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1 Introduction 

Fingerprint analysis is probably one of the oldest and most 
commonly used identification technologies in biometrics. 
Identifying a fingerprint against a huge database can be 
extremely time-consuming, which may be considered 
unacceptable in many fields, especially in criminal 
investigation. If fingerprints can be properly pre-assigned 
into classes, then the searching process can be performed 
only on the associated classes instead of the entire database, 
which will then significantly reduce computational time. 

In the early 20th century, Henry (1900) had categorised 
fingerprints into three basic types: loop, arch and whorl. 
The loop type was then further subcategorised into left loop 
and right loop, and the arch type was subdivided into plain 
arch (or arch for short) and tented arch. This 5-class 
classification system has been adopted by the National 
Institute of Standards and Technology (NIST) special 
database 4, NIST-4 (Watson and Wilson, 1992). A typical 
fingerprint for each class is illustrated in Figure 1. For 
convenience, we use the letter ‘A’ for arch, ‘T’ for tend 
arch, ‘L’ for left loop, ‘R’ for right loop, and ‘W’ for whorl. 

Figure 1  The Henry patterns: (a) arch; (b) tented arch; (c) right 
loop; (d) left loop and (e) whorl with a circle shape 
ridge flows in the centre 

 
 (a) (b) (c) (d) (e) 

Another well known and the most complicated classification 
system is the National Crime Information Center (NCIC) 
classification system (Federal Bureau of Investigation, 
1984) which includes 19 classes. The NCIC classification 
system has been adopted by the NIST-9 and NIST-14 
databases. The NCIC defines two arch types, Arch and 
Tented Arch, which are identical to the Henry system, and 
two loop types, Radial and Ulnar, where the radial/ulnar 
loops towards the thumb/little finger. Whorl type is 
subdivided into four types: Plain Whorl, Central Pocket 
Whorl, Double Loop Whorl, and Accidental Whorl. Each 
whorl type has three subcategories depending on the ridge 

tracing: Inner, Outer, and Meeting. The last three types are 
Approximate Class, Amputation, and Scar. Figure 2 shows 
some examples of the NCIC classification system. 

Figure 2  Some of the NCIC classes: (a) plain whorl (inner);  
(b) central pocket whorl (inner); (c) double loop whorl 
(inner); (d) accidental whorl (inner) and (e) scar; ‘∆’ 
and ‘Ο’ marked in (a) denote two types of SP the delta 
and the core, respectively 

 
 (a) (b) (c) (d) (e) 

In the last few decades, many Automated Fingerprint 
Identification System (AFIS) (Jain et al., 1999) applications 
and algorithms have been developed with the help of high 
performance computers. Computers have gradually replaced 
human experts in performing fingerprint classification and 
recognition. Most researchers adopt Henry’s 5-class 
classification system to verify the performance of their 
classification algorithms. Meanwhile, various classification 
algorithms have been built based on a 4-class system (R, L, 
W, and AT) by combining Arch and Tented Arch named 
‘AT’ (Jain and Minut, 2002; Senior, 2001). We have not 
found any algorithm based on the NCIC system. According 
to the techniques used, these algorithms can be categorised 
into two groups: flat and structural (Marcialis et al., 2001). 
Researchers using the ‘flat’ approach favour statistical 
patterns (Jain et al., 1999). Karu and Jain (1996) used the 
number and locations of the Singular Points (SPs), Jain et al. 
(1999) used 192-dreictional FingerCodes, and Neto and 
Borges (1997) applied the Hidden Markov Models. The 
‘structural’ approach introduced by Cappelli et al. (1999) 
uses syntactic patterns to categorise fingerprints. Yao et al. 
(2003) proposed an approach based on two machine 
learning algorithms: Support Vector Machines and 
Recursive Neural Networks with an integration of flat and 
structural representations. However, some problems exist 
for these methods. For instance, in the flat approach, it is not 
easy to detect SPs, and the uncertainty in the location of SPs 
is high. On the other hand, the information provided by the 
structural approach is not sufficient for differentiating the 
‘L’, ‘R’, and ‘T’ types of fingerprints (Tan et al., 2003). 
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Each fingerprint consists of two special direction-
oriented parts, ridges and valleys, which constitute two 
major characteristics: a set of global features called singular 
points and a set of local features named minutiae. SPs 
represent regional directional makeup and can be divided 
into two types: core and delta. A core/delta point is defined 
as a concentrate region where the ridge curvature is 
converging to a local maximum/minimum (Srinivasan  
and Murthy, 1992). For example, two delta points and two 
core points are marked by ‘∆’ and ‘Ο’ respectively in  
Figure 2(a). Minutiae are local deformation of the ridges 
such as ‘ridge ending’ or ‘bifurcation’. A constructive 
definition for minutiae can be found in Bolle et al. (2002). 

