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Abstract Asian options are popular financial derivative securities. Unfortu-
nately, no exact pricing formulas exist for their price under continuous-time
models. Asian options can also be priced on the lattice, which is a discretized
version of the continuous-time model. But only exponential-time algorithms
exist if the options are priced on the lattice without approximations. Al-
though efficient approximation methods are available, they lack accuracy
guarantees in general. This paper proposes a novel lattice structure for pric-
ing Asian options. The resulting pricing algorithm is exact (i.e., without
approximations), converges to the value under the continuous-time model,
and runs in subexponential time. This is the first exact, convergent lattice
algorithm to break the long-standing exponential-time barrier.
keyword: option pricing, binomial model, path-dependent derivative, Asian
option, complexity.

1 Introduction

Derivative securities are financial instruments whose value depends on some
underlying assets. They are essential to speculation and the management of
financial risk. The underlying assets can be as diverse as stocks, indexes,
currencies, commodities, bonds, mortgages, other derivatives, temperatures,
or countless others [21]. The most common derivatives are futures, swaps,
and options. Futures contracts oblige the owners to buy certain assets for a
fixed contractual price at some point in the future. Swaps let parties exchange
assets in the future according to a rule. The focus of the paper is the third
type of derivatives: options. Options are derivative securities that give their
buyer the right, but not the obligation, to buy or sell the underlying assets for
a contractual price called the exercise price. Take the standard stock option
for example. Suppose an investor buys a call option which gives him the right
to buy 100 shares of XYZ stock at $10 per share 60 days from now. If the
stock price finishes above $10 then, say $25, then the buyer realizes a profit
of 100× (25− 10) = 1, 500 dollars by exercising the option. If the stock price
finishes below $10, the buyer simply gives up the option and receives nothing.
The payoff of this call option is therefore 100 × max(S − 10, 0), where S is
the stock price 60 days from now and is a random variable.

In practice, options more complex than the standard ones have been struc-
tured to meet specific financial needs. Many of them are path-dependent.
A path-dependent option is an option whose payoff depends strongly on
the price history of the underlying asset, which we will assume to be stock
throughout the paper for convenience. The payoff function of a path-dependent
option may depend on, for example, the maximum stock price, the minimum
stock price, or the average stock price. It may also depend on whether the
stock price ever hits a given target price or whether the stock price ever stays
below a given target price for a given length of time [32]. The possibilities
are limited only by imagination and marketability.

As an option conveys a right, it must command a positive price called
premium. How to assign a fair price to an option given a continuous-time
stochastic process for the stock price has been investigated since 1900 [28].
Finally in 1973, Black and Scholes settle the option pricing problem in a way
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that is considered intellectually satisfactory [4]. Although an option must
have a unique theoretical price, calculating that price may be computation-
ally difficult. For example, Chalasani et al. show that a path-dependent op-
tion can be so defined that its pricing problem is #P-hard [9]. Even though
no traded options have been proved to be that hard to price, provably con-
vergent polynomial-time solutions for some remain elusive.

The focus of this paper is a particular type of path-dependent option
called the Asian option, which is known to be difficult to price. Asian options
seem to be suggested first by Ingersoll [23] and were originally traded in Asian
markets, particularly Tokyo [40]. The payoff of an Asian option depends on
the average stock price. It is hence useful for hedging transactions whose cost
is related to the average price of the underlying asset (such as crude oil). Its
price is also less subject to price manipulation. As a result, the average-price
feature is popular in many thinly-traded markets and embedded in quite a
few derivatives like convertible bonds.

The Asian option can be further categorized into fixed-strike Asian op-
tions and floating-strike Asian options. The payoff function of a fixed-strike
Asian option is the maximum of the difference between the average stock
price and the exercise price and zero. The payoff of a floating-strike Asian
option, in contrast, is defined as the maximum of the difference between the
stock price and the average stock price and zero.

There are no simple, exact closed-form solutions to the Asian option’s
price under the standard continuous-time model. We call this price the true
option value for simplicity. Many approximate closed-form solutions have
been proposed under various assumptions [26,30,36]. Geman and Yor derive
an analytical expression for the Laplace transform of the Asian call [18].
Numerical inversion of this transform is considered in [17,35]. Some inversion
algorithms based on the Euler and Post-Widder methods can be found in [1].
Rogers and Shi provide lower and upper bounds [34]. Zhang gives a semi-
analytical method that is very accurate for the options tested [39]. However,
approximate closed-form formulas lack accuracy guarantees. Indeed, some
can produce large pricing errors under certain settings [16,40]. Furthermore,
the analytical approach does not apply to American-style Asian options.
(Definitions will be given later. Basically, European-style options do not allow
early exercise, whereas American-style options do. Early exercise results in
early payoff and is related to the so-called optimal stopping problem.)

