time step `) by Theorem 4.1 and connect

these jump nodes to the appropriate diffusion nodes (like nodes C, D, E, F , and G). The

diffusion nodes at time step ` (like nodes a and b) follow the CRR lattice structure.

4.4 Complexity Analysis

We now prove that the node count of our lattice is O(n2.5) by showing that the number of

nodes at time step `, (2m+1)d(`), grows at a milder rate of O(n1.5). In Fig. 8, assume that

node d is the highest diffusion node at time step `. Then the log-distance between node X,

the highest jump nodes at time step `, and node d is mh. Note that the trinomial structure

from node X is determined by Theorem 4.1 (recall Fig. 5). Thus, the log-distance between

node X and its middle successor node (node B in both Figs. 5 and 8) is µ + β. Moreover,

the log-distance between node X’s two successor nodes A and B is 2σ
√

∆t . Thus, the

log-distance between node A and node Y , which is connected by the upper branch of node

d, is mh+µ+β +2σ
√

∆t−σ
√

∆t ≤ mh+3σ
√

∆t because both µ and β are at most σ
√

∆t

(see Theorem 4.1 and Eq. (12)). Therefore, the number of extra diffusion nodes (the white

nodes above Y ) is at most
⌈

mh+3σ
√

∆t
2σ

√
∆t

⌉

. Similarly, the number of extra diffusion nodes
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1q

1q−

uP

dP
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2 2h γ δ= +

2 tσ ∆

Figure 7: Two-Phase Lattice Construction. The white nodes and gray nodes represent

the diffusion nodes and the jump nodes, respectively. Each time step ∆t is divided into two

phases: diffusion and jump. The dashed lines represent the trinomial structures that are

used to connect the jump nodes to the diffusion nodes after one time step, and m is set to

one in this figure for simplicity.
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m h

} 2 tµ β σ+ ≤ ∆

} 2 tσ ∆

} tσ ∆

1−� � 1+�
Figure 8: The Node Count of Our Lattice. Node X represents the highest jump

node from node D. The log-distance between two adjacent diffusion nodes is 2σ
√

∆t, m

is the number of the jump nodes on each side of a diffusion node, h =
√

γ2 + δ2, and the

definitions of µ and β can be found in Fig. 5.
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below node Z, which is connected by the lower branch of the lowest diffusion node e at time

step `, is at most
⌈

mh+3σ
√

∆t
2σ

√
∆t

⌉

. As a result, d(`) satisfies the following recurrence relation:

d(` + 1) = d(`) + 2 ×









mh

2σ
√

T
n

+ 1.5









+ 1,

= d(` − 1) + 2 × 2 ×









mh

2σ
√

T
n

+ 1.5









+ 2,

=
...

= d(1) + 2 × ` ×









mh

2σ
√

T
n

+ 1.5









+ `,

= O(n1.5),

because d(1) = 2, d(0) = 1, ∆t = T/n and ` ≤ n. Consequently, the total node count is

(2m + 1)
∑n

`=0 d(`) = O(n2.5). This is also the time complexity of pricing vanilla options

and barrier options on our lattice.

5 Numerical Results

This section evaluates the numerical performance of our lattice. First, we compare the

time complexity of our lattice with that of the HS lattice. After that, numerical results for

vanilla options and barrier options are analyzed. For the experimental settings, the first 6

local moments of the lognormal jumps, which approximate the stochastic price jumps, are

matched in both our lattice as the HS lattice. The parameters for the vanilla options are

from Hilliard and Schwartz [16]. The experiments are obtained by running programs on a

PC with the Intel Pentium D 2.8GHz CPU.

5.1 Time Complexity

We first compare the time complexity of our lattice with that of the HS lattice. As confirmed

in Fig. 9, the time complexity of our lattice is O(n2.5), whereas that of the HS lattice is

O(n3). This efficiency of our lattice is mainly due to the fact that the node count of our

lattice is reduced by connecting the jump nodes to the diffusion nodes via the trinomial

structure. In contrast, the HS lattice connects the jump nodes to the diffusion nodes via

the CRR lattice structure.

