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Abstract

With the rapid growth and the deregulation of financial markets, many complex derivatives

have been structured to meet specific financial goals. Unfortunately, most complex derivatives

have no analytical formulas for their prices, particularly when there is more than one market

variable. As a result, these derivatives must be priced by numerical methods such as lattice.

However, the nonlinearity error of lattices due to the nonlinearity of the derivative’s value func-

tion could lead to oscillating prices. To construct an accurate, multivariate lattice, this paper

proposes a multi-phase method that alleviates the oscillating problem by making the lattice

match the “critical locations,” locations where nonlinearity of the derivative’s value function

occurs. Moreover, our lattice has the ability to model the jumps in the market variables like

regular withdraws from an investment account, which is hard to deal with analytically. Numer-

ical results for vulnerable options, insurance contracts guaranteed minimum withdrawal benefit

(GMWB), and defaultable bonds show that our methodology can be applied to the pricing of a

wide range of complex financial contracts.
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1 Introduction

The financial markets have become vast, tightly integrated, and complex, particularly in the deriva-

tives sector (see Bank for International Settlements). As a result, derivatives pricing has become

much more complicated. One reason is that more sophisticated derivatives are constantly being

structured to fit the needs of markets. Addressing their sophisticated features significantly increases

the difficulty of pricing them (see Figlewski and Gao (1999)). Another reason is that the impor-

tance of some factors, like sovereign risk or credit risk, which are overlooked in earlier, primitive

derivatives pricing models, is being recognized as key due to recent financial crises. If the default

risk of the option issuer (or the counterparty risk) is ignored, analytical pricing formulas for vanilla

options and barrier options have been derived by Black and Scholes (1973) and Reiner and Ru-

binstein (1991), respectively. However, when the structural model (see Merton (1974); Black and

Cox (1976)) is introduced to model the counterparty risk, analytical formulas for the vulnerable

vanilla options (defined in, e.g., Ammann (2001)) are only available under restricted assumptions

(see Klein (1996); Klein and Inglis (2001)). In addition, no analytical formulas seem to exist for

vulnerable barrier options under the Black and Cox (1976) first-passage model.

The lattice method and the closely related finite-difference method are popular and flexible

numerical methods for pricing derivatives, particularly when analytical solutions do not exist or

when analytical solutions involve multiple integrations. These methods can be easily modified to

price derivatives with American and other exotic features. They divide the time dimension and the

market factors/variables into discrete points. The results converge to the desired value under the

continuous-time model as the number of discrete steps goes to infinity (see Duffie (1996)).

Figlewski and Gao (1999) point out that one of the most difficult issues facing lattice and

finite-difference methods is the nonlinearity error. This error reveals itself as oscillating prices,

resulting from the nonlinearity of the derivative’s value function — like the kink of the option

payoff function. Figlewski and Gao (1999) address this problem with the adaptive mesh model

(AMM). The problem with the AMM is that its structure is complicated and hard to implement.

Furthermore, it is difficult to tailor the AMM to many derivatives. Alternatively, the nonlinearity

error can be reduced by restructuring the lattice to make a lattice’s nodes, price levels, or time

steps match the so-called “critical locations” — locations where nonlinearity of the derivative’s
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value function occurs. Indeed, this idea is adopted by Ritchken (1995); Broadie and Detemple

(1996); Cheuk and Vorst (1996, 1997); Tian (1999); Widdicks et al. (2002); Aitsahlia et al. (2004).

However, these methods are not flexible enough for complex derivatives; besides, only one market

variable is considered.

Multivariate derivatives elevate the pricing difficulty to a new level compared with that of uni-

variate derivatives. First, the correlations between the market variables must be carefully handled

because, otherwise, invalid branching probabilities may result (see Zvan et al. (2003)). Further-

more, Lyuu and Wang (2011) prove that the size of any valid constant-degree lattice for bivariate

derivatives must explode when the second market variable is the interest rate that allows its value

to grow lognormally without bound in magnitude, such as the popular model of Black et al. (1990).