As no simple exact closed-form formulas exist yet for the Asian option,
the development of efficient numerical algorithms becomes critical. First,
there are the popular Monte Carlo and quasi-Monte Carlo methods [5–7,24].
But they all suffer from the inability to price American-style Asian options
without bias. Recently, a least-square Monte Carlo approach to address this
issue has been proposed [27]. But the analysis of the method is very intricate.
Other problems with the Monte Carlo method are that it is inefficient and
the result is probabilistic.

The true option value we are seeking must satisfy a certain partial dif-
ferential equation (PDE) with proper boundary conditions. Hence a popular
numerical approach is the lattice and the related discretized PDE method.
This general approach can handle early exercise. A lattice consists of nodes
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and edges connecting them. It divides the time interval during which the
option is alive into n equal discrete time steps and sets up a discrete-time
random walk for the stock price. It is known that if the lattice converges to
the continuous-time stock price process as n goes to infinity, the option value
given by the lattice via backward induction (to be introduced later) also con-
verges to the true option value [14]. The PDE can be solved numerically by
the finite difference method on a grid structure with a proper specification of
the boundary conditions. Compared to the PDE method, the lattice method
contains more financial intuitions. Numerically, the lattice method can be
viewed as an explicit method of solving the PDE [28]. The key remaining
issue is whether convergence can be achieved efficiently.

For the Asian option, only exponential-time lattice pricing algorithms are
known if approximation is not used during backward induction. (In this paper
as well as in the literature, all running times are in terms of n.) We call a
lattice algorithm exact if it does not adopt approximation during backward
induction. The option value computed by an exact lattice pricing algorithm
will be referred to as the desired option value, which converges to the true
option value at a rate of O(n−1) [14].

To see intuitively why pricing on the lattice can be time-consuming, let
us assume a trinomial random walk for the stock price. Hence three prices
follow each stock price. Recall that the payoff of the Asian option depends
on the average stock price. This implies that after n time steps, the price
history contains 3n possible price paths, each with a different average price.
Worse, every one of these average prices is involved in determining the option
price. For simpler options, we may be able to take advantage of particular
structures in the random walk and the payoff function to lower the number of
paths to a polynomial in n. Unfortunately, for Asian options, the exponential
count has not been dramatically lowered before this paper.

To solve the inefficiency problem of the exact pricing algorithm, Hull and
White propose approximation algorithms [22]. Their influential paradigm has
been followed by most lattice algorithms [3,25,33,41]. The major problem
with the Hull-White paradigm is convergence. It is known that an improper
use of approximations can result in divergence or convergence to the wrong
value [15]. Chalasani et al. provide an O(n4) approximation algorithm that
brackets the desired option value [8]. But the difference between the up-
per bound and the lower bound of the option value may not converge to
0. Aingworth et al., Chalasani et al., Dai et al., and Ohta et al. provide
polynomial-time approximation algorithms that have convergence guaran-
tees for European-style Asian options [2,9,11,31]. Večeř suggests an O(n2)-
time algorithm for European-style Asian options and American-style floating-
strike Asian options, which is the best in the literature [37]. But his technique
can not handle American-style fixed-strike Asian options. For American-style
fixed-strike Asian options, all polynomial-time algorithms keep running av-
erages as states and use interpolation in the approximation. Whether they
converge is hard to analyze.

An alternative paradigm due to Dai and Lyuu constructs a trinomial
lattice called the multiresolution lattice [12]. The multiresolution lattice con-
verges to the true option value because it is exact. Numerical results show
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that the method can work for n up to 160. Note that an exponential-time al-
gorithm cannot possibly work with an n this large because 3160 ∼ 2.185×1076.
Hence it has been conjectured that the multiresolution lattice gives rise to a
subexponential-time algorithm. There are two drawbacks with the multires-
olution lattice. First, no proof is available to show that it indeed runs in
subexponential time. Second, its construction relies partially on an ad hoc
local search, and no proof exists to guarantee that the search must succeed.

This paper will propose the first exact lattice pricing algorithm that prov-
ably breaks the exponential-time barrier (see Theorem 1 in section 4). The
running time of our algorithm is 2O(

√
n). Our algorithm has convergence guar-

antees for both European-style and American-style Asian options, whereas
no other polynomial-time algorithms have such guarantees for all American-
style Asian options. Here is an overview of the major steps of our algorithm.
Since the payoff of an Asian option is determined by the average stock price,
the pricing algorithm is faster if the number of possible average stock prices
is fewer. Towards the goal of reducing the number of average stock prices
from 3n to something subexponential in n, we construct a lattice composed
of integer stock prices. The stock price sum of a price path on the lattice
is therefore an integer. This critical property results in the reduction of the
number of possible average stock prices. Exact backward induction can then
be applied with a complexity that is only subexponential in n. We remark
that our algorithm can price partial-averaging Asian options, whose payoff
depends on the average stock price over only a part of the option’s life, again
in subexponential time. Note that the proposed algorithms contain no ap-
proximations other than the discretization of the continuous-time model; in
other words, they are exact. Thus they converge to the true option values at
a rate of O(n−1) [14,15].