Correctly locating SPs is crucial for most fingerprint 
related applications. To locate SPs, two popular approaches, 
the Poincaré index (Kawagoe and Tojo, 1984) and the 
directional image, are introduced (Grasselli, 1969; Sherlock 
and Monro, 1993). One important problem of the former 
approach is that the Poincaré index calculation is very 
sensitive to noise and may lead to detection of false SPs. 
Sherlock and Monro (1993) used directional images based 
on 16 × 16 pixel blocks to describe the topological 
behaviour of ridge flows around the SPs. The algorithm 
described in Yao et al. (2003) constructs the directional 
images by 28 × 30 matrices. The two drawbacks of using 
block direction are that directional images suffer from 

• poor contrast (Hong et al., 1998) 

• loss of details of ridges (Srinivasan and Murthy, 1992). 

Furthermore, if a ‘W’ type fingerprint has a nearly  
perfect circle in the middle area as shown in Figure 1(e),  
a block-based directional image will indicate one core 
‘region’ in the middle, which is different from Figure 2(a) 
with two core regions due to the oval-shaped ridge flows. 
Huang et al. (2007) proposed the SEA based on pixel-wised 
directional images to locate SPs in a 2 × 2 pixel area.  
The SEA is one of the pioneer algorithms which can locate 
SPs in a small area and properly eliminate false SPs by 
reducing image resolution.  

However, our experimental results have shown that the 
SEA fails to locate SPs on many fingerprints. Such failure is 
basically due to the following two problems: “The Valid 
Singular Point Disappearing Problem” and “The Narrow 
Arch Anomaly”. The proposed ESEA can overcome these 
problems and properly locate SPs by building a different 
shrinking pyramid from the SEA with a pixel validation 
mechanism which is not included in the original SEA.  
We also present a simple quantitative fingerprint 
classification scheme based on the type and number of SPs. 
Distances among SPs are used for sub-classification 
purpose. In this scheme, fingerprint images can be grouped 
into as many subclasses as the users wish. Thus, identifying 
a fingerprint from a huge database can be done by searching 
particular subclasses only instead of the entire database.  

The rest of the paper is organised as follows. Section 2 
describes the proposed fingerprint classification and the 
SEA. Section 3 shows the problems of SEA, followed by 
the ESEA in Section 4. The proposed sub-classification 

scheme is described in Section 5. Finally, the conclusions 
are presented in Section 6. 

2 Fingerprint classification by Singular Points 
(SPs) 

2.1 Classification by SP pairs 

Current fingerprint classification systems, including Henry 
and NCIC, categorise fingerprints by analysing the 
relationship between ridge flows and SPs. Such systems 
require complicated algorithms. The proposed classification 
system is easier to apply by using the number of SP pairs to 
categorise fingerprints. Ideally, ‘A’ type fingerprints have 
no SPs. ‘R’, Figure 3(a), (‘L’, Figure 3(b)) type fingerprints 
have the core point appearing on top-right (top-left) of the 
delta point, and the ridge flows around the core point are 
directing to bottom-right (bottom-left). ‘T’ type fingerprints, 
Figure 3(c), have the core point appearing on top of the 
delta point with near symmetric ridge flows on two sides of 
the core-delta line. In other words, types ‘R’, ‘L’, and ‘T’ 
have exactly one core and one delta (one core-delta pair, or 
1 SP pair in short). ‘W’ type fingerprints have 2 SP pairs as 
shown in Figure 3(d) and (e). Figure 3(f) shows an 
Accidental Whorl fingerprint in the NCIC system with three 
SP pairs. Instead of classifying fingerprints by analysing the 
detail ridge flow, we propose a simple classification system 
based on the number of SP pairs, where a fingerprint type is 
defined as: FTi with i SP pair(s), where 0 ≤ i ≤ 3. 