One approach is to construct a multivariate lattice that matches the means, variances, and

covariances of the market variables. For example, Rubinstein (1994) builds a three-dimensional

lattice for two correlated assets by a non-rectangular arrangement of the lattice nodes. However,

his lattice is not flexible enough to suppress the nonlinearity error. Another approach is to build a

lattice by assuming that the processes of market variables are independent first, and then to adjust

the branching probabilities to reflect the correlations (see Hull and White (1994)). However, the

branching probabilities can become negative after the adjustments. Hull and White (1990b) suggest

that the correlated processes can be first transformed into uncorrelated ones, and then an explicit

finite-difference method, which is identical to the lattice, is built for these uncorrelated processes.

However, the nonlinearity error problem remains unsolved. Andricopoulos et al. (2003) propose the

quadrature method, which has a multinomial tree structure. It is extended by Andricopoulos et al.

(2007) to handle multiple assets. This method can suppress the nonlinearity error by letting nodes

or discrete time steps match the critical locations; in addition, it is efficient for pricing discretely

monitored options, such as discrete barrier options, since it deploys only one time step between two

monitoring dates. However, Dai and Lyuu (2010) show the quadrature method is not as efficient

as the lattice in handling continuous sampling features, like the American exercise feature and the

continuous barrier options. Besides, stochastic interest rate models, such as the Hull-White interest

rate model (see Hull and White, 1990a), are not covered by their methods.

The major contribution of this paper is a general multi-phase method to build multivariate lat-

tices for pricing complex derivatives without significant nonlinearity errors. By using the trinomial
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structure of Dai and Lyuu (2010) into our lattice, the length of a time step, the distance between

two adjacent price levels, and even the position of the lattice can be changed to make the lattice

match the critical locations. In addition, our lattice also generalizes the stair lattice proposed in

Dai (2009); the stair lattice can handle the discrete price jumps in the underlying assets. This

generalization significantly extends the capability of our lattice to handle real-world features that

are hard to address, like asset sales to finance the discrete dividend payments and the insurance

contract that allows the insurer to withdraw money from the account.

Hull and White (1990b) handle the correlations between market variables by the orthogonal-

ization method, which transforms the original, correlated processes into uncorrelated ones. To

simultaneously handle the correlations and make the lattice match the critical locations, we pre-

cede their orthogonalization method with ordering the market variables so that the i-th coordinates

of the critical locations depend only on the first i of the market variables. The proposed multi-phase

method builds the multivariate lattice for the transformed, uncorrelated processes with successive

coordinates. The first phase constructs the lattice for the first uncorrelated process; this lattice will

match the first coordinates of the critical locations. The second phase adds a lattice for the second

uncorrelated process on top of the lattice constructed in the first phase to form a bivariate lattice

while matching the second coordinates of the critical locations. A multivariate lattice is finally

constructed by repeating the above method: The i-th phase adds a lattice for the i-th uncorrelated

process on top of the (i − 1)-variate lattice constructed in (i − 1)-th phase to form an i-variate

lattice. The i-th phase will adjust the lattice to match the i-th coordinates of the critical locations.

Take the pricing of vulnerable knock-out barrier options on stock under the first-passage model

(see Black and Cox (1976)) as an example. There are two cases that the value of the option becomes

zero with a zero recovery rate: (1) The stock price process reaches the barrier, and (2) the firm’s

asset value is less than the default boundary, which is the sum of the firm’s outstanding bonds

and the non-vulnerable option value. A bivariate lattice is constructed to describe the evolution

of the two correlated market variables, i.e., the firm’s asset value V and the stock price S. First,

the two market variables are ordered: S is the first market variable and V the second. The reason

for the choice is that the barrier for the stock price depends only on the value of S, whereas the

default boundary for the firm’s asset value depends on both S and V . We then transform the

two correlated processes for S and V into two uncorrelated processes X and Y . The first phase

4



constructs the lattice for the process X; this lattice will match the first coordinates of the critical

locations, which only depend on the values of S. The second phase constructs a lattice for the

process Y and combines it and the lattice for X to form a bivariate lattice; in the meantime, the

second coordinates of the critical locations, depending on S and V , are also matched.