The homogeneous property of the option value is crucial to the construc-
tion of the said lattice. Suppose we multiply the stock prices by a constant
K before pricing the option. The homogeneous property says that the result-
ing option value divided by K gives the original desired option value [29].
This property holds for efficient markets and essentially says the price of
K merchandises is K times that of one. This detour increases the dynamic
range of the stock prices so that proper integer stock prices can always be
found. In our paper, a K of reasonable magnitude is found that guarantees
the existence of an integer lattice. To ensure that the pricing results based
on our lattice converge to the true option value, we have to make sure that
our lattice converges to the continuous-time stock price process. For that, the
lattice must match the mean and the variance of the continuous-time stock
price process at each time step [14]. This paper will prove that an integer
lattice that satisfies above constraints can be efficiently constructed.

We comment that although a subexponential-time algorithm is still far
from being polynomial-time, it is much more practical than an exponential-
time algorithm. For example, the multiresolution lattice algorithm, which
probably runs in subexponential time, is capable of calculating prices for n
that are beyond any exponential-time algorithms. As another example, the
typical reason cited for the superiority of a cryptosystem based on elliptic
curves is that currently the best algorithms to break it have exponential
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running times, whereas subexponential-time algorithms are known for the
integer factorization problem [19].

The paper is organized as follows. The mathematical model is described
in section 2. We will review how a typical lattice is constructed and how
the Asian option is priced on the lattice in section 3. In section 4, we will
show how to construct the proposed lattice. Proofs in section 5 show that
our pricing algorithm is the first exact pricing algorithm that breaks the
exponential-time barrier. Sample running times are given in section 6 to
show the performance of our algorithm. Section 7 concludes this paper.

2 Modeling and Definitions

Assume that the Asian option initiates at 0 (in years) and matures at T (in
years). Define S(t) as the price of the stock at year t. The stock price is
assumed to follow the continuous-time lognormal diffusion process:

S(t + dt) = S(t) e(r−0.5σ2) dt+σ dWt , (1)

where Wt is the standard Wiener process, r is the risk-free interest rate per
annum, and σ is the annual volatility. It is useful to think of dWt as normally
distributed with mean 0 and variance dt.

The discrete-time approximation to the lognormal diffusion partitions the
time between year 0 and year T into n time steps. The length of each time
step ∆t thus equals T/n. Let Si denote the stock price at (discrete) time i,
which corresponds to S(i∆t) in the continuous-time model. The payoff of the
Asian option depends on the average stock price. Define

Aavg(i) ≡ S0 + S1 + · · · + Si

i + 1
.

A European-style option can only be exercised at the maturity date. The
payoff to exercise a European-style fixed-strike Asian option at the maturity
date is

exercise value =
{

Aavg(n) − X, for call,
X − Aavg(n), for put, (2)

where X is the exercise price. On the other hand, the payoff to exercise a
European-style floating-strike Asian option at the maturity date is

exercise value =
{

Sn − Aavg(n), for call,
Aavg(n) − Sn, for put, (3)

In either case, the holder can give up the option at the maturity date if the
exercise value is negative. Thus the final payoff of the European-style Asian
option is max(exercise value, 0). A fundamental theorem in finance says that
the option value at year 0 equals the discounted expected payoff at year T
[20], or

e−rT E [ max(exercise value, 0) ] .
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We shall concentrate on calls as puts can be treated similarly. Our task is
therefore to compute e−rT E[max(Aavg(n)−X, 0) ] so that the value converges
to the true option value e−rT E[max( 1

T

∫ T

0
S(t) dt − X, 0) ] as n increases.

The American-style option gives the owner the right to exercise the option
before maturity, thus an earlier payoff. The exercise value for a fixed-strike
and a floating-strike American-style call option at time i is

exercise value = Aavg(i) − X, (4)

and
exercise value = Si − Aavg(i), (5)

respectively. An option will be exercised early by the owner if the option’s
continuation value (the value if the option is held) is smaller than its exercise
value.

3 Preliminaries

Before introducing our new lattice, we first review the principle behind build-
ing a lattice that converges to the lognormal diffusion process. Next we will
show how to price the Asian option on a lattice. We will also see why the
traditional exact pricing algorithm explodes exponentially and why the ap-
proximation approach of Hull and White [22] is problematic. Finally, we will
summarize the ideas of the integer lattice that will be useful later.

