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Abstract

Most derivatives do not have simple valuation formulas and must be priced by nu-

merical methods such as tree models. Although the option prices computed by a tree

model converge to the theoretical value as the number of time steps increases, the dis-

tribution error and the nonlinearity error may make the prices converge slowly or even

oscillate significantly. This paper introduces a novel tree model, the bino-trinomial tree

(BTT), that can price a wide range of derivatives efficiently and accurately. The BTT

reduces the nonlinearity error sharply by adapting its structure to suit the derivative’s

specification; consequently, the pricing results converge smoothly and quickly. More-

over, the pricing of some European-style options on the BTT can be made extremely

efficient by combinatorial tools, which are not available to most other tree models.

Therefore, the BTT can efficiently reduce the distribution error by picking a large num-

ber of time steps. This paper uses a variety of options to demonstrate the effectiveness
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of the BTT. Extensive numerical experiments show the superiority of the BTT to many

other popular numerical models.

Keywords: bino-trinomial tree, nonlinearity error, distribution error, tree, option pric-

ing
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1 Introduction

With the rapid growth of financial markets, more sophisticated derivatives are constantly

being structured by financial institutions to satisfy the needs of their clients. Financial in-

novations make markets more efficient, but they also give rise to pricing problems. Outside

a small group of financial derivatives, simple yet exact analytical formulas — such as the

celebrated Black-Scholes (1973) formula for vanilla options — do not exist. For such deriva-

tives, even if approximation formulas are available, they may lead to large pricing errors.

Take a continuously monitored (or simply “continuous” for short) double-barrier option as

an example. Its payoff depends on whether the underlying asset’s price path ever touches

either of two price levels (the barriers) before maturity. No simple, exact closed-form pric-

ing formulas are available for this option. Analytical approximation formulas have been

studied by Kunitomo and Ikeda (1992), Geman and Yor (1996), and Sidenius (1998), but

they can lead to large pricing errors (see Luo (2001)). Moreover, the analytical formulas

can not be easily extended to price American-style options or options with nonstandard

payoff functions such as some power-type payoff functions. Developing efficient numerical

methods to price those derivatives is obviously critical.

The tree model is a popular numerical pricing method (see Lyuu (2002)). It divides

the time span from now to the option’s maturity date into n time steps and specifies the

stock prices discretely at each time step. Their probability distribution must match the

underlying process’s distribution asymptotically. The tree is flexible in that an option can

be priced with only nominal changes when its payoff function is nonstandard; in contrast,

certain power options do not have closed-form pricing formulas (see Zhang (1998)).

The option prices computed by tree models converge to the theoretical option value

under the continuous-time model as n tends to infinity (see Duffie (1996)). However, the

prices may converge slowly or even oscillate significantly, especially for the popular barrier-

type options (see Boyle and Lau (1994)). Figlewski and Gao (1999) identify two types of

errors introduced by a discrete-time discrete-state tree model: the distribution error and

the nonlinearity error. The distribution error arises from approximating the continuous

distribution of the stock price with a discrete distribution. Fortunately, it converges to zero
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as n → ∞. The nonlinearity error, on the other hand, is introduced by the nonlinearity

of the option value function. The nonlinearity occurs at certain critical locations such as

a certain point, a price level, or a time point (called a critical point, a critical price level,

or a critical time point, respectively, in the paper). Critical locations are straightforward

to identify. For example, the vanilla option has a critical point at maturity with the stock

price equal to the strike price. For continuous barrier options, the critical price level occurs

along the barrier price. For discrete-monitoring barrier options, the critical time points

occur at monitoring dates.

Figlewski and Gao (1999) argue that the pricing results oscillate significantly due mainly

to the nonlinearity error. They propose the adaptive mesh model (AMM) to suppress price

oscillations. The AMM can be roughly viewed as a combination of two types of trinomial

trees: the base tree and the finer ones. The resolution of the base tree is low for efficiency

concerns. The finer trees, in contrast, have higher resolution and are built for only part

of the base tree where the nonlinearity error is significant. The complicated structure of

the AMM, however, makes it difficult to implement and still harder to tailor to different

derivatives.

The nonlinearity error can alternatively be reduced by restructuring the tree to make

the critical points, critical price levels, or critical time points coincide with the tree’s nodes,

layers, or discrete time steps, respectively. This idea is first suggested by Ritchken (1995).

He reduces the nonlinearity error in pricing continuous barrier options by aligning a layer

of nodes of the trinomial tree with each barrier. Similar ideas can also be found in Broadie

and Detemple (1996), Cheuk and Vorst (1996,1997), Tian (1999), Widdicks et al. (2002),

Ait-Sahlia et al. (2004), and Chung and Shih (2007). These models are simple and easy

to implement. However, as more critical locations are added in complicated derivative

contracts, the aforementioned models become too inflexible to deal with such instruments.

Andricopoulos et al. (2003) propose the quadrature method (QUAD for convenience),

which has a multinomial tree structure. QUAD is flexible in that it can let nodes or

discrete time steps coincide with critical points or critical time points, respectively. QUAD

is especially efficient for pricing discretely monitored (or simply “discrete” for short) options

as it deploys only one time step between two monitoring dates; traditional tree models need
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more time steps to attain good results. QUAD applies Simpson’s rule and extrapolation

to ensure fast convergence and accuracy. But QUAD is not as efficient as traditional

tree models in handling such continuous sampling feature as the American exercise feature

and the continuous-monitoring feature of continuous barrier options. This is because both

QUAD and the binomial/trinomial tree models require large numbers of time steps to

approximate the continuous sampling feature well. And it costs much more time to compute

with the multinomial tree structure of QUAD than the binomial/trinomial tree when the

number of time steps is large. Numerical results will be given later to support this claim.

This paper proposes a novel and simple tree model, the bino-trinomial tree (BTT), that

can price a wide range of derivatives efficiently and accurately. The BTT is essentially

a binomial tree with occasional trinomial structures for added flexibility. To reduce the

nonlinearity error, the BTT can adapt its structure to deal with critical locations; con-

sequently, the pricing results converge smoothly with only minor oscillations. For further

improvement, the smoothing technique suggested by Heston and Zhou (2000) can be used.

The binomial part of the BTT is the Cox-Ross-Rubinstein (CRR) binomial tree (see Cox et

al. (1979)). Thus European options can be priced extremely efficient by the combinatorial

tools designed for such trees (see Lyuu (1998) and Dai et al. (2008)). As a result, the

distribution error can be drastically reduced as the BTT is very efficient, even with a large

number of time steps. Numerical results given in this paper will show that the BTT achieves

the same accuracy level with far less computational time than all other tree structures.