Our paper is organized as follows. The mathematical models and some preliminaries are in-

troduced in Section 2. Section 3 describes the proposed multi-phase method to build multivariate

lattices. Numerical results for vulnerable options, insurance contracts guaranteed minimum with-

drawal benefit (GMWB), and defaultable bonds given in Section 4 show that our methodology can

be applied to the pricing of a wide range of complex financial contracts. Section 5 concludes the

paper.

2 Modeling and Preliminaries

2.1 The Lognormal Diffusion Process and the CRR Lattice

Define S(t) as the value of a market variable at time t. S(t) is said to follow a lognormal diffusion

process if it can be represented as the following differential form under the risk-neutral probability:

dS(t)

S(t)
= rdt+ σdz(t), (1)

where r is the risk-free rate, σ is the volatility of the market variable, and the random variable

dz(t) is the standard Brownian motion. The lognormal diffusion process is widely used to model

the stock process (like Black and Scholes (1973)), the firm value (like Merton (1974)), and the

portfolio value (like Dai et al. (2008); Wu (2009)). Equation (1) has the following solution (see

Shreve (2004)):

S(t) = S(0)e(r−σ2/2)t+σz(t). (2)

A lattice is a numerical pricing method that approximates a continuous-time stochastic process,

e.g., S(t) in Eq. (2). Let a derivative on S(t) initiate at time 0 and mature at time T . A lattice

partitions this time span into n equal-distanced time steps and specifies the value of S(t) at each

time step. The lattice converges to the continuous-time model (2) as n→∞ (see Duffie (1996)). Let

the length between two adjacent time steps be ∆t ≡ T/n. Take the popular Cox-Ross-Rubinstein
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(CRR) binomial lattice of Cox et al. (1979) depicted in Fig. 1 for example. Each stock price S

can either move upward to become Su with probability Pu, or move downward to become Sd with

probability Pd ≡ 1 − Pu. The upward and downward movements (u and d) and the branching

probabilities (Pu and Pd) of the CRR lattice are set to asymptotically match the mean (µ) and the

variance (σ̂2) of the lognormal return of S(t), which can be derived from Eq. (2) as

µ ≡
(
r − σ2/2

)
∆t,

σ̂2 ≡ σ2∆t.

The CRR lattice adopts the following solution:

u = eσ
√

∆t,

d = e−σ
√

∆t,

Pu =
er∆t − d
u− d ,

Pd =
er∆t − u
d− u .

For convenience, define the log-distance between stock prices S and S′ as | ln(S) − ln(S′)|. Thus

the log-distance between any two adjacent stock prices at any given time step in the CRR lattice

(see Fig. 1) is 2σ
√

∆t.

2.2 The Trinomial Structure

Dai and Lyuu (2010) describe a trinomial structure that can be appended to a lattice that matches

critical locations. We now review the trinomial structure for a single market variable X(t). Let µ

be the drift of X(t) and 1 be the volatility. Consider an arbitrary node A. We shall construct a

trinomial branching structure from node A with value X(τ) at time τ to three nodes at time τ+∆t′

as illustrated in Fig. 2. The first two moments of X(τ + ∆t′) must be matched by the trinomial

structure, and all the branching probabilities, Pu, Pm, and Pd, must be between 0 and 1. The nodes

at time τ + ∆t′ are equally spaced with spacing 2
√

∆t, and they are positioned so that one of the

nodes at time τ+∆t′ coincides with the critical location. Under the premise ∆t < ∆t′ ≤ 2∆t, node

A is connected to the node (node C in Fig. 2) whose position is closest to the conditional expected
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value of X(τ + ∆t′), and node C’s two adjacent nodes (nodes B and D). Define α, β, and γ as

the subtractions of the conditional expected value of X(τ + ∆t′) from the values of nodes B, C, D,

respectively. Dai and Lyuu (2010) prove that this yields valid branching probabilities:

Pu =
βγ + ∆t′

(α− β)(α− γ)
,

Pm =
αγ + ∆t′

(β − α)(β − γ)
,

Pd =
αβ + ∆t′

(γ − β)(γ − α)
.