5.2 Vanilla Option

Table 1 tabulates the prices of European put options under different strike prices and relative

jump volatilities (i.e., δ/σ). It compares the European put option prices computed by our
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European puts

Strike Merton Ours HS Amin

Panel A. γ = −0.025, δ =
√

0.05 , and σ =
√

0.05

30 2.621 2.626 2.621 2.623

35 4.412 4.416 4.414 4.415

40 6.696 6.698 6.698 6.701

45 9.422 9.422 9.427 9.426

50 12.524 12.520 12.526 12.528

Panel B. γ = −0.045, δ = 0.3, and σ = 0.1

30 3.918 3.920 3.915 3.894

35 5.982 5.994 5.993 5.972

40 8.458 8.460 8.465 8.461

45 11.302 11.287 11.299 11.318

50 14.460 14.466 14.483 14.487

Panel C. γ = −0.025, δ =
√

0.05 , and σ = 0.05

30 2.172 2.194 2.189 1.837

35 3.810 3.793 3.788 3.553

40 5.980 6.002 6.004 5.783

45 8.650 8.630 8.638 8.501

50 11.756 11.773 11.787 11.646

MAE 0.010 0.011 0.076

RMSE 0.013 0.015 0.130

Table 1: Comparisons under Different Relative Jump Volatilities in Pricing Eu-

ropean Puts. The benchmarks are generated by Merton’s model. The parameters are

S = 40, r = 0.08, λ = 5, and T = 1 (year). The relative jump volatility is defined as δ/σ.

All lattices are implemented with 200 time steps.
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Figure 9: Time complexity. The points represent the log-log plot of the time steps

versus the execution time. The lines represent the regression lines of these points. The

time complexity of our lattice is O(n2.5) and that of the HS lattice is O(n3). The order

of the time complexities can be obtained by observing the coefficients of the variable x of

the regression lines. The parameters are S = 40, X = 40, r = 0.08, λ = 5, γ = −0.025,

δ =
√

0.05 , σ =
√

0.05 , and T = 1 (year).

lattice, the HS lattice, Amin’s lattice with Merton’s model as the benchmark. In Panels A

and B of the table, the prices generated by these three lattice algorithms are close to the

benchmarks. However, in Panel C, which lists the results for large relative jump volatilities,

Amin’s lattice gives less accurate prices when the strike price is lower, whereas our lattice

and the HS lattice both provide accurate results. Moreover, the mean absolute error (MAE)

and root-mean-squared error (RMSE) of our lattice are smaller than those of the other two

lattices.

Table 2 lists the results of European put option prices with different maturities: one

year, five years, and ten years. Observe that the MAE and RMSE of the HS lattice are

larger than those of our lattice. With increasing maturities, the percentage errors of the

HS lattice are also much larger than those of our lattice. These results indicates that our

lattice is more accurate and efficient than the other two lattices.

Figure 10 demonstrates the convergence behavior of our lattice in pricing a vanilla

option. Since the errors of the option values converge at a rate of O(1/n) [14], we then

utilize extrapolation as in Fig. 10. In this figure, the extrapolated result 5.6177 accurately

approximates the benchmark value 5.617851, which is generated by Merton’s model . Figure

11 compares the convergence of the HS lattice with that of our lattice. It shows that given

the same computational time, our lattice obtains more accurate option values than the HS

lattice.
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European puts Percent errors

Strike Merton Ours HS Ours HS

Panel A. Maturity (T) = one year

30 2.621 2.626 2.622 0.179 0.033

35 4.412 4.416 4.414 0.102 0.054

40 6.696 6.698 6.698 0.036 0.031

45 9.422 9.421 9.427 −0.007 0.051

50 12.524 12.520 12.526 −0.028 0.017

Panel B. Maturity (T) = 5 years

30 5.618 5.621 5.622 0.056 0.074

35 7.437 7.441 7.442 0.054 0.067

40 9.412 9.416 9.418 0.050 0.068

45 11.519 11.524 11.526 0.046 0.061

50 13.741 13.747 13.749 0.042 0.059

Panel C. Maturity (T) = 10 years

30 5.283 5.286 5.288 0.042 0.088

35 6.653 6.656 6.659 0.043 0.095

40 8.093 8.096 8.100 0.043 0.090

45 9.593 9.597 9.601 0.042 0.085

50 11.145 11.150 11.154 0.041 0.081

MAE 0.004 0.005

RMSE 0.004 0.006

Table 2: Comparisons under Different Maturities. The parameters are S = 40,

r = 0.08, λ = 5, γ = −0.025, δ =
√

0.05 , and σ =
√

0.05 . Both our and the HS lattices are

implemented with 200 time steps.
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Figure 10: Convergence Property. The points and solid line represent the option values

at various time steps and the regression line, respectively. The dashed line illustrates the

benchmark generated by Merton’s model. The parameters are S = 40, X = 30, r = 0.08,