The BTT derives the flexibility from its ability to combine a more fundamental tree

structure, the basic BTT (bBTT hereafter). The bBTT is essentially a binomial tree except

for a trinomial structure at the first time step, which provides the needed flexibility to deal

with critical locations. For example, Exhibit 1 outlines a bBTT to price a continuous

double-barrier option with two barriers, L and H. The nonlinearity error is reduced by

having two price layers of the bBTT coincide with the barriers L and H. The CRR tree,

which, in gray and with the first two time steps truncated, comprises the bulk of the bBTT.

Each node of the CRR tree lies on a grid point. The height of each cell of the grid equals the

distance between two adjacent price levels of the CRR tree; the length of each cell equals

the length of a time step (Δt). We first adjust the height of each cell so that the distance
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between the barriers is an integer multiple of the height of a cell. Then we lay out the grid

from the barrier L upward; barrier H will be on a layer of the grid automatically. The

length of the first time step of the bBTT, Δt′, may be slightly larger than Δt to make the

bBTT span the whole time span T . A method for selecting nodes A, B, and C from the

light gray vertices of the grid at time Δt′ guarantees valid branching probabilities from the

root node S (i.e., Pu, Pm, and Pd). The truncated CRR tree is finally laid on top of the

grid by emanating from nodes A, B, and C. The bBTT can be efficiently calculated by the

combinatorial tools designed for the CRR tree in pricing many European-style options.

The bBTT provides only two degrees of freedom in adapting the tree structure: (1) the

height of a cell and (2) the position of the grid. For pricing more complex options, say a

discrete moving-double-barrier option, more degrees of freedom are needed to make the tree

align with all critical locations. This can be achieved by combining multiple bBTTs to form

a single tree, called the BTT. Exhibit 2 illustrates how we combine four bBTTs, emanating

from S, D, E, and F , into one BTT for pricing a discrete moving-double-barrier knock-out

option with barriers H0 and L0 at time T0 and H1 and L1 at time T0 + T1. Each bBTT is

constructed as we did in the last paragraph, and the BTT aligns with all discrete barriers

(marked by the black nodes) to reduce the nonlinearity error. Two truncated CRR trees,

one starting at Δt′0 and the other starting at T0+Δt′1, laid on the top of the grids comprise

the bulk of the BTT. Again, the BTT can be efficiently calculated by the combinatorial

techniques designed for the CRR tree.

Our paper is organized as follows. The assumptions of the stock price process and

the definitions for the options to be discussed in this paper are given in section 2. The

methodology to construct the bBTT is detailed in section 3. To price an option that needs

more degrees of freedom than the bBTT (such as moving barrier options), the BTT is

needed and detailed in section 4. Numerical results are provided in section 5 to verify the

superiority of our methods compared with many others. Section 6 concludes the paper.
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2 Basic Terms and Preliminaries

Let St denote the stock price at time t, where 0 ≤ t ≤ T . St follows the lognormal diffusion

process:

St+dt = St · exp[ (r − 0.5σ2) dt+ σ dWt ], (1)

where Wt is the standard Wiener process, r is the risk-free interest rate per annum, and

σ is the volatility of the stock price. We assume that the option initiates at time 0 (with

stock price S0) and matures at time T (with stock price ST ). The exercise price for this

option is denoted by X.

A vanilla option gives its owner the right to buy or sell the underlying stock for the

exercise price X and does not have other unusual features. The payoff of a European

vanilla option at maturity date T is max(θ (ST −X) , 0), where θ = 1 for call options and

−1 for put options. The exercise price X at maturity is the critical point as the payoff

function is highly nonlinear at X. An American option allows the option holder to exercise

the option early. The exercise value for an American option at time t (0 ≤ t ≤ T ) is

θ (St −X).

A barrier option is an option whose payoff depends on whether the underlying stock’s

price path ever touches certain price levels called the barriers. A knock-in barrier option

comes into existence if the stock price touches the barrier(s) before the maturity date,

whereas a knock-out one ceases to exist if the stock price touches the barrier(s) before

maturity. Our paper focuses on knock-out barrier options since the value of a knock-in

barrier option can be derived from the knock-out barrier option via the in-out parity. For a

continuous barrier option, the underlying stock price is monitored continuously from time

0 to time T . For example, the payoff of a continuous down-and-out single-barrier option

with a low barrier L is

Payoff =

⎧⎪⎨
⎪⎩

max (θ (ST −X) , 0) , if Sinf > L,

0, otherwise,

where Sinf = inf0≤t≤T St. On the other hand, the payoff of a continuous up-and-out single-
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barrier option with a high barrier H is

Payoff =

⎧⎪⎨
⎪⎩

max (θ (ST −X) , 0) , if Ssup < H,

0, otherwise,

where Ssup = sup0≤t≤T St. The payoff of a continuous double-barrier option with a low

barrier L and a high barrier H is

Payoff =

⎧⎪⎨
⎪⎩

max (θ (ST −X) , 0) , if Ssup < H and Sinf > L,

0, otherwise.

The prices L and H are the critical price levels as the option value freezes at zero once the

stock price reaches L or H.

The payoff of a discrete barrier option depends on whether the stock price is above (or

below) the barrier(s) at certain predetermined dates called the monitoring dates. Assume

the barriers at times T1, T2, . . ., Tm are L1, L2, . . ., Lm, respectively. Then the payoff of a

discrete moving-single-barrier down-and-out option is

Payoff =

⎧⎪⎨
⎪⎩

max (θ (ST −X) , 0) , if STi > Li for 1 ≤ i ≤ m,

0, otherwise.

Similarly, the payoff of a discrete moving-double-barrier knock-out option with high barrier

Hi and low barrier Li at time Ti (1 ≤ i ≤ m) is

Payoff =

⎧⎪⎨
⎪⎩

max (θ (ST −X) , 0) , if Hi > STi > Li for 1 ≤ i ≤ m,

0, otherwise.

The barrier prices L1 and H1 at time T1, L2 and H2 at time T2, and so on are critical points

as the option value freezes at zero when the stock price is lower than Li or higher than Hi

at time Ti, where 1 ≤ i ≤ m.