2.3 The Hull-White Interest Rate Model and Its Lattice

The Hull-White interest rate model (see Hull and White (1990a)) is a no-arbitrage short rate model

that is able to match the market’s term structure of interest rates. The short rate at time t, r(t),

follows the stochastic process

dr(t) = (θ(t)− ar(t))dt+ σrdzr, (3)

where θ(t) is a function of time that makes the model fit the real-world interest rate market, a

denotes the mean reversion rate for the short rate r(t) to revert to θ(t)/a, σr denotes the instanta-

neous volatility of the short rate, and dzr is the standard Brownian motion. Hull and White (1994)

provide a two-stage lattice-building procedure for the Hull-White interest rate model.

2.4 The Oscillation Problem and Nonlinearity Error

Although the prices generated by the lattice converge to the theoretical value of a contingent claim

as n → ∞ (see Duffie (1996)), they may oscillate significantly. According to Figlewski and Gao

(1999), this phenomenon is due to the error introduced by the nonlinearity of the value function

of the contingent claim. This nonlinearity error can be much reduced by making a node or a price

level of the lattice match the critical locations where the value function of the contingent claim

is highly nonlinear (see Dai and Lyuu (2010)). Critical locations are straightforward to identify.

For example, the vanilla option has a critical point at maturity with the stock price equal to the

strike price. For continuous barrier options, the critical price level occurs along the barrier price.
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For pricing vulnerable options and defaultable bonds under the structural model, critical locations

run along the exogenous default boundary. The hard problem is that, in general, the positions of

critical locations on a multivariate lattice can depend on multiple market variables; for example,

the default boundary on the firm’s asset value for a defaultable bond under the stochastic interest

rate model depends on both the firm’s asset value and interest rate. Therefore, it is hard for a

lattice to match these critical locations by the traditional construction methodology.

3 Lattice Construction

For the sake of brevity, we demonstrate our multi-phase construction method with a bivariate

lattice for two correlated market variables. The construction for lattices for more than two market

variables shares the same methodology. To handle the correlations between the market variables,

we rely on the orthogonalization to transform the original, correlated processes into uncorrelated

ones; the orthogonalization process is described in Subsection 3.1. Subsection 3.2 describes the core

idea of our multi-phase branch construction by an example. Subsection 3.3 shows how to construct

a bivariate lattice for two correlated lognormal processes, the underlying being the stock price and

the firm’s asset value, to price vulnerable options. The trinomial structure discussed in Subsection

2.2 is applied to make the bivariate lattice match barriers and default boundaries. A 2-time-step

lattice is given to convey main ideas. Our lattice construction methodology can also be used

to build multivariate lattices for other market variables. Subsection 3.4 proves that by building

a bivariate lattice with asset price and interest rate as market variables. When the underlying

asset is interpreted as the firm’s asset value, this lattice can be used to evaluate interest-sensitive

securities on the firm, like defaultable corporate bonds. When the underlying asset is interpreted

as the insurer’s account, this lattice can be used to evaluate variable annuity, like GMWB. GMWB

allows the insurer to withdraw a fixed amount of money from the insurer’s account at withdrawal

dates, and this covenant results in a downward jump of the value of the insurer’s account. Our

method can deal with such jumps without difficulty.
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3.1 Transforming Correlated Processes into Uncorrelated Ones via Orthogo-

nalization

The orthogonalization is a method that converts a nonorthogonal set of linearly independent func-

tions to an orthogonal basis. With this method, we can transform a set of correlated processes into

a set of uncorrelated ones. For the sake of brevity, we demonstrate this transformation for a set

of two correlated processes. The transformation for more than two correlated processes shares the

same methodology.