Figure 3  (a)–(c) are in FT1; (d) and (e) are in FT2  
and (f) is in FT3 

 
 (a) (b) (c) (d) (e) (f) 

The proposed classification system has two advantages over 
Henry’s or NCIC classifications. First, it is simple and 
straightforward. Second, the classification scheme can 
reduce the number of fingerprints required to compare with 
during the recognition process. As a matter of fact, there 
exist many fingerprints that belong to multiple types.  
For instance, the NIST-4 database contains 23% (946/4000) 
of images that belong to two types. In other words, 
searching for such an example requires examining both 
types in the database. By combining ‘R’, ‘L’, and ‘T’ 
together to FT1, nearly half of the double typed images 
(496/946) will be grouped together. Then the searching 
process can be performed only on type FT1 rather than two 
types. However, fewer fingerprint types lead to more images 
in each class. Therefore, it is essential to further divide each 
class into subclasses to reduce the number of images within 
each subclass. The proposed sub-classification scheme is 
able to dynamically divide the class into a specific number 
of subclasses or into subclasses with a specific number of 
fingerprints. This ability can reduce the number of images 
required for comparison during the recognition process, 



4 L.M. Liu et al.  

which is what Henry’s classification system is unable to 
achieve. The sub-classification scheme will be explained in 
a later section. 

2.2 Singular Points (SPs) analysis 

In order to make the proposed classification system work, 
the number and type of SPs must be properly derived, and a 
SP has to be defined in a relatively small area. The SEA is 
based on pixel-wised directional images using the 
quantification function to map the range of angle [0, π) to an 
integer in the range of [0, N – 1]. Each pixel, P, will be 
assigned to one of these N directions according to the flow 
orientation in a circle with radius w and centred at P.  
To visualise the directional image, we colour the directions 
in grey scale – black for 0 and white for N – 1 as shown in 
Figure 4. The rest of the directions are represented by 
various scales of grey, each called a direction zone.  
A direction zone of direction number n is denoted  
as Ω(n). CM(N, w) represents different combinations  
of quantification range and active circle region size.  
The complexity of calculating the flow orientation of P is 
O(w2). For a fingerprint image FI with width×height pixels, 
the complexity of generating the pixel-wised directional 
image of FI is O(width × height × w2). 

Figure 4  (a) and (b) are directional images of Figure 3(a) with 
CM(3, 5) and CM(4, 5); (c) and (d) show the fault lines 
of (a) and (b); (e) two directional sequences 

 
 (a) (b) (c) (d) (e) 

A fault line Ψi+j is then defined as the separating  
boundary between two adjacent directional zones Ω(i)  
and Ω(j). Figure 4(a) and (b) show the directional images of 
the fingerprint shown in Figure 3(a) with different 
parameter combinations, and Figure 4(c) and (d) show the 
fault lines of (a) and (b), respectively. When N = 3, three 
directions, 0 degree (or 0), 60 degrees (or 1), and 120 
degrees (or 2), will be considered, and they will be 
represented by black, grey, and white, respectively.  
For the sake of easy understanding, direction 0, 1, 2  
will be assigned to pixels with slopes ranging from  
[–30, +30), [+30, +90), and [+90, 150), respectively. A SP is 
defined as the block which contains a SP directional 
sequence. The clockwise directional sequence for a core 
(delta) is 0 → 2 → 1 → 0 (0 → 1 → 2 → 0). For example,  
Figure 4(e) contains two 10 × 10 blocks with 38 border 
pixels. The clockwise directional sequence of the top block 
is black → white → grey → black (or 0 → 2 → 1 → 0), 
indicating a core point exists in this block and can be 
defined in a 2 × 2 pixel area by reducing the block size. 
More details about fault line analysis can be found in  
Huang et al. (2007). Figure 5 shows the pixel-wised 
directional images of Figure 2(a)–(d). SPs are clearly 
presented on these directional images. For a Central Pocket 

Whorl fingerprint as shown in Figure 5(b), the directional 
image shows two core points, and the distance between 
them is less than three ridge-valley width (24 pixels). Most 
block-based algorithms will consider such a case as having 
only one core ‘region’ and therefore cannot provide proper 
information about SP pairs. 