A tree model divides the time interval from time 0 to time T into n time steps and

specifies the stock price at each time step. A tree converges to the stock price process

mentioned in Eq. (1) if both the first and second moments of the stock price process are

asymptotically matched at each node of the tree (see Duffie (1996)). Consider the CRR

tree in Exhibit 3. From an arbitrary node with stock price S, the stock price after one time

step equals Su (the up move) with probability p and Sd (the down move) with probability
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1− p, where d < u and ud = 1. To match the first two moments of the stock price process,

the CRR tree sets u ≡ eσ
√

T/n, d ≡ e−σ
√

T/n, and p ≡ (erT/n − d)/(u − d). Note that the

property ud = 1 is utilized to develop many efficient combinatorial algorithms for pricing a

large variety of options on the CRR tree (see Lyuu (1998) and Dai et al. (2008)). The stock

price S resulting from j down moves and i − j up moves from time step 0 equals S0u
i−2j

with probability
(
i
j

)
pi−j(1− p)j .

3 Construction of the Basic Bino-Trinomial Tree (bBTT)

This section shows how to construct a bBTT for pricing options that need two or fewer

degrees of freedom to align with all critical locations. We address continuous double-barrier

options, continuous single-barrier options, and vanilla options, in that order as each is a

special case of its predecessor.

Continuous Double-Barrier Options

The bBTT for pricing a continuous double-barrier option with two barriers L and H is

depicted in Exhibit 4, which is simplified in Exhibit 1. The constituent CRR tree colored

in gray is laid on a grid. The first two time steps of the CRR tree are truncated. As a

result, this truncated CRR tree emanates from three nodes: A, B, and C at time Δt′.

They are connected to node S at time 0 with branching probabilities Pu, Pm, and Pd.

To price a continuous double-barrier option accurately and efficiently, the bBTT should

possess the following two features: (1) Two layers of bBTT coincide with L and H so that

the nonlinearity error is sharply reduced, and (2) the branching probabilities Pu, Pm, and

Pd are valid (i.e., 0 ≤ Pu, Pm, Pd ≤ 1). Given an integer m, we now proceed to construct a

bBTT with approximately m time steps that has the aforementioned properties.

Define the stock price for nodeX as SX and the V -log-price of stock price V ′ as ln(V ′/V ).

Thus the V -log-price of z implies a stock price of V ez. The SS-log-prices of the two barriers

H and L are h ≡ ln(H/SS) and � ≡ ln(L/SS), respectively. The width of a cell of the grid

equals Δt, which is the length of a time step of the CRR tree. Each node of the CRR tree

is laid on the intersection of a vertical line and a horizontal line of the grid. The height of
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a cell is σ
√
Δt since the upward and the downward additive factors of the V -log-prices on

the CRR tree are σ
√
Δt and −σ

√
Δt, respectively. Note that the difference between the

V -log-prices of two adjacent nodes such as nodes A and B in Exhibit 4 is 2σ
√
Δt.

We now show how to choose the width of a cell, Δt, to make the grid hit both H and

L. For the grid to have two layers coinciding with H and L, h−�
2σ

√
Δt

must be some integer

k. For example, k = 4 in Exhibit 4. Although Δτ ≡ T/m is a natural choice for the length

of each time step for an m-time-step bBTT, the problem is h−�
2σ

√
Δτ

may not be an integer.

So, instead, we pick a Δt that is close to, but does not exceed, Δτ and that makes h−�
2σ

√
Δt

an integer:

Δt =

(
h− �

2κσ

)2

, (2)

where κ =
⌈

h−�
2σ

√
Δτ

⌉
. Now, lay out the grid from barrier L upward. Automatically, a layer

coincides with barrier H because of the integrality condition. The number of time steps of

the bBTT is � T
Δt� (which may be slightly larger than m) because the truncated CRR tree

has
⌊

T
Δt

⌋−1 time steps. The length of the first time step of the bBTT, Δt′, is the remaining

amount of time to make the whole tree span T years, i.e.,

Δt′ = T −
(⌊

T

Δt

⌋
− 1

)
Δt. (3)

Clearly, Δt ≤ Δt′ < 2Δt. Note that primes are used to denote the first time step of the

bBTT. The prime is dropped if the length of the first time step is equal to the length of

each of the remaining time steps, like the bBTT for the continuous single-barrier option

case (discussed later).

We still need to select nodes A, B, and C among the light gray vertices at time Δt′ in

Exhibit 4 to make the branching probabilities from node S valid. These three nodes are

connected to node S. Three branches are needed to match the first two moments of the

logarithmic stock price process; a binomial branch simply does not have the needed degree

of freedom. Define the mean function μ and the variance function Var as follows:

μ(x) ≡ (r − σ2/2)x,

Var(x) ≡ σ2x,

The mean and the variance of the SS-log-prices at nodes A, B, and C equal μ(Δt′) and
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Var(Δt′), respectively. The SS-log-price for each light gray vertex at time Δt′ is
⎧⎪⎨
⎪⎩

�+ 2jσ
√
Δt, if the truncated CRR tree has an even number of time steps,

�+ (2j + 1)σ
√
Δt, otherwise,

(4)

for some integer j. For example, the truncated CRR tree in Exhibit 4 has 5 time steps,

an odd number. As the difference between the SS-log-prices of two adjacent light gray

vertices is 2σ
√
Δt , there must exist a unique vertex whose SS-log-price lies in the interval

[μ(Δt′)− σ
√
Δt, μ(Δt′) + σ

√
Δt), which has a length of 2σ

√
Δt. Make this vertex node B.

For example, the SS-log-price of node B is �+3σ
√
Δt in Exhibit 4. Denote the SS-log-price

at node B as μ̂, which is closest to μ(Δt′) among the SS-log-prices of all the light gray

vertices at time Δt′. We select nodes A and C from the light gray vertices that are adjacent

to node B. Thus the SS-log-prices of nodes A and C are μ̂ + 2σ
√
Δt and μ̂ − 2σ

√
Δt,

respectively. Define

β ≡ μ̂− μ(Δt′), (5)

α ≡ μ̂+ 2σ
√
Δt− μ(Δt′) = β + 2σ

√
Δt ,

γ ≡ μ̂− 2σ
√
Δt− μ(Δt′) = β − 2σ

√
Δt .

The first equation implies that β ∈ [−σ
√
Δt, σ

√
Δt). Note that α > β > γ. The branching

probabilities of node S (i.e., Pu, Pm, Pd) can be derived by solving the following three

equalities:

Puα+ Pmβ + Pdγ = 0, (6)

Puα
2 + Pmβ2 + Pdγ

2 = Var(Δt′), (7)

Pu + Pm + Pd = 1. (8)

Equations (6) and (7) match the first two moments of the logarithmic stock price, and Eq.