To simultaneously handle the correlations and make our lattice match the critical locations, we

revise Hull and White’s (1990b) orthogonalization method, which transforms the original, correlated

processes into uncorrelated ones. Before the transformation, the market variables are so ordered

that the i-th coordinates of the critical locations depend only on the first i of the market variables.

For example, the two correlated market variables are ordered so that S1 is followed by S2 when

the first coordinates of the critical locations are functions of S1 and the second coordinates are

functions of S1 and S2.

Let S1 and S2 be represented as follows:

dS1 = µ1dt+ σ1dz1,

dS2 = µ2dt+ σ2dz2.

Above, for x ∈ {1, 2}, µx denotes the drift of Sx, σx denotes the volatility of Sx, and dzx denotes

the standard Brownian motion. The correlation between dz1 and dz2 is ρ.

It is well-known that dz2 can be decomposed into a linear combination of dz1 and another

independent Brownian motion dz thus:

dz2 = ρ dz1 +
√

1− ρ2 dz. (4)

The differential forms of S1 and S2 can be represented in the following matrix form,

 dS1

dS2

 =

 µ1

µ2

 dt+

 σ1 0

σ2ρ σ2

√
1− ρ2


 dz1

dz

 . (5)
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For this two-asset case, define A as

A =

 σ1 0

σ2ρ σ2

√
1− ρ2

 . (6)

Thus the inverse matrix A−1 equals

A−1 =

 1/σ1 0

−ρ
σ1
√

1−ρ2
1

σ2
√

1−ρ2

 . (7)

We proceed to transform S1 and S2 into two uncorrelated processes X1 and X2. The differential

forms of X1 and X2 can be obtained by multiplying A−1 to both sides of Eq. (5):

 dX1

dX2

 =

 dS1/σ1

−ρ dS1

σ1
√

1−ρ2
+ dS2

σ2
√

1−ρ2

 =

 µ1/σ1

−ρµ1
σ1
√

1−ρ2
+ µ2

σ2
√

1−ρ2

 dt+

 1 0

0 1


 dz1

dz

 . (8)

Integrate both sides of Eq. (8) to yield

X1(t) =
S1(t)− S1(0)

σ1
, (9)

X2(t) =
1√

1− ρ2

(
S2(t)− S2(0)

σ2
− ρ S1(t)− S1(0)

σ1

)
=

1√
1− ρ2

(
S2(t)− S2(0)

σ2
− ρX1(t)

)
, (10)

where X1(0) = X2(0) = 0 for convenience. The market variables S1(t) and S2(t) can be expressed

in terms of X1(t) and X2(t):

S1(t) = S1(0) + σ1X1(t), (11)

S2(t) = S2(0) + σ2

(√
1− ρ2X2(t) + ρX1(t)

)
. (12)

The above method can be easily generalized to handle more than two correlated stochastic

processes. If n correlated processes need to be orthogonalized, the lower-triangular matrix A (e.g.,

Eq. (6)) can be obtained by decomposing the covariance matrix of n correlated Brownian motions
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by the Cholesky decomposition (see Golub and Van Loan (1996)).

Recall that our lattice is built to approximate the uncorrelated processes X1(t) and X2(t); the

values of the original market variables (S1(t) and S2(t)) on each node of the lattice can be recovered

by substituting X1(t) and X2(t) into Eqs. (11)–(12). Note that the fact that S1(t) depends only

on X1(t), and vice versa, can help locate the positions of critical locations and adjust the lattice to

match the locations.

3.2 Core Ideas of Our Multi-Phase Branch Construction

The core ideas of our multi-phase branch construction are illustrated in Fig. 3. Consider a bivari-

ate lattice that approximates the evolution of two uncorrelated processes X1(t) and X2(t). The

construction contains two phases. Let us focus on node A with value (X1(τ), X2(τ)) in Fig. 3. The

first phase constructs the trinomial structure from node A′, the projection of node A on the X1-t

plane, to approximate process X1(t). After selecting nodes B′, C ′, and D′ as the destinations of

the trinomial structure, the branching probabilities Pu, Pm, and Pd are calculated. The second

phase first approximates X2(t); the trinomial structure from node A to nodes B1, B2, and B3 is

constructed, and the corresponding probabilities Qu, Qm, Qd are calculated. After combining the

branches from the two planes, node A now has nine branches, and the joint branching probabilities

can be obtained by multiplying the branching probabilities in the X1 dimension and those in the

X2 dimension. For example, the joint branching probability from node A to node B1 is PuQu.