3.1 How To Construct a Lattice

We use the well-known Cox-Ross-Rubinstein (CRR) binomial lattice [10] to
illustrate how a convergent lattice is constructed in principle. A 3-time-step
CRR binomial lattice is illustrated in Fig. 1. At each time step, the stock
price S can either become Su — the up move — with probability Pu or Sd
— the down move — with probability Pd ≡ 1 − Pu. The relation

ud = 1 (6)

is enforced by the CRR binomial lattice. The logarithmic stock price’s mean
(µ) and variance (Var) one time step from now are derived from Eq. (1) as

µ ≡ (r − 0.5σ2)∆t, (7)
Var ≡ σ2∆t. (8)

To make sure that the lattice converges to the continuous-time lognormal
diffusion process, µ and Var should match the mean and variance of the
lattice at least asymptotically:

Pu ln u + Pd ln d = µ, (9)
Pu(ln u − µ)2 + Pd(ln d − µ)2 = Var. (10)
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Fig. 1 A 3-Time-Step CRR Binomial Lattice.
The initial stock price is S0. The upward and the downward multiplicative factors
for the price process are u and d, respectively. The upward and the downward
branching probabilities are Pu and Pd, respectively.

In addition,
Pu + Pd = 1 (11)

must hold. The 4 parameters Pu, Pd, u, and d are uniquely obtained by
solving Eqs. (6) and (9)–(11). The branching probabilities Pu and Pd must
also lie between 0 and 1. These requirements can always be met by suitably
increasing n [28].

In general, if each node in a lattice branches to � nodes at the next time
step, we call the lattice �-nomial. Ideas similar to the above can be applied to
construct an �-nomial lattice. Note that 2� degrees of freedom are provided
by an �-nomial lattice. They include � price multiplicative factors (like the
u and d in the CRR binomial lattice) and � branching probabilities (like
the Pu and Pd in the CRR binomial lattice). These branching probabilities
must also lie between 0 and 1. We therefore need 2� independent equations to
determine these 2� variables uniquely. The matching of the mean and variance
gives 2 equations. The branching probabilities sum to 1, giving another one.
Additional 2� − 3 equations must be added. For example, Eq. (6) is the
extra equation used in the CRR binomial model. This paper will construct
trinomial lattices (i.e., � = 3).

3.2 Pricing Asian Options on a Trinomial Lattice

In a trinomial lattice, each node can branch to three successor nodes in the
next time step. Let Si,j denote the (j + 1)th largest stock price of the nodes
at time i. A 2-time-step trinomial lattice is illustrated in Fig. 2. Take the
root node as an example. Its stock price is S0,0. The stock price can move
upward to S1,0 with probability Pu, move flatly to S1,1 with probability Pm,
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P�u�
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Fig. 2 A 2-Time-Step Trinomial Lattice.
The initial stock price is S0,0. Si,j denotes the (j + 1)th largest stock price at time
i. Pu, Pm, and Pd denote the branching probabilities.

and move downward to S1,2 with probability Pd. The branching probabilities
will vary for different nodes. However, we drop the dependence on i and j
from Pu, Pm, Pd for brevity. In general, there are 2i + 1 nodes at time i.

Define the sum of a partial price path started at time 0 and ended at
time j, S0 → S1 → · · · → Sj , as

∑j
i=0 Si. We call this sum a prefix sum.

As both the final payoff and the exercise value of the Asian option depend
on the average stock price, the option value associated with a partial price
path depends on the prefix sum of this partial price path. To price the Asian
option, enough numbers of states are required at each node to keep the option
values corresponding to different prefix sums. Specifically, the option value at
time n can be calculated by Eq. (2) for fixed-strike Asian options or Eq. (3)
for floating-strike Asian options. Define V(S,C) as the option value whose
corresponding prefix sum is C and whose stock price is S. Again, let Pu, Pm,
and Pd denote the branching probabilities of the node with stock price Si,j .
The pricing formula for the European-style options can be defined recursively
as follows:

V(Si,j , C) = e−r∆t [PuV(Si+1,j , C + Si+1,j)+
PmV(Si+1,j+1, C + Si+1,j+1) +
PdV(Si+1,j+2, C + Si+1,j+2)] . (12)

The pricing formula for the American-style options can be defined similarly:

V(Si,j , C) = max
(
e−r∆t [PuV(Si+1,j , C + Si+1,j)+

PmV(Si+1,j+1, C + Si+1,j+1) +
PdV(Si+1,j+2, C + Si+1,j+2)] , E) , (13)
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where exercise value E is defined in Eq. (4) for fixed-strike Asian options
or Eq. (5) for floating-strike Asian options. The above formulas rely on the
principle of backward induction and can be applied in a backward fashion
from time n to time 0. Eventually, V(S0,0, S0,0) gives the desired option value.