(8) ensures that the probabilities Pu, Pm, Pd do sum to one. The above three equations

indeed yield valid branching probabilities (see Appendix A).

The aforementioned model can be modified to align with the strike price by combining

bBTTs with a procedure similar to the one in Section 4. However, mismatched strike price

does not incur significant nonlinearity error (see Ritchken (1995)). Numerical experiments in
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Section 5 validate this fact. Thus we omit the construction procedure to keep the discussion

simple.

Continuous Single-Barrier Options

The bBTT for pricing continuous single-barrier options with barrier L follows a similar

strategy and is illustrated in Exhibit 5. Again, the bBTT must have one layer coinciding

with the barrier L to bring about reduction in nonlinearity error. This can be achieved by

laying the underlying grid from barrier L upward as before. Note that there is no need to

adjust the width of a cell of the grid, Δt, as we did for continuous double-barrier options

before; we simply set Δt = T/n. This is because there is only one price level (L) for a

layer of the bBTT to match. Note that the length of the first time step of the bBTT is

also Δt since T/Δt is already an integer n. Finally, select adjacent nodes A, B, and C

(the successors of node S) among the light gray vertices at time Δt to make the branching

probabilities Pu, Pm and Pd valid. Three nodes are needed for node S to match the first

two moments of the logarithmic stock price process. By the lognormality of the stock

price, the mean and the variance of the SS-log-prices of A, B, and C equal μ(Δt) and

Var(Δt), respectively. The SS-log-price of a light gray vertex at time Δt can be expressed

as in Eq. (4). Again, we select the unique light gray vertex whose SS-log-price lies in the

interval [μ(Δt) − σ
√
Δt, μ(Δt) + σ

√
Δt) as node B. Denote the SS-log-price of B as μ̂.

The SS-log-prices of the two nodes A and C are again set to μ̂+ 2σ
√
Δt and μ̂ − 2σ

√
Δt,

respectively. Define α, β, and γ as in Eq. (5), where μ(Δt′) is replaced by μ(Δt). The valid

branching probabilities for node S can be solved by Eqs. (6)–(8), where Var(Δt′) is replaced

by Var(Δt).

Obviously, the aforementioned bBTT can also be made to match the strike price by

adjusting the width of the cell Δt as we did in the last subsection. Numerical results in

Section 5 shows that this adjustment improves the convergence.

Vanilla Options

To drastically reduce the nonlinearity error, the bBTT should have a layer coinciding with

the exercise price X at the option’s maturity date. This is because the payoff function of a
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vanilla option is highly nonlinear at X at the maturity date (see Figlewski and Gao (1999)).

Constructing a bBTT for pricing a vanilla option mimics that for a single-barrier option

except that the underlying grid should now have a layer coinciding with X instead of L.

Combinatorial Algorithms

Pricing European-style barrier options and vanilla options on the bBTT can be made ex-

tremely efficient by the combinatorial pricing algorithms introduced in Lyuu (1998) and

Dai et al. (2008) that are designed for the CRR tree. We will use the bBTT in Fig. 5 as an

example to show how to efficiently evaluate a down-and-out single-barrier option by taking

advantage of the combinatorial pricing algorithm of Lyuu (1998). Note that the outgoing

branches from the root node S are connected to the three following nodes: A, B, and C.

The trees emanating from these three nodes form three CRR trees. Lyuu’s combinatorial

algorithm can be used to efficiently evaluate the option values at these three nodes. Finally,

the value at node S is calculated by the expected discounted value of these three values.

Lyuu’s combinatorial algorithm first uses the reflection principle to count the number of

paths that start from a node, say C, and then hit the barrier L before arriving at another

node at maturity T , say D. For simplicity, we call a node at maturity T as a “terminal

node”. Assume that the starting node and the terminal node are a and b steps higher

than the barrier, respectively, and there are n̂ time steps between these two nodes. By the

reflection principle, the number of paths is

(
n̂

n̂−a−b
2

)
for even, non-negative n̂− a− b (9)

and zero otherwise. For example, the number of paths that start at C and hit the barrier L

before arriving at D can be obtained by substituting a = 1, b = 2, and n̂ = 3 into Eq. (9) to

obtain the count 1. Assume that the terminal node is reached from the starting node with

i down movements and n̂ − i up movements. Then the terminal node is n̂ − 2i + a steps

higher than the barrier. The option value contributed by the terminal node is
(

n̂
i−a

)
pn̂−i(1−

p)ie−rn̂Δt
(
Ŝun̂−idi −X

)+
, where

(
n̂

i−a

)
is obtained by substituting b = n̂− 2i+ a into Eq.

(9), pn̂−i(1− p)i denotes the probability of each price path moving from the starting node

to the terminal node, Ŝ denotes the stock price of the starting node. Thus the option value
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at the starting node is

∑
0≤i< n̂+a

2

(
n̂

i− a

)
pn̂−i(1− p)ie−rn̂Δt

(
Ŝun̂−idi −X

)+
, (10)

where
(

n̂
i−a

)
is set to zero when i − a < 0. For example, the value at node B in Fig. (5) is

obtained by substituting n̂ = 3, a = 3, and Ŝ with the stock price at node B into Eq. (10).

Note that the values at node A, B, and C can be efficiently calculated by Eq. (10). The

option value at node S can then be evaluated by

VS = e−rΔt (PuVA + PmVB + PdVC) ,

where VX denotes the option value at node X.

Similarly, double-barrier options and vanilla options can be efficiently computed by

applying the combinatorial algorithms proposed in Lyuu (2002) and Dai et al. (2008) on

the bBTTs.

4 Building a BTT from Multiple bBTTs

More degrees of freedom are required if a tree is to align with the critical locations of

complex options. This is achieved by combining multiple bBTTs into one tree, called the

BTT. We address discrete moving-double-barrier options and moving-single-barrier options,

in that order as the latter is a special case of the former.