Note that the nodes at time τ + ∆t′ on both X1-t and X2-t planes are positioned so that one of

the nodes at time τ + ∆t′ coincides with the critical location (see the next section for details on

how to match the critical locations).

3.3 A Bivariate Lattice: Two Correlated Market Variables

This subsection focuses on the bivariate lattice for two market variables: the stock price, S(t), and

the firm’s asset value, V (t). The bivariate lattice is built to price vulnerable barrier options with the

strike price K and the barrier B(t) = Be−γ(T−t). The default boundary for the firm’s asset value at

time t, D∗(t), is assumed to be the sum of the non-vulnerable option value at time t, c(S(t), t), and

the discounted value of the firm’s outstanding debt; that is, D∗(S(t), t) = De−r(T−t) + c(S(t), t),

where D denotes the firm’s outstanding debt (see Klein and Inglis, 2001). In this setup, the option
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holder receives

c(S(t), t)/D∗(S(t), t) (13)

of the firm’s asset value when the firm defaults.

The two market variables, S(t) and V (t), are both assumed to follow the processes in Eq. (1):

dS(t)

S(t)
= rdt+ σSdzS ,

dV (t)

V (t)
= rdt+ σV dzV .

By Ito’s lemma,

d lnS(t) =

(
r − σ2

S

2

)
dt+ σSdzS ,

d lnV (t) =

(
r − σ2

V

2

)
dt+ σV dzV , (14)

where r is the risk-free rate, σS and σV are the volatilities of S(t) and V (t), respectively, and dzS

and dzV are two correlated standard Brownian motions with correlation ρ.

We first order the original two processes in Eq. (14); lnS(t) is the first process and lnV (t) the

second. The reason for the choice is that the barrier for the stock price is f(ln(S(t))), whereas

the default boundary for the firm’s asset value is g(lnS(t), lnV (t)) (see Subsection 3.1). We then

apply the orthogonalization process in Subsection 3.1 to the processes, to obtain two uncorrelated

processes, X(t) and Y (t). According to matrix equation (8),

dX(t) =
1

σS

(
r − σ2

S

2

)
dt+ dzS , (15)

dY (t) =
1√

1− ρ2

(
− ρ

σS

(
r − σ2

S

2

)
+

1

σV

(
r − σ2

V

2

))
dt+ dz, (16)

where dzS and dz are uncorrelated.

The bivariate lattice is built from two lattices, one for X(t) and another for Y (t), in the following

way. Each node on a bivariate lattice at time step j pairs a value from the lattice for X(t) with

a value from the lattice for Y (t), both at time step j. Since X(t) and Y (t) are uncorrelated, the

branching probabilities can be obtained by multiplying the branching probabilities of the X(t)-
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lattice and those of the Y (t)-lattice.

The construction for the bivariate lattice has two phases. In the first phase, the X(t)-lattice is

built. By Eq. (9), the barrier B(t) for the stock price S(t) can be transformed to the barrier BX(t)

on the X(t)-lattice:

BX(t) =
1

σS
(lnB(t)− lnS(0)) . (17)

Figure 4 depicts a 3-time-step X(t)-lattice with the time-varying barrier BX(t). The lattice starts

by placing gray nodes on the barrier to reduce the nonlinearity error. All the other nodes are then

laid from the gray nodes upward and downward with the log-distance between any two vertically

adjacent nodes being 2
√

∆t. This setting helps us construct trinomial branches from any node at

time step t to the three successor nodes at time step t + 1 via the procedure in Subsection 2.2.