The backward-induction procedure implies that the overall running time
is proportional to the total number of prefix sums on the lattice. Unfortu-
nately, the number of partial price paths grows exponentially in n, giving as
many prefix sums. This makes an exact pricing algorithm explode exponen-
tially. Hull and White suggest to limit the number of prefix sums at each
node to some constant k [22]. The resulting approximation algorithm is ef-
ficient, with a running time of O(kn2). But it must resort to interpolation
in backward induction because not enough prefix sums have been allocated.
Thus interpolation errors are introduced and accumulated at each time step.
Applied without care, the Hull-White approach may not converge to the
true option value as n → ∞ [15]. No polynomial-time approximation al-
gorithms have rigorously proved convergence guarantees for American-style
Asian options. This paper presents a subexponential-time algorithm with
such guarantees.

3.3 An Integer Lattice

We will construct a trinomial lattice composed of integer stock prices. Note
that if the stock price of each node in the lattice is an integer, all possible
prefix sums must be integers because integers are closed under addition.

The stock price at the root node S is the only price on the lattice that will
not be required to be an integer. Express S as S′+a for integer S′ ≡ �S� ≥ 0
and real number a = S − S′ where 0 ≤ a < 1. Assume that the maximum
prefix sum in the lattice is F . Then all possible prefix sums must belong in
the set

{Ŝ : 1 ≤ Ŝ ≤ F, Ŝ = m + a,m ∈ N}.
The key to showing that our algorithm breaks the exponential-time barrier
is to prove that the size of this set is bounded by a subexponential function
in n.

4 Lattice Construction

To reduce the number of prefix sums at each node in our lattice, the stock
price of each node (except the root node) is restricted to be an integer. To
ensure that the stock price process given by our lattice converges to the stock
price process (1), the mean and the variance of the logarithmic stock price
process are matched at each node in the lattice. In this section, we will first
show how the lattice is constructed step by step in order to meet the above
two requirements. Proof will be given in the next section to show that our
lattice provides a subexponential-time algorithm for Asian options.

The homogeneous property says that

E[max(A − X, 0) ] =
E [ max (KA − KX, 0) ]

K
.
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Thus we can multiply the stock price (S0) and the exercise price X by a
constant K and price this hypothetical option. The desired option value is
then obtained by dividing this hypothetical option price by K. To ensure
that a proper integer price can be assigned to each node (again, except the
root node), let

K ≡ (0.25S0σ)−1
√

n/T exp
[
(0.5σ2 − r)T + 2σ

√
Tn

]
. (14)

Note that K ∈ eO(
√

n). We will show later that this K works.
Next a trinomial lattice is constructed to price this hypothetical option.

The stock price of the root node (S0,0) is equal to KS0. Our goal is to find
integer stock prices Si,j for 0 < i ≤ n, 0 ≤ j ≤ 2i. Define the V -log-price
of stock price V ′ as ln(V ′/V ). Hence a V -log-price of z implies a stock price
of V ez. Let ci,j ≡ (r − 0.5σ2) i∆t + 2(i − j)σ

√
∆t . Si,j will be some integer

whose KS0-log-price belongs to the following interval centered around ci,j :

(ci,j − 0.25σ
√

∆t, ci,j + 0.25σ
√

∆t).

We call ci,j the log-price center for Si,j . It will be shown later (Lemma 1)
that there always exists an integer at each node whose KS0-log-price falls
within the said interval.

Take the 2-time-step trinomial lattice in Fig. 3 as an example. The x-axis
marks the time step in the lattice, and the y-axis denotes KS0-log-prices.
Each log-price center is depicted as a hollow circle. Each dotted line segment
begins at ci,j and ends at ci+1,j+1. The slopes of these dotted lines represent
the expected growth rate of the logarithmic stock price: (r − 0.5σ2)∆t. The
integer stock price for each node is depicted as a solid circle. Take S2,0 as an
example. Because c2,0 = (r − 0.5σ2) 2∆t + 4σ

√
∆t, the KS0-log-price of S2,0

should fall within the interval (c2,0 − 0.25σ
√

∆t, c2,0 + 0.25σ
√

∆t).
The branching probabilities for each node are computed as follows. Take

a node with price Si,j . Recall that the probabilities for the stock price moving
to Si+1,j , Si+1,j+1, and Si+1,j+2 are Pu, Pm, and Pd, respectively. Define α,
β, and γ as follows:

α ≡ ln(Si+1,j/Si,j) − µ, (15)
β ≡ ln(Si+1,j+1/Si,j) − µ, (16)
γ ≡ ln(Si+1,j+2/Si,j) − µ, (17)

where µ is defined in Eq. (7). The branching probabilities satisfy

Puα + Pmβ + Pdγ = 0, (18)
Puα2 + Pmβ2 + Pdγ

2 = Var, (19)
Pu + Pm + Pd = 1, (20)

where Var is defined in Eq. (8). Equations (18) and (19) match the mean
and the variance of the logarithmic stock price, respectively. Hence our lattice
converges to the lognormal stock price process. That Eqs. (18)–(20) give valid
branching probabilities will be proved later (Lemma 2).