Discrete Moving-Double-Barrier Options

We now describe the BTT to price an option with two monitoring dates; extension to handle

more monitoring dates is straightforward. The high barrier is H0 at monitoring date T0 and

is H1 at monitoring date T0 + T1. The low barrier is L0 at monitoring date T0 and is L1 at

monitoring date T0+T1. See Exhibit 6 for illustration. The BTT rooted at S is constructed

by combining 4 bBTTs, which emanate from nodes S, D, E, and F . Two truncated CRR

trees comprise the bulk of the BTT. The first truncated CRR tree emanates from nodes

A, B, and C at time Δt′0. The width of a cell equals the length of a time step of this tree

(Δt0) and the height of a cell of the grid, c0, equals σ
√
Δt0. The second truncated CRR
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tree emanates from nodes G, H, I, J , and K at time T0 +Δt′1. The width of a cell equals

the length of a time step of this tree (Δt1) and the height of a cell of the grid, c1, equals

σ
√
Δt1. To ensure that the option can be priced efficiently and accurately, the BTT should

have the following properties: (1) It aligns with all discrete barriers (the black nodes), and

(2) the probabilities for the trinomial branches at nodes S, D, E, and F must be valid.

Given an integer m, we proceed to construct a BTT with approximately m time steps that

has the aforementioned properties. Ideally, the length of each time step for an m-time-step

BTT is Δτ ≡ (T0 + T1)/m; we will adjust the lengths for each bBTT (Δt0, Δt1, . . .) to

make the BTT align with all critical locations as we did in Section 3.

We first focus on the part of the BTT that grows from time 0 to time T0, i.e., the bBTT

emanating from node S. Constructing this bBTT mimics that for continuous double-barrier

options in Section 3. To ensure the bBTT aligns with H0 and L0 at time T0, the distance

(in SS-log-price) between H0 and L0, or h0 − �0, must be an integer multiple of 2c0, where

h0≡ ln(H0/SS) and �0≡ ln(L0/SS). So we pick a Δt0 such that h0−�0
2σ

√
Δt0

is an integer.

Towards that end, we fix Δt0 =
(
h0−�0
2κσ

)2
, where κ = 
 h0−�0

2σ
√
Δτ

�. Now, lay out a vertex of

the grid from L0 at time T0 upward and another vertex of the grid will align with H0 at

time T0. The truncated CRR tree (growing from time Δt′0 to T0) has � T0
Δt0

� − 1 time steps,

and the length of the first time step Δt′0 is the remaining amount of time to make the whole

bBTT span T0 years:

Δt′0 ≡ T0 −
(⌊

T0

Δt0

⌋
− 1

)
Δt0.

Select nodes A, B, and C among the dark gray vertices at time Δt′0 to make the

branching probabilities from node S valid. The mean and the variance of the SS-log-prices

at nodes A, B, and C are μ(Δt′0) and Var(Δt′0), respectively. The SS-log-price for a dark

gray vertex in Exhibit 6 at time Δt′0 can be expressed in Eq. (4), where � and Δt are replaced

by �0 and Δt0, respectively. Again, there must exist a unique vertex whose SS-log-price

in the interval [μ(Δt′0) − σ
√
Δt0, μ(Δt′0) + σ

√
Δt0 ), which we choose for node B. Denote

the SS-log-price of B as μ̂. The SS-log-prices of the flanking nodes A and C are set to

μ̂+ 2σ
√
Δt0 and μ̂− 2σ

√
Δt0, respectively. Define α, β, and γ as in Eq. (5), where μ(Δt′)

and Δt are replaced by μ(Δt′0) and Δt0, respectively. Then the valid branching probabilities

can be solved by Eqs. (6)–(8) with Var(Δt′) replaced by Var(Δt′0).
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We proceed to construct the part of the BTT that grows from T0 to T0+T1. As before, to

ensure that the BTT aligns with H1 and L1 at time T0+T1, we pick Δt1 =
(
h1−�1
2κσ

)2
, where

h1 ≡ ln(H1/SD) and �1 ≡ ln(L1/SD) denote the SD-log-prices of H1 and L1, respectively,

and κ = 
 h1−�1
2σ

√
Δτ

�. Lay out the grid from L1 upward and a vertex of the grid will coincide

with H1, automatically. The truncated CRR tree growing from time T0 + Δt′1 to T0 + T1

has � T1
Δt1

� − 1 time steps with Δt′1 ≡ T1 −
(⌊

T1
Δt1

⌋
− 1

)
Δt1.

At time step T0, the option is not knocked out at node D, E, or F . Thus we construct

three bBTTs emanating from these three nodes. For each of these three nodes, we will

select three successors from the light gray vertices at time T0 +Δt′1 to make the branching

probabilities valid. Take node D for example. The SD-log-price for a light gray vertex can

be expressed in Eq. (4), where � and Δt are replaced by �1 and Δt1, respectively. Again

there exists a unique light gray vertex whose SD-log-price lies in the interval [μ(Δt′1) −
σ
√
Δt1), μ(Δt′1) + σ

√
Δt1) ). For example, this vertex is node H in Exhibit 6. Define the

SD-log-price for this node as μ̂. The SD-log-prices of two other successors of D are set to

μ̂+ 2σ
√
Δt1 and μ̂− 2σ

√
Δt1, respectively. Define α, β, and γ as in Eq. (5), where μ(Δt′)

and Δt are replaced by μ(Δt′1) and Δt1, respectively. Then the branching probabilities

from node D can be solved by Eqs. (6)–(8) with Var(Δt′) replaced by Var(Δt′1).

The successors and the branching probabilities for nodes E and F can be derived in the

same way. For example, the successors for node E are H, I, and J , and the successors for

F are I, J , and K. The truncated CRR tree is then constructed by emanating from nodes

G, H, I, J , and K at time T0 + Δt′1. To handle more monitoring dates, just apply the

above procedure to each monitoring date.

Discrete Moving-Single-Barrier Options

Constructing a BTT to price discrete moving-single-barrier options follows a similar strat-

egy. We focus on an option with barrier L0 at time T0 and barrier L1 at time T0 + T1

in Exhibit 7. Again, the BTT must have two nodes coinciding with these two barriers to

realize the reduction in the nonlinearity error. Assume there are m0 time steps in the first

part (from time 0 to time T0) and m1 time steps in the second part (from time T0 to time

T0 + T1) of the BTT. We first focus on the first part. There is no need to adjust Δt0, the
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width of a cell of the thick dashed grid, since we only need one degree of freedom to align

with barrier L0. So we simply set Δt0 ≡ T0/m0. Lay out the grid from L0 upward and

select nodes A, B, and C as the successors of node S among the dark gray vertices at time

Δt0 to make the branching probabilities from node S valid. A truncated CRR tree then

emanates from nodes A, B, and C.