Figure 5  Pixel-wised directional images of Figure 2(a)–(d) 

 
 (a) (b) (c) (d) 

2.3 Shrinking and Expanding Algorithm (SEA) 
The pixel-wised directional image is created from 
calculation results based on individual pixels. Calculation 
results from any single noise pixel may create a false SP, 
since a SP block can be as small as 2 × 2. To correctly 
detect the coordinates of SPs, a two-phased SEA based on a 
scale-pyramid is presented in Huang et al. (2007). The basic 
idea is that scaling down the image resolution eliminates 
noise-introduced SPs and retains valid SP candidates.  
To perform the scale-down, a directional image Ik is first 
divided into a grid of units with r × r pixels in size where r 
is the shrinking factor. Each unit is represented by only one 
pixel in the next level directional image, denoted as Ik+1, 
with its value set to be the dominate direction of the r × r 
grid. The noise reduction effort can be clearly observed as 
the image scale-down level by level. An example of a scale 
pyramid in shrinking phase is shown in Figure 6(a)–(d).  
In such an example, the pyramid is created with four levels 
with the original direction image I0 on the bottom and I3  
on the highest level. It is hard to decide when to stop the 
scale-down process. If it stops too early, the noise level will 
still be too high. However, if we scale-down too much, 
directional sequences from valid SPs might be eliminated in 
the process. To resolve this dilemma, Huang et al. (2007) 
suggested that the combination of shrinking factor and the 
level of scale-pyramid should be 3 and 4. 

Figure 6  Scale-pyramid in shrinking phase with r =  3: (a) I0;  
(b) I1; (c) I2 and (d) I3, and in expanding phase (e) I0; 
(f) I1; (g) I2 and (h) I3 

 
 (a) (b) (c) (d) 

The second phase (or expanding phase) is to search for SP 
candidates starting from the top level of the scale-pyramid. 
First identify SP candidates in a 2 × 2 area at level I3.  
For every candidate found at level I3, we subsequently 
search the associated 2r × 2r area at the next lower level I2. 
This procedure is performed until level I0 is reached.  
An example of a scale pyramid in expanding phase is shown 
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in Figure 6(h)–(e). The boxes show candidates identified  
at a particular level. The complexity of generating  
the SEA pyramid and searching for the SP candidate are 
both O(width × height), which is smaller than the 
complexity of generating pixel-wised directional image 
O(width × height × w2). Hence, the overall complexity of 
the SEA is O(width × height × w2). 

3 Problems of the SEA 

3.1 The valid singular point disappearing problem 

The number of SPs might decrease when we move from  
a lower level to a higher level in the SEA pyramid because 
of the resolution reduction. Ideally, resolution reduction 
should only eliminate noise-introduced SPs, and the top 
level of the scale-pyramid should retain all valid SPs. 
However, if two SPs are closely connected by a small 
island-shaped direction zone, the SP sequences will not be 
retained after a few steps of resolution reduction. This is 
called the “Valid Singular Point Disappearing Problem”. 
Figure 7 illustrates such an example where (b) is the 
binarised image of (a), and (c) shows the directional image 
I0 of (b) with four SPs appearing on it. Figure 7(d) is the top 
level image I3 with only two SPs. 

Figure 7 (b) is the binarised image of (a); (c) is the directional 
image of (b); the valid SP disappears after two times  
of resolution reduction in (d) 

 
 (a) (b) (c) (d) 

In such a case, valid SPs do not appear on the top SEA 
pyramid. The level at which these valid SPs disappear 
depends on the size of the particular small island-shaped 
direction zone. If the size of such an island is small, valid 
SPs might be eliminated after several times of shrinking 
processes, suggesting that the ideal starting searching level 
should be relatively low. However, noise-introduced  
SPs might still be present if the starting searching level is 
set too low. 

3.2 The Narrow Arch Anomaly 

Another problem is that SPs identified at a higher level do 
not have associated SPs at a lower level. We called this 
problem the ‘Narrow Arch Anomaly’. Figure 8 illustrates 
such an example where (b) is the binarised image of (a), and 
(c) is the directional image of (b). The resolution reduced 
images (Figure 8(d) and (e)) do indicate two SPs appearing 
on this fingerprint. However, if we move down a few levels, 
we cannot locate the associated SPs. The SPs identified at a 
higher level are not created by noises but resolution 
reduction. This anomaly contradicts the assumption that the 

number of SP decreases when we travel upward in the SEA 
pyramid. 