The key result of this paper is stated below.
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Fig. 3 A 2-Time-Step Trinomial Lattice over KS0-log-prices.

Theorem 1 The integral lattice discussed in this section can be constructed,
and the pricing algorithms for Asian options on this lattice run in 2O(

√
n)

time.

5 Proof of Theorem 1

The proof of Theorem 1 consists of two parts. First, we will prove that a valid
lattice can be constructed. Next we will show that our pricing algorithms
based on this lattice run in 2O(

√
n) time.

When constructing the trinomial lattice, an integral stock price is assigned
to each node (except the root node). The following lemma shows that we can
always find a proper integral stock price for each Si,j .

Lemma 1 For each Si,j, these exists an integer whose KS0-log-price falls
in (ci,j − 0.25σ

√
∆t, ci,j + 0.25σ

√
∆t), where 0 < i ≤ n and 0 ≤ j ≤ 2i.

Proof: To ensure that such an integer exists, it suffices to show that

KS0

[
exp

(
ci,j + 0.25σ

√
∆t

)
− exp

(
ci,j − 0.25σ

√
∆t

)]
> 1 (21)

with our choice of K in Eq. (14).
Without loss of generality, only the case where i = n and j = 2n is

considered because it minimizes the term within the brackets in Eq. (21).
Thus it suffices to show that our K satisfies

K > S−1
0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

.
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Indeed,

S−1
0 e−cn,2n

(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

= S−1
0 exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]

×
(
e0.25σ

√
∆t − e−0.25σ

√
∆t

)−1

< S−1
0 exp

[
(0.5σ2 − r)T + 2σ

√
Tn

]
/(0.25σ

√
T/n) (22)

≤ (0.25S0σ)−1
√

n/T exp
[
(0.5σ2 − r)T + 2σ

√
Tn

]

= eO(
√

n),

where Eq. (22) holds because

e0.25σ
√

∆t − e−0.25σ
√

∆t > (1 + 0.25σ
√

∆t) − 1 = 0.25σ
√

∆t .

�

Next, we show that all the branching probabilities of our lattice are valid.

Lemma 2 Equations (18)–(20) result in valid branching probabilities for the
stock price Si,j, where 0 < i ≤ n and 0 ≤ j ≤ 2i.

Proof: It suffices to prove that Pu, Pm, Pd > 0. We first derive constraints
on α, β, γ defined in Eqs. (15)–(17). Then we show that valid branching
probabilities are obtained by solving Eqs. (18)–(20) given the constraints on
α, β, and γ.

We use the plot in Fig. 4 to aid the proof. Observe that the KS0-log-price
of x becomes the Si,j-log-price of x+ ln KS0

ln Si,j
. The following computations are

in Si,j-log-prices unless stated otherwise. The log-price center of Si,j , i.e.,
c′, equals ci,j + ln KS0

ln Si,j
, whereas c, the log-price center of Si+1,j+1, equals

c′+(r−0.5σ2)∆t. The log-price centers of Si+1,j and Si+1,j+2 are c+2σ
√

∆t

and c − 2σ
√

∆t , respectively. The Si,j-log-price of Si,j is 0. The conditional
mean of the stock price one time step after it reaches Si,j is µ = (r−0.5σ2)∆t.
By construction, the distance between the Si,j-log-price of Si,j , which equals
0, and its log-price center c′ is smaller than 0.25σ

√
∆t . This implies that

|c′| < 0.25σ
√

∆t . Hence,

|µ − c | =
∣∣(r − 0.5σ2)∆t − [

c′ + (r − 0.5σ2)∆t
]∣∣

= | c′ | < 0.25σ
√

∆t .

Thus µ falls within interval (c−0.25σ
√

∆t, c+0.25σ
√

∆t). Now β = ln(Si+1,j+1/Si,j)−
µ falls within interval (−0.5σ

√
∆t, 0.5σ

√
∆t) as the Si,j-log-price of Si+1,j+1,

i.e., ln(Si+1,j+1/Si,j), falls within interval (c−0.25σ
√

∆t, c+0.25σ
√

∆t). Fig-
ure 4 illustrates a case where β < 0.
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1

c'

Pu

Pm

Pd

tc ∆+ σ2

c

tc ∆− σ2

i i+1

||α

|| β

||γ

1d

2d

tc ∆+ σ25.2

tc ∆+ σ75.1

tc ∆+ σ25.0

tc ∆− σ25.0

tc ∆− σ75.1

tc ∆− σ25.2

)( , jiS

)( ,1 jiS +

)( 1,1 ++ jiS

)( 2,1 ++ jiS

µ
tc ∆+ σ25.0'

tc ∆− σ25.0'