Now we come to the second part of the BTT. The width of a cell of the thin dotted grid

Δt1 is set to T1/m1. Lay out the grid from L1 upward. Then we select the successors of

nodes X, D, E, and F from the light gray vertices at time T0 +Δt1. These successors are

Y , G, H, I, J , K. A truncated CRR tree then grows from these successor nodes.

5 Experimental Results

This section evaluates the performance of the BTT and other numerical methods in pricing

vanilla options, single-barrier options, and double-barrier options. Running time measure-

ments are obtained on a Pentium-4 2.8GHz computer.

Vanilla Options

We first compare the performance of the CRR model, the AMM, and the BTT in pricing

vanilla call options. To improve the convergence rate, the BTT modifies the payoff at

the strike price by incorporating the smooth option payoff function technique suggested by

Heston and Zhou (2000) as follows:

1

X(u− d)

∫ Xu

Xd
(y −X)+dy.

In the setting of Exhibit 8, the theoretical option value given by the Black-Scholes formula

is 17.7943. All models converge to the theoretical option value as n → ∞; however, their

behaviors differ. The CRR oscillates significantly. The AMM converges more smoothly as

the AMM level increases. Finally, the BTT converges more smoothly and accurately than

all the aforementioned methods.
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Discrete Single- and Double-Barrier Options

Exhibit 9 demonstrates the convergence behavior of the BTT (with Heston and Zhou’s

(2000) idea for improving the convergence rate in place) in pricing a discrete single-barrier

option. The extrapolated result 7.4517 accurately approximates the benchmark value

7.451115, which is computed by Monte Carlo simulation with 10,000,000 trails. Exhibit 10

compares the BTT, the AMM, and QUAD for pricing the same option. The sizes of these

three models are carefully adjusted by varying K, m, and n so the computational times by

these three models are roughly equal. QUAD converges more stably, to 7.452406, than the

BTT and the AMM. But it seems to overvalue the option by 7.452406−7.451115 = 0.001291.

Both the maximum absolute error and the root-mean-squared error of the BTT are lower

than the other two methods.

The BTT provides enough degrees of freedom to change the position of nodes at different

time steps to reduce nonlinearity errors. Exhibit 11 demonstrates the convergence behavior

of the BTT in pricing a discrete moving-double-barrier option, which is not considered

by QUAD of Andricopoulos et al. (2003). The extrapolated result 0.2961 is very close to

the benchmark value of 0.29616675, which is generated by Monte Carlo simulation with

1,000,000 trials.

Continuous Single- and Double-Barrier Options

Exhibit 12 compares the BTT and Ritchken’s (1995) trinomial tree in pricing a European-

style down-and-out single-barrier call option. The numerical settings and the true value are

from Ritchken (1995). The x-axis and the y-axis denote the computational time and the

option price, respectively. For example, it costs 0.014 second to compute with a 350-time-

step Ritchken’s trinomial tree (which can only be priced by the quadratic-time, standard

backward induction algorithm) to obtain 5.998 (point A). It costs almost the same time

to compute with a 4,500-time-step BTT (which can be done in linear time by applying

combinatorial tools) to obtain 5.997 (point B, matching the barrier only) and 5.9968 (point

C, matching both the strike price and the barrier), respectively. All models converge to the

true value 5.9968, but the two BTTs converge more smoothly and faster than the Ritchken’s

model. Note that matching the strike price does improve convergence.
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Andricopoulos et al. (2003) claim that QUAD can accurately price continuous barrier

options by extrapolating the prices of discrete barrier options. But it seems their approach

converges slowly: only at a rate of O(m1/2), where m denotes the number of monitoring

dates as illustrated in Exhibit 13. QUAD is not as efficient as either Ritchken’s model

or the BTT. For example, it takes QUAD 14.593 seconds and 16.546 seconds to price a

950-monitoring-date barrier call and a 1000-monitoring-date barrier call, respectively. The

prices for these two options are 6.370589 and 6.361381, respectively. Compared with Exhibit

12, the extrapolated result 6.006932035 of QUAD is not as accurate as either Ritchken’s

model or the BTT.

The aforementioned observations raise a new issue: QUAD may not be efficient enough

compared with traditional tree models in handling such continuous sampling feature as the

continuous monitoring feature of the continuous barrier options and the American exercise

feature, which is continuously exercisable. With that in mind, we compare Ritchken’s

method, the BTT, and QUAD in pricing up-and-out American puts in Exhibit 14. Gao et

al. (2000) provide an accurate quasi-analytical formula for pricing American barrier puts

and we use it as the benchmark. The parameters for Ritchken’s model, QUAD and the

BTT method are properly set to make the running times for all methods roughly equal.

The results for QUAD are extrapolated by the prices of a 200-monitoring-date and a 400-

monitoring-date barrier puts. The results for the BTT are extrapolated by the prices of a

1000-time-step and a 2000-time-step BTT. Note that both Ritchken’s model and the BTT

can achieve 2-digit accuracy but not QUAD. The maximum absolute error (MAE) and

the root-mean-squared error (RMSE) of QUAD are also larger than those of the other two

methods.

Finally, we compare the performance of Ritchken’s trinomial model and the BTT in

pricing a European-style double-barrier knock-out option in Exhibit 15. To our knowl-

edge, no published papers discuss how to extend the AMM to accurately price continuous

double-barrier options. The parameters and the accurate value of 1.4580 are from Ritchken

(1995). All methods converge to the accurate value, but the two BTTs converge much more

smoothly and faster than Ritchken’s model. Note that matching the strike price does not

significantly improve convergence unlike what we observed in pricing single-barrier options.
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The Barrier-Too-Close Problem

It is a well-known hard problem to price a barrier option efficiently when the barrier is very

close to the initial stock price. This is the so-called barrier-too-close problem. Exhibit 16

compares Ritchken’s model, the AMM, and the BTT for the barrier-too-close problem. Each

row lists the number of time steps and the computational time required for each approach to

achieve 3-digit accuracy. Both Ritchken’s model and the BTT need a large number of time

steps to ensure that the barrier is exactly hit. However, the BTT can be efficiently computed

by combinatorial tools, whereas Ritchken’s model can not. Thus the BTT can achieve 3-

digit accuracy with much less computational time than Ritchken’s model. Figlewski and

Gao (1999) claim that the AMM can effectively solve the barrier-too-close problem since it

requires fewer nodes to coincide with the barrier. The numerical results for the AMM in

Exhibit 16 are computed by setting the AMM level to be 1. (The number of time steps of

the AMM is determined by the AMM level.) To achieve 3-digit accuracy, the AMM again

consumes more computation time than the BTT. This is because the efficiency improvement

from algorithms (by replacing the slow quadratic-time backward induction algorithm with

the efficient linear-time combinatorial algorithm) exceeds the efficiency improvement from

reduction in the node count. We conclude that the BTT is superior to the AMM and

Ritchken’s trinomial tree model in addressing the barrier-too-close problem.