λ = 5, γ = −0.025, δ =
√

0.05 , σ =
√
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Figure 11: Convergence Performance of Our and the HS Lattices. The solid curve

and the dashed one trace the option values of our lattice and the HS lattice as functions of

the computational time, respectively. The dotted line illustrates the benchmark generated

by Merton’s model. The parameters are S = 40, X = 30, r = 0.08, λ = 5, γ = −0.025,

δ =
√

0.05 , σ =
√

0.05 , and T = 5 (years).
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European single-barrier call Percent errors

Time steps Simulation value Ours HS Ours HS

67 3.887 4.508 −0.079 15.896

268 3.890 3.871 4.473 −0.487 14.987

604 (3.868, 3.912) 3.869 3.951 −0.541 1.563

1075 3.867 4.080 −0.581 4.892

Table 3: Our and the HS Lattices in Pricing a Single-Barrier Call Option. Sim-

ulation values serve as the benchmarks and are the results of 1,000,000 simulations with

100,000 time steps. The values in the parentheses denote the 95% confident interval of

the simulation value. The parameters are S = 102, X = 105, L = 100, r = 0.05, λ = 3,

γ = −0.005, δ = 0.1, σ = 0.1, and T = 1 (year).

5.3 Barrier Options

We next compare our lattice with the HS lattice in pricing barrier options. For both single-

barrier and double-barrier options, simulation values serve as the benchmarks and are the

results of 1,000,000 simulations with 100,000 time steps.

Table 3 tabulates the numerical results for a European single-barrier call option. In this

table, three points are worth mentioning. First, we observe that the percentage errors of

our lattice are significantly lower than those of the HS lattice. Second, the option prices

of our lattice are more stable than those of the HS lattice, whose errors range from 1.6%

to over 15%. Third, the prices generated by the HS lattice are always much higher than

the benchmarks. Figure 12 demonstrates that for pricing single-barrier options, the results

computed by the HS lattice do not converge smoothly as the number of time steps increases,

whereas those by our lattice converge smoothly.

Table 4 lists the numerical results of our lattice and those of the HS lattice for a European

double-barrier call option. As shown in this table, the percentage errors of our lattice are

again much lower than those of the HS lattice, and the HS lattice always overestimates the

prices of the double-barrier option.

According to the above observations, the numerical results for both single- and double-

options generated by our lattice are always better than those of the HS lattice. As a result,

our lattice is more accurate than the HS lattice in pricing barrier options. The main reason

is that our lattice can fit derivatives’ specifications to suppress the oscillation problem.

6 Conclusions

This paper proposes a novel, accurate, and efficient lattice to price derivatives whose un-

derlying assets follow the jump-diffusion process. To our best knowledge, this work is not

only the first one that deals with the oscillation problem under the jump-diffusion process

but also the first attempt to reduce the time complexity of the lattice for the jump-diffusion
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Figure 12: Comparison of the Oscillation Phenomenon between the HS and Our

Lattices. The numerical settings are the same as those in Table 3. The solid line plots

the prices generated by our lattice. The dashed line plots the prices generated by the HS

lattice.

European double-barrier call Percent errors

Time steps Simulation value Ours HS Ours HS

100 2.593 2.653 −0.103 2.211

401 2.595 2.598 2.635 0.097 1.518

701 (2.584, 2.606) 2.599 2.621 0.125 0.989

1002 2.599 2.630 0.146 1.356

Table 4: Our and the HS Lattices in Pricing a Double-Barrier Call Option.

Simulation values serve as the benchmarks and are the results of 1,000,000 simulations with

100,000 time steps. The values in the parentheses denote the 95% confident interval of the

simulation value. The parameters are S = 90, X = 100, H = 130, L = 70, r = 0.05, λ = 3,

γ = −0.005, δ = 0.1, σ = 0.1, and T = 1 (year).
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process from earlier works of O(n3) to O(n2.5). According to the numerical results, our

lattice is confirmed to be superior to the existing methods in terms of accuracy, speed, and

generality.
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