Fig. 4 Branching Probabilities for the Node with Price Si,j.
All the values in this figure are Si,j-log-prices except the ones that are parenthe-
sized. The nodes with stock prices Si,j , Si+1,j , Si+1,j+1, and Si+1,j+2 are repre-
sented by solid circles. The branches that connect these nodes are represented by
thick lines. The log-price centers of Si,j and Si+1,j+1 are c′ and c, respectively. Pu,
Pm, and Pd denote the branching probabilities for the upper, middle, and lower
branches from the node with price Si,j , respectively. Values α, β, and γ are defined
in Eqs. (15)–(17). Finally, d1 denotes the distance between Si+1,j ’s and Si+1,j+1’s
Si,j-log-prices, and d2 denotes the distance between Si+1,j+1’s and Si+1,j+2’s Si,j-
log-prices.

We next represent α and γ in terms of β. Define d1 as the distance be-
tween Si+1,j ’s and Si+1,j+1’s Si,j-log-prices and d2 as the distance between
Si+1,j+1’s and Si+1,j+2’s Si,j-log-prices. Thus α and γ can be represented as

α = ln (Si+1,j/Si,j) − ln(Si+1,j+1/Si,j) + ln(Si+1,j+1/Si,j) − µ

= d1 + β,

γ = ln (Si+1,j+2/Si,j) − ln(Si+1,j+1/Si,j) + ln(Si+1,j+1/Si,j) − µ

= −d2 + β.

Note that 1.5σ
√

∆t < d1 < 2.5σ
√

∆t because

c + 1.75σ
√

∆t < ln(Si+1,j/Si,j) < c + 2.25σ
√

∆t ,

c − 0.25σ
√

∆t < ln(Si+1,j+1/Si,j) < c + 0.25σ
√

∆t ,

d1 = ln(Si+1,j/Si,j) − ln(Si+1,j+1/Si,j).

By the same argument, 1.5σ
√

∆t < d2 < 2.5σ
√

∆t . Note also that α = d1 +
β > σ

√
∆t > 0 as β ∈ (−0.5σ

√
∆t, 0.5σ

√
∆t) and d1 ∈ (1.5σ

√
∆t, 2.5σ

√
∆t).

Similarly, γ = −d2 + β < −σ
√

∆t < 0 as d2 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t). Thus
α > β > γ.
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We now show that positive branching probabilities are obtained given the
constraints on α, β, and γ derived above and summarized below:

β ∈ (−0.5σ
√

∆t, 0.5σ
√

∆t),

α = d1 + β, where d1 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t),

γ = −d2 + β, where d2 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t).

Define

det = (β − α)(γ − α)(γ − β),
detu = (βγ + Var)(γ − β),
detm = (αγ + Var)(α − γ),
detd = (αβ + Var)(β − α).

Then Pu = detu/det, Pm = detm/det, and Pd = detd/det by applying
Cramer’s rule to Eqs. (18)–(20). Note that det < 0 as α > β > γ. To show
that the branching probabilities are valid, we have to show that Pu, Pm, Pd >
0. As det < 0, it is sufficient to show detu,detm,detd < 0. Finally, as
γ−β < 0, α−γ > 0, and β−α < 0, we only need to show that βγ +Var > 0,
αγ + Var < 0, and αβ + Var > 0 instead.
1. βγ + Var > 0: Note that

βγ + Var = β(β − d2) + σ2∆t = (β − 0.5d2)2 − 0.25d2
2 + σ2∆t.

For a given d2, βγ + Var reaches its minimum when β = 0.5d2. Recall the
constraints that 0.5d2 ∈ (0.75σ

√
∆t, 1.25σ

√
∆t) and β < 0.5σ

√
∆t . Hence

βγ + Var reaches its minimum for a given d2 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t) when
β → 0.5σ

√
∆t . Thus we have

βγ + Var = β(β − d2) + σ2∆t

> 0.5σ
√

∆t (0.5σ
√

∆t − d2) + σ2∆t

= −0.5σ
√

∆t d2 + 1.25σ2∆t

> −1.25σ2∆t + 1.25σ2∆t = 0.

2. αγ + Var < 0: Note that

αγ + Var = (β + d1)(β − d2) + σ2∆t.

As β + d1 > σ
√

∆t and β − d2 < −σ
√

∆t, we have

(β + d1)(β − d2) + σ2∆t < (σ
√

∆t)(−σ
√

∆t) + σ2∆t = 0.

3. αβ + Var > 0: The proof is similar to the one for βγ + Var > 0. Note that

αβ + Var = (β + d1)β + σ2∆t = (β + 0.5d1)2 − 0.25d2
1 + σ2∆t.