Figure 8 (b) is the binarised image of (a); higher pyramid levels 
(d) and (e) Identified SPs, but do not have associated 
SPs at lower level (c) 

 
 (a) (b) (c) (d) (e) 

4 Enhanced Shrinking and Expanding  
Algorithm (ESEA) 

These two problems suggest that the starting searching  
level within the scale pyramid should not be set too  
high. However, if the starting searching level is too low, 
noise-introduced SPs may not be eliminated. To resolve  
this dilemma, we developed an enhanced version of the 
original SEA (ESEA). The direction of pixel (i, j) at ESEA 
pyramid level k, Ik(i,j), is defined as follows: 

Ik(i,j) = Dom((i × Fk, j × Fk), ((i + 1) × Fk – 1, 
           ( j + 1) × Fk – 1)), (1) 

Fk equals f × k where the shrinking factor is denoted as f. Iw 
and Ih are the width and height of the binarised image. 
Function Dom returns the dominate direction of the square 
with top-left pixel at (i × Fk, j × Fk) and bottom-right pixel at 
((i + 1) × Fk – 1, (j + 1) × Fk – 1) on I0. 

The generation function for ESEA pyramid shown in 
equation (1) is identical to the one for SEA pyramid except 
the Fk in SEA is defined as f k. The search for SPs starts 
from the top level, Iw, of the ESEA pyramid, and we 
consider only pixels with a ‘valid’ flag and ignore pixels 
with an ‘ignored’ flag. Let p be a pixel located at (i, j), c be 
the centre point of the minimum rectangle which can cover 
the foreground fingerprint image, m be the length of the 
short edge of the rectangle, and dist(p, c) be the distance 
between p and c. The validation flag of p at a level k, Vk(p), 
is defined as follows: 

( )

valid if 2 dist( , ), where OR
if dist( , ) , where 2 OR
if ( 2) dist( , )

( 1) , where 2 ,
ignored, otherwise

t

t

t tk p

t t

m p c k w
p c m k

m k M p cV
m k M k w

δ
δ
δ
δ

− < =
 < + = + − − <= 
 < + − + < <


 (2) 

where δ is a positive constant, mt is one third of m, and Mt is 
mt/(w – 2). SPs identified in the valid region of a certain 
level will be used as anchors to find the associated SPs at a 
lower level. SPs found in ignored region will be considered 
as false SPs which will be excluded. 

Figure 9(a) illustrates the directional image I0 of  
Figure 7 where the border box indicates the minimum 
rectangle covering the foreground fingerprint image,  
and the centre point c is defined as the joint point of the  
two cross lines. The second level, I1, and third level I2 of the 
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ESEA pyramid for this fingerprint are shown in Figure 9(b) 
and (c), and the rest, I3–I5, are shown in Figure 10. Similar 
to Figure 7(d) and 10(c) has only two SPs, since two SPs are 
eliminated due to the “Valid Singular Point Disappearing 
Problem”. The SP discovery process starts from I5 where we 
check only the region outside the circle because the pixels 
inside the circle have validation flags marked as ‘ignored’. 
One SP candidate is identified on I5 which will be used as 
the anchor for locating the associated SP on the next level, 
I4. In the mean time, we check pixels between these two 
circles for extra SPs. In this case, there is none. If we repeat 
this process on level I3, three additional SPs will be 
identified. 

Figure 9  The directional images of Figure 7; (a) I0, (b) I1  
and (c) I2 

 
 (a) (b) (c) 

Figure 10 Resolution reduced images (a) I3 to (d) I5 

 
 (a) (b) (c) 

The identified SPs on one level will have marks on a lower 
level image as well. More precisely, there will be four SPs 
marked on I2. These four candidates will be used to find the 
exact 2 × 2 locations of SPs on I0 through I1. This example 
shows that the ESEA successfully overcomes the valid 
singular point disappearing problem. 