6 Conclusion

This paper proposes a novel, accurate, and efficient tree model for pricing a wide variety

of derivatives: the bino-trinomial tree (BTT) model. The BTT is composed mostly of

truncated CRR trees. The pricing results of the BTT converge smoothly and quickly since

its structure can be adapted to suit the derivative’s specification. Pricing on the BTT can

furthermore be made extremely fast by applying combinatorial CRR tree pricing algorithms.

Numerical results are given to confirm the superiority of the BTT over such methods as

AMM, QUAD, and Ritchken’s trinomial tree.
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A Validity of Risk-Neutral Probabilities

To ensure that the branching probabilities in Eqs. (6)–(8) are valid, it suffices to show that

Pu, Pm, Pd ≥ 0. For convenience, define

det = (β − α)(γ − β)(γ − α),

det(u) = (βγ +Var(Δt′))(γ − β),

det(m) = (αγ +Var(Δt′))(α− γ),

det(d) = (αβ +Var(Δt′))(β − α).

Then the branching probabilities can be represented as Pu = det(u)/det, Pm = det(m)/det,

and Pd = det(d)/det by Cramer’s rule. Note that det < 0 because α > β > γ. To prove

that the branching probabilities are nonnegative, it is sufficient to show det(u), det(m), and

det(d) ≤ 0 instead. In addition, since α > β > γ, it suffices to show that βγ+Var(Δt′) ≥ 0,

αγ + Var(Δt′) ≤ 0, and αβ + Var(Δt′) ≥ 0 under the premises Δt ≤ Δt′ < 2Δt and

β ∈ [−σ
√
Δt, σ

√
Δt). These three inequalities are proved as follows:

βγ +Var(Δt′) = β2 − 2βσ
√
Δt+ σ2Δt′ ≥ β2 − 2βσ

√
Δt+ σ2Δt = (β − σ

√
Δt)2 ≥ 0,

αγ +Var(Δt′) = β2 − 4σ2Δt+ σ2Δt′ ≤ β2 − 4σ2Δt+ 2σ2Δt = β2 − 2σ2Δt ≤ 0,

αβ +Var(Δt′) = β2 + 2βσ
√
Δt+ σ2Δt′ ≥ β2 + 2βσ

√
Δt+ σ2Δt = (β + σ

√
Δt)2 ≥ 0.
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Exhibit 1: The bBTT for Pricing Continuous Double-Barrier Options. Two bar-

riers, L and H, are in thick dashed lines. The root of the bBTT is the node S. The CRR

tree (with the first two time steps truncated) that comprises the bulk of the bBTT is shad-

owed. This CRR tree is placed on a grid (in thin dotted lines) that has two layers of nodes

coinciding with the two barriers.
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Exhibit 2: Pricing Discrete Moving-Double-Barrier Knock-Out Options by the

BTT. The barriers are H0 and L0 at time T0 and H1 and L1 at T0+T1. Four critical points

(the black nodes) are on some nodes of the BTT. The BTT is constructed by combining

four bBTTs emanating from nodes S, D, E, and F . The bBTT emanating from node S is

in thick edges, whereas the bBTT emanating from node D is in shadow.
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Exhibit 3: The CRR Tree. The initial stock price is S0. The upward and downward mul-

tiplicative factors for the stock price are u and d, respectively. The upward and downward

branching probabilities are p and 1− p, respectively.
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Exhibit 4: The bBTT for Pricing a Continuous Double-Barrier Option. Two

barriers, L and H, are denoted by thick dashed lines. The root of the bBTT is denoted

by node S. The CRR tree (with the first two time steps truncated) that comprises the

bulk of the bBTT is shadowed. This CRR tree is put on a grid (thin dotted lines). The

SS-log-prices of the nodes at maturity are next to these nodes.
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Exhibit 5: The bBTT for Pricing a Single-Barrier Option. Barrier L is denoted by

thick dashed lines. The root of the bBTT is denoted by node S. The CRR tree (with the

first two time steps truncated) that comprises the bulk of the bBTT is shadowed. This

CRR tree is placed on a grid.
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Exhibit 6: Pricing a Moving-Double-Barrier Knock-Out Option by the BTT. The

discrete barriers (the black nodes) are H0 and L0 at time T0 and H1 and L1 at time T0+T1.

The BTT is composed of four bBTTs, and the root nodes of these bBTTs are marked in

double circles. Two truncated CRR trees, one emanating from nodes A, B, and C at time

Δt′0 and the other one emanating from nodes G, H, I, J , and K at time T0+Δt′1, comprise

the bulk of the BTT. The numbers c0 and c1 denote the height of a cell of the former grid

and the latter grid, respectively.
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Exhibit 7: Pricing a Moving-Single-Barrier Knock-Out Option by the BTT. The

barriers (marked by black nodes) are L0 at time T0 and L1 at T0+T1. Two truncated CRR

trees, one growing from nodes A, B, and C at time Δt0 and the other one growing from Y ,

G, H, I, J , and K at time T0 +Δt1, comprise the bulk of the BTT.
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Exhibit 8: Convergence of the CRR, the AMM, and the BTT in Valuing Vanilla

Call Options. The x-axis denotes the number of time steps. The y-axis denotes the option

value. The initial stock price is 100, the exercise price is 98, the risk-free rate is 10% per

annum, the volatility of the stock price is 30%, and the time to maturity is 1 year. The

line that oscillates most significantly is the CRR tree model. The thin solid line denotes

the AMM with AMM level 1. The dashed line denotes the AMM with AMM level 2. The

dot-dashed line denotes the BTT. The thick solid line denotes the analytical option value

17.7943.
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Exhibit 9: Convergence of the BTT in Valuing a Discrete Down-and-Out Single-

Barrier Call Option. The initial stock price is 95, the volatility of stock price is 25%,

the risk-free rate is 10%, the strike price is 100, the time to maturity is 1 year, the barrier

is 90, and the stock price is monitored 52 times during the option life. The x-axis denotes

1/n, where n denotes the number of time steps of the BTT. The y-axis denotes the option

value.
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QUAD AMM BTT

K Time Error m Time Error n Time Error

4 .092 .001310 50 .093 .005324 936 .082 .000446

5 .124 .001295 60 .141 .006919 1144 .132 .000690

6 .171 .001292 70 .172 .000424 1248 .187 .000301

7 .217 .001291 80 .234 .002178 1456 .233 .000360

8 .280 .001291 90 .297 .003500 1664 .283 .000209

MAE .001310 .006919 .000689

RMSE .001296 .004322 .000433

Exhibit 10: AMM, the BTT and QUAD for Pricing a Discrete Single-Barrier

Call Option. The numerical settings are the same as the settings in Exhibit 9. The

benchmark value, 7.451115, is computed by Monte Carlo simulation with 10,000,000 trails.