Start from node X for X(0). Its successor nodes will be selected from the nodes at time step 1,

the successor nodes of these 3 nodes will be selected from the nodes at time step 2, and so on.

Note that the option knocks out once X(t) reaches the gray nodes on the barrier. The gray nodes,

therefore, have no need for successor nodes.

We now proceed to the second phase, which builds the Y (t)-lattice at first. Recall that the

default boundary for the firm’s asset value V (t) is assumed to be D∗(t) = De−r(T−t) + c(S(t), t).

The term c(S(t), t) can be evaluated by the Black-Scholes formula as follows:

c(S(t), t) = S(t)N(d1)−Ke−r(T−t)N(d2), (18)

where N(·) denotes the CDF of the standard, 1-dimensional normal distribution, and

d1 =
ln(S(t)/K) + (r + σ2

S/2)(T − t)
σS
√
T − t ,

d2 = d1 − σS
√
T − t.

By Eq. (10), the default boundary D∗(t) for the firm’s asset value can be transformed to the

boundary D∗Y (t) on the Y (t)-lattice thus:

D∗Y (t) =
1√

1− ρ2

(
lnD∗(t)− lnV (0)− ρX(t)

σV

)
. (19)
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Once we have D∗Y (t), the lattice again starts by placing nodes on this default boundary (the black

nodes in Fig. 5). Note that each node with the value x on the X(t)-lattice corresponds a unique

stock price S(0)eσSx by Eq. (11). Since D∗Y (t) depends on the stock price as in Eq. (19), each

node on the X(t)-lattice will map to a value of D∗Y (t) given the value of this node. For example,

in Fig. 5, node a on the X(t)-lattice corresponds to node A on the default boundary; similarly,

node b corresponds to node B on the default boundary. The branch construction procedure for the

Y (t)-lattice is identical to that for the X(t)-lattice.

In the end of the second phase, the Y (t)-lattice is added on top of the X(t)-lattice to form the

bivariate lattice. Recall that each node in the bivariate lattice corresponds to a bivariate state with

a value from the X(t)-lattice and a value from the Y (t)-lattice. As the trinomial X(t)-lattice and

the trinomial Y (t)-lattice are combined to build our bivariate lattice, there are 3× 3 = 9 branches

per node as illustrated in Fig. 6. Node X at time step t has 9 branches, to nodes A, B, C, D, E,

F , G, H, and I at time step t+1. It is straightforward to show that the size of the bivariate lattice

is O(n3).

An Example Lattice

This subsection provides a numerical example to illustrate how to construct a bivariate lattice for

pricing vulnerable barrier options. Assume the strike price is K = 30, the maturity is T = 3, the

initial stock price is S0 = 40, the volatility of the stock price is σS = 20%, the firm’s initial asset

value is V0 = 100, the volatility of the firm’s asset value is σV = 20%, the correlation between the

stock price and the firm’s asset value is ρ = 0, the risk-free interest rate is r = 5%, and the recovery

rate is α = 0.75. The barrier is B(t) = Be−γ(T−t), where B = 35 and γ = 0.01, and the default

boundary for the firm’s asset value is assumed to be D∗(t) = De−r(T−t) + c(S(t), t), where D = 90.

The construction for the X(t)-lattice is illustrated in Fig. 7. By Eq. (17), the barrier B(t) for

the stock price S(t) can be transformed to the barrier BX(t) on the X(t)-lattice. For example,

BX(1.5) =
ln(35× e−0.01×1.5)− ln(40)

0.2
≈ −0.743.

Once the barrier BX(t) at each time step is obtained, we place gray nodes at ∆t apart on the

barrier to reduce the nonlinearity error. All the other nodes are laid from the gray nodes upward
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and downward with the log-distance between any two vertically adjacent nodes being 2
√

∆t = 2.45.

The branching probabilities for nodes A and B can be calculated by the procedure in Subsection

2.2.