For a given d1, αβ + Var reaches its minimum when β = −0.5d1. Recall the
constraints that −0.5d1 ∈ (−1.25σ

√
∆t,−0.75σ

√
∆t) and β > −0.5σ

√
∆t .
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Hence αβ + Var reaches its minimum for a given d1 ∈ (1.5σ
√

∆t, 2.5σ
√

∆t)
when β → −0.5σ

√
∆t . Thus

αβ + Var = (β + d1)β + σ2∆t

> (−0.5σ
√

∆t + d1)(−0.5σ
√

∆t) + σ2∆t

= −0.5σ
√

∆t d1 + 1.25σ2∆t

> −1.25σ2∆t + 1.25σ2∆t = 0.

�

Finally, the time complexity is proved.

Lemma 3 Our pricing algorithm for European-style Asian options runs in
2O(

√
n) time.

Proof: Note that our pricing algorithm will evaluate the option values for
all the prefix sums on the lattice by Eq. (12). Thus the time complexity
of our algorithm is proportional to the total number of prefix sums on the
lattice. Thus the pricing algorithm is subexponential in n if the total number
of prefix sums is bounded by a subexponential function. We will first show
that the maximum prefix sum in our lattice is bounded by a subexponential
function. Then we will show that the total number of prefix sums is, too.

The maximum stock price Sn,0 is bounded by KS0e
cn,0+0.25σ

√
∆t, where

cn,0 = (r − 0.5σ2)n∆t + 2(n − 0)σ
√

∆t

= (r − 0.5σ2)T + 2σ
√

Tn .

Thus Sn,0 is bounded by a subexponential function as both K and ecn,0+0.25σ
√

∆t

are subexponential in n. The maximum prefix sum in the lattice is equal to∑n
i=0 Si,0 ≤ (n + 1)Sn,0. Note that (n + 1)Sn,0 is also subexponential in n.

Let F ≡ (n + 1)Sn,0 for later use.
The next goal is to show that the total number of prefix sums is bounded

by a subexponential function. Recall that the stock price for each node except
the root node is an integer. The stock price at the root node (KS0) can be
represented as S′ + a for some integer S′ ≥ 0 and some real number a where
0 ≤ a < 1. Thus all possible prefix sums must belong to the set

{Ŝ : 1 ≤ Ŝ ≤ F, Ŝ = m + a,m ∈ N}.

The cardinality of the set is at most �F �. Thus the maximum number of
prefix sums for each node is bounded from above by �F �. Since there are
(n + 1)2 nodes in an n-time-step trinomial lattice, the total number of prefix
sums is bounded from above by (n + 1)2�F �, which is subexponential. The
time complexity of our algorithm is thus subexponential in n. �

Corollary 1 Our pricing algorithm for American-style Asian options runs
in 2O(

√
n) time.
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Table 1 Pricing a European-style Fixed-Strike Asian Option.

n Value Running Time
20 6.01 0.016
40 6.02 0.219
60 6.02 1.008
80 6.02 3.055

100 6.02 7.578

Value and Running Time denote the pricing results and the running times of our
algorithm, respectively. The stock price and the exercise price are 100, the volatility
is 30%, the risk-free interest rate is 10%, and the time to maturity is 0.5 year.

Proof: Our pricing algorithm will evaluate the option values for all the
prefix sums on the lattice by Eq. (13). Eq. (13) can be evaluated in constant
time since the exercise value E can also be evaluated in constant time by Eq.
(4) for fixed-strike Asian options or Eq. (5) for floating-strike Asian options.
Thus our pricing algorithm runs in 2O(

√
n) time. �

Corollary 2 Our pricing algorithm for partial-averaging Asian option runs
in 2O(

√
n) time.

Proof: The payoff of a partial-averaging Asian option depends on the aver-
age stock price over only a part of the option’s life. We simply need to keep
track of all possible “partial”-average stock prices during backward induc-
tion. Obviously, the number of partial-average stock price is less than the
number of possible average stock price. Exact backward induction can be
applied on our lattice in 2O(

√
n) time. �

6 Numerical Results

The numerical experiment illustrated in Table 1 gives an idea of the per-
formance of our subexponential-time algorithm. The numerical data are ob-
tained by running our program on an Intel Pentium IV 3.0G computer with
1G RAM. The quick convergence of our algorithm can be observed in Table
1 where the prices remain unchanged down to pennies when the number of
time steps is at least 40. The running time is reasonable and much less than
3n. For example, the program finishes in 7.578 seconds for n = 100, whereas
3100 ≈ 5.153 × 1047, making the naive exponential-time algorithm hopeless.

7 Conclusions

This paper develops a new trinomial lattice particularly with the Asian op-
tion in mind. The lattice uses the notion of integrality of stock prices to
reduce the time complexity of an exact pricing algorithm from exponential
to subexponential. The proposed pricing algorithm is guaranteed to converge
to the true option value at a rate of O(n−1), where n denotes the number of
time steps of our lattice. It is the first exact and convergent lattice algorithm
to break the exponential-time barrier.
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