The parameter K tunes the fineness of QUAD by determining the distance between two

nodes at the same monitoring date (see Andricopoulos et al. (2003)). The parameter m

denotes the number of time steps between two monitoring dates in the AMM. Note that

the AMM level equals 1 in this case (see Gao et al. (1999)). The parameter n denotes the

number of time steps of the BTT. Time and Error denote the computational time and the

absolute pricing error, respectively. We apply the Richardson-type extrapolation to both

QUAD and the BTT method. MAE and RMSE denote the maximum absolute error and

root-mean-squared error, respectively.
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y = -0.8349x + 0.2961

R
2
 = 0.9981

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.015 0.02 0.025 0.03 0.035 0.04 0.045

Value

1/n

Exhibit 11: Pricing a Discrete, Moving-Double-Barrier Call Option. The initial

stock price is 100, the volatility of stock price is 30%, the risk-free rate is 10%, the strike

price is 100, and the time to maturity is 1 year. The stock price is monitored at years

1/3, 2/3, and 1. The low barriers are 90, 90.05, 90.1, respectively. The high barriers are

110, 110.05, 110.1, respectively. The benchmark value as computed by the Monte Carlo

simulation with 1,000,000 trials is 0.29616675.
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A

B

Value

Time

5.996

5.9965

5.997

5.9975

5.998

5.9985

5.999

0.004 0.009 0.014 0.019 0.024 0.029

C

Exhibit 12: Convergence of the BTT and Ritchken’s Trinomial Tree Model in

Pricing a Continuous Down-and-Out Single-Barrier Call Option. The initial stock

price is 95, the exercise price is 100, the risk-free rate is 10% per annum, the volatility of

the stock price is 25%, the time to maturity is 1 year, and the barrier is 90. The horizontal

line y = 5.9968 denotes the true value, the lines passing through point A, B and C denote

the prices generated by the Ritchken’s model, the BTT (matching the barrier only), and

the BTT (matching both the barrier and the strike price), respectively.
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y = 10.161x + 6.036

R
2
 = 0.9988
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0 0.05 0.1 0.15 0.2

Value

1/ m

Exhibit 13: Convergence of QUAD for Pricing a Continuous Down-and-Out

Single-Barrier Call Option by Extrapolation. The numerical settings are the same as

the settings in Exhibit 12. The x-axis denotes 1/
√
m, where m denotes the number of mon-

itoring dates of an otherwise identical discrete barrier call option. The y-axis denotes the

option value of the discrete barrier call computed by QUAD. The value of the continuous

barrier call option estimated by regression is about 6.036.
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S T Gao Ritchken BTT QUAD

40.0 0.5 5.1869 5.1828 5.1881 5.1902

40.0 1.0 5.3843 5.3797 5.3859 5.3907

42.5 0.5 3.3456 3.3443 3.3475 3.3508

42.5 1.0 3.6423 3.6403 3.6443 3.6435

45.0 0.5 1.9357 1.9331 1.9374 1.9347

45.0 1.0 2.2132 2.2132 2.2148 2.2213

47.5 0.5 0.8614 0.8609 0.8624 0.8622

47.5 1.0 1.0213 1.0215 1.0221 1.0310

RMSE 0.0026 0.0016 0.0055

MAE 0.0046 0.0020 0.0097

Exhibit 14: Pricing American Up-and-Out Barrier Puts. The initial stock prices are

listed in the first column, the times to maturity are in the second column, the volatility

is 0.2, the strike price is 45, the barrier level is 50, and the risk-free rate is 4.88%. Gao

denotes the quasi-analytical formula in Gao et al. (1996). Ritchken denotes the Ritchken’s

trinomial tree based on 5,000 time steps. We apply the Richardson-type extrapolation to

both QUAD and the BTT model. MAE and RMSE denote the maximum absolute error

and root-mean-squared error, respectively.
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Value

Time

1.4555

1.4565

1.4575

1.4585

0.01 0.02 0.03 0.04 0.05

Exhibit 15: Pricing a Continuous Double-Barrier Knock-Out Call. The initial stock

price is 95, the exercise price is 100, the risk-free rate is 10% per annum, the volatility of

the stock price is 25%, the time to maturity is 1 year, and the two barriers are 140 and 90,

respectively. The x-axis and the y-axis denote the computational time and the option value,

respectively. The thin curve (with large oscillations), the thin curve (with small oscillations),

and the thick curve denote Ritchken’s trinomial tree model, the BTT (matching the two

barriers only), and the BTT (matching the two barriers and the strike price), respectively.
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Stock Ritchken AMM BTT True

Price n Time Value Time Value n Time Value Value

91 1000 0.110 1.274 0.032 1.274 2000 0.005 1.274 1.274

90.5 4000 1.891 0.642 0.235 0.642 8000 0.023 0.642 0.642

90.4 5000 3.062 0.515 0.562 0.515 11000 0.031 0.515 0.515

Exhibit 16: Ritchken’s Model, the BTT, and the AMM When the Barrier Is

Close to the Initial Stock Price. A down-and-out single-barrier call option is priced

above. The initial stock prices are listed in the first column, the barrier is 90, the exercise

price is 100, the risk-free rate is 10% per annum, the volatility of the stock price is 25%,

and the time to maturity is 1 year. Ritchken denotes Ritchken’s trinomial tree model. AMM

denotes the adaptive mesh model. BTT denotes the BTT. The variable n, Time, and Value

denote the number of time steps, the computational time, and the price of each tree model,

respectively. The true values with 3-digit accuracy are from Ritchken (1995).
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