More precisely, the starting searching level in the ESEA 
is not fixed. The border region of an image has a higher 
starting level, and the centre region of an image has a lower 
starting level. The closer the pixel is to the centre of an 
image, the higher resolution we shall use. This design can 
properly overcome both problems described in the previous 
section. Furthermore, the theoretical complexity of the 
ESEA is the same as that of the SEA because the  
bottleneck of this algorithm is still at the construction of the 
pixel-wised directional image. However the practical 
complexity of the ESEA is better than that of the SEA.  
This is because only blocks in the valid region require 
checking the existence of directional sequence, and the 
number of examined blocks in the ESEA pyramid is smaller 
than that in the SEA pyramid. 

4.1 Experiments 

We used the NIST-4 database (4000 images) to evaluate  
the ESEA with our 4-class classification system. When the 
ESEA found no SP on a fingerprint, it was assigned  
 

to type FT0. When one SP pair, two SP pairs, or three  
SP pairs were identified, it was assigned to type FT1, FT2,  
or FT3, respectively. Tables 1 and 2 show the classification 
results of the original SEA and ESEA, respectively.  
In both tables, the rows represent data generated by each 
program, and the columns represent classification assigned 
by the NIST. 

Table 1 Classification result by the SEA 

SEA         NIST FT0 FT1 FT2 FT3 

FT0 571 129 120 0 

FT1 122 1349 885 0 

FT2 25 231 568 0 

FT3 0 0 0 0 

Table 2 Classification result by the ESEA 

ESEA      NIST FT0 FT1 FT2 FT3 

FT0 836 102 2 0 
FT1 45 2138 47 0 
FT2 0 11 720 0 
FT3 0 0 0 0 

The accuracy rate of SEA is 62.2% (or 2488/4000)  
without any rejection, and the highest level of the SEA 
pyramid still contains many noise-introduced SPs, since 885 
FT1 fingerprints have been misclassified to FT2. On the 
other hand, 231 FT2 fingerprints have been misclassified  
to FT1 due to the valid singular point disappearing  
problem. The experimental results show the ESEA can not 
only eliminate noise-introduced SPs, but also overcome 
both aforementioned problems to achieve a 94.7%  
(or 3694/3901) accuracy rate with 2.5% (or 99/4000) 
rejection. We rejected images with only one core or delta 
point as shown in Figure 11(a) and smudged images as 
shown in (b) and (c) where substantial portions of the 
images are cut-off after segmentation step. In this 
experiment, the ESEA pyramid has six levels (I0–I5).  
Many fingerprint images were still misclassified, as shown 
in Table 2, due to various reasons such as poor quality of 
images, small regional noise on fingerprints, or the centre  
of fingerprint residing on border of fingerprint images. 
Furthermore, since ESEA only eliminates spurious SPs and 
will not create any new SPs, no fingerprint classified into 
correct type by SEA was misclassified by ESEA. 

Figure 11 Examples of rejected images: (a) one core image;  
(b) and (c) are smudged images 

 
 (a) (b) (c) 
 



 Enhanced SEA algorithm and fingerprint classification 7 

5 Sub-classification by distance of Singular 
Points (SPs) 

5.1 Distance among Singular Points (SPs) 

According to the type distribution statistics in the NIST-9, 
around 65% of the fingerprints are loop; 27% are whorl; 
arch accounts for 4% and tented arch accounts for 3% of 
the fingerprints. The NCIC system records the ridge counts 
between core and delta for loop type fingerprints, which  
can be used to reduce the number of images searched. 
However, the width of a ridge is not fixed for a fingerprint, 
and sometimes the ridge count is hard to define due to 
noises or minutiae. Furthermore, the angle between 
directions of ridge flow and delta-core vector may influence 
the ridge count. If we assume the distance between the core 
and delta of a FT1 fingerprint is d, the ridge count can be 
d/(average ridge-valley width) when the ridge flow is 
orthogonal to the core-delta vector, or it can be 0 when the 
ridge flow is parallel to the core-delta vector, i.e., tented 
arch fingerprints. Hence, we believe the distance scaled in 
pixels provides more accurate information than ridge 
counts. 

In our classification system, every fingerprint will be 
attached with a set of distance values among SPs. Since  
a FT0 fingerprint has no SPs, no distance value will be 
attached. A FT1 fingerprint has exactly one SP pair. 
Therefore, each FT1 fingerprint will be attached with one 
distance value DTDC. FT2 fingerprints will be attached with 
five distance values DTLR, DTLX, DTLI, DTRX, and DTRI, 
where DTLR is the distance between two delta points. The 
large distance from the left (right) delta point to the cores is 
kept in DTLX (DTRX) and the small one is kept in DTLI 
(DTRI). FT3 fingerprints will be attached with seven  
distance values including the five defined in FT2 and the 
distance from left (right) delta point to the centre delta DTLD 
(DTRD.). Table 3 summarises the attached distance values 
for each class. 

Table 3 Attached distance values for each class 

Type Attached distance values 

FT0 { } 
FT1 {DTDC} 
FT2 {DTLR, DTLX, DTLI, DTRX, DTRI} 
FT3 {DTLR, DTLX, DTLD, DTLI, DTRX, DTRD, DTRI} 

While building a fingerprint database, it is reasonable to 
assume that a clear image will be acquired from the 
individual. In other words, FT2 and FT3 fingerprints in the 
database should have five and seven distance values 
calculated from both bottom-left and bottom-right delta 
points. Therefore, when we search for a particular 
fingerprint acquired from a crime scene with only a portion 
of the image with only one delta and one core point, a large 
number of images in the database can still be ruled out by 
the remaining valid distance values. The sub-classification 
scheme can be achieved in two ways: distance-oriented or 
percentage-oriented described in the following subsection. 

5.1 Experiments 

The distance of SPs is measured by pixels, which is not 
discrete data and therefore can be used to further divide 
each type into subclasses with smaller numbers of images. 
In order to illustrate this concept, we calculate the distance 
between SPs (DTDC) in the 2138 properly classified 
fingerprints in FT1. These fingerprints are sorted by  
the DTDC and then relabelled from numbers 1 to 2138.  
The X-axis in Figure 12(a) is the new fingerprint numbers 
and Y-axis shows the DTDC in pixels. Roughly speaking,  
the DTDC is uniformly distributed, and over 90% of DTDC 
are within 200 pixels (or 26 times the average ridge-valley 
width). 

Figure 12 (a) shows the range of DTDC is from 10 to 295 pixels, 
and (b) shows the number of fingerprints with the same 
rounded DTDC 

 
(a) 

 
(b) 

By rounding DTDC, we count the number of fingerprints  
(Y-axis) with the same distance (X-axis) as shown in  
Figure 12(b). The maximum occurrence for the same 
rounded DTDC is 34 where the X-axis is 18 (2.4 times the 
average ridge-valley width). Fingerprints in FT1 can be 
further divided into subclasses based on DTDC or percentage 
of occurrences. For instance, in the distance-oriented 
approach, one can create a subclass for every 60 pixels in 
distance. Figure 12(a) will then be divided into five 
subclasses from distance 0 to 300. If we wish to use  
the distance-oriented approach to make the subclass  
in the FT1 account for the same percentage as FT0 (4%), 
then Figure 12(a) will be divided into 14 subclasses  
and each subclass will contain 160 images. A similar  
sub-classification scheme can be applied to FT2 and FT3, 
which can be divided into more subclasses since they have 
more distance values. 

6 Conclusions 

The original SEA suffers from two problems: the valid 
singular point disappearing problem and the narrow arch 
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anomaly. The ESEA presented in this paper successfully 
overcomes these two problems. ESEA properly locates SPs 
on fingerprints in a 2 × 2 pixel area and recognise the type 
of SP by analysing directional sequence on pixel-wised 
directional images. According to the type and number of 
SPs, fingerprints will be assigned to one of the four types 
FT0, FT1, FT2, and FT3 with a set of SP distance values. 
Experimental results show the accuracy rate of ESEA 
increases 32.5% compared to the SEA and reaches 94.7% 
on the NIST-4 database. Distance among SPs provide 
evenly distributed non-discrete information which is used as 
sub-classification basis to further group fingerprints into 
subclasses with smaller numbers of occurrences. The search 
for a specific fingerprint can therefore be performed on 
specific subclasses containing only a small portion of a 
large fingerprint database, which will then save enormous 
computational time. The sub-classification scheme is 
illustrated by the FT1 type. 
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