We now start to build the Y (t)-lattice. We first recover the value of S(t) at each node on the

X(t)-lattice by Eq. (11). Then the term c(S(t), t) in the default boundary for the firm’s asset value,

D∗(t) = De−r(T−t) + c(S(t), t), can be obtained by Eq. (18); we therefore have D∗(t) for each node

on the X(t)-lattice. For example, with S(1.5) = 56.275 (i.e., the stock price of node B), we have

D∗(1.5) = 90× e−0.05×1.5 + 28.019 ≈ 111.516. (20)

Note that c(S(t), t) = 0 when the option knocks out (i.e., the gray nodes in Fig. 7). By Eq. (19),

the default boundary D∗(t) for the firm’s asset value can be transformed to the boundary D∗Y (t)

on the Y (t)-lattice. For example, by the result in Eq. (20),

D∗Y (1.5) =
1√

1− 0

(
ln(111.516)− ln(100)

0.2
− 0× 1.707

)
≈ 0.545.

Once we have D∗Y (t), all the nodes on the Y (t)-lattice are laid on top of D∗Y (t) and then from

the D∗Y (t) upward and downward as illustrated in Fig. 8. In Fig. 8, the firm defaults when Y (t)

reaches the dark-gray nodes, which, therefore, have no need for successor nodes. The branching

probabilities can be obtained by the procedure in Subsection 2.2.

We now calculate the value of the vulnerable option on the 2-time-step bivariate lattice in Fig.

8 via backward induction. At maturity (time step 2), the option knocks out when the stock price

hits the barrier (the light-gray node), so the option value is 0 (node E). If the option does not

knock out (i.e., nodes A, B, C, and D), there are two cases: (1) the firm defaults if its asset value

is less than the default boundary D∗Y (t); (2) otherwise, the firm survives (the white nodes). For

example, at node c1, the firm survives and the option value is (93.237−30, 0)+ ≈ 63.24. As another

example, the firm defaults at node d3, and the option value is

0.75× 117.125× (57.125− 30)+

117.125
≈ 20.344

by Eq. (13). The option values at time step 1 are obtained by backward induction with the
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appropriate branching probabilities. For example, the value of the option at node b1 equals

e0.05×1.5 × (0.157× (0.445× 63.24 + 0.554× 47.43 + 0.002× 29.06)+

0.746× (0.121× 27.13 + 0.75× 27.13 + 0.129× 20.34) +

0.096× 0) ≈ 26.13.

Note that the joint probabilities can be obtained by multiplying the branching probabilities on the

X(t)-lattice and the Y (t)-lattice because X(t) and Y (t) are uncorrelated. Finally, the option value

for node A at year 0 can be computed thus:

e0.05×1.5 × (0.401× (0.068× 26.13 + 0.733× 21.02 + 0.199× 12.88)+

0.594× 0 + 0.006× 0) ≈ 7.337.

3.4 A Bivariate Lattice with Stochastic Interest Rate as the Second Market

Variable

This subsection focuses on bivariate lattices with the following two market variables: the interest

rate, r(t), and the firm’s asset value, V (t). The asset value is assumed to follow the process in Eq.

(1). The bivariate lattice is built to price defaultable bonds with a positive net-worth covenant

ξPV (t) as the default boundary (see Black and Cox (1976)) under the Hull-White interest rate

model in Eq. (3), where PV (t) denotes the sum of the present values of the unpaid coupons and

the face value at maturity of the defaultable bond at time t, where ξ is a constant.

We first apply the orthogonalization process mentioned in Subsection 3.1 to the original two

processes, r(t) and V (t) in Eq. (3) and Eq. (14), respectively, to obtain two uncorrelated process

X(t) and Y (t). According to matrix equation (8),

dX(t) =
θ(t)− ar(t)

σr
dt+ dzr,

dY (t) =
1√

1− ρ2

(
− ρ

σV
(θ(t)− ar(t)) +

1

σV

(
r(t)− σ2

V

2

))
+ dz,

where dzr and dz are uncorrelated.

With X(t) and Y (t) in place, the construction procedure for the bivariate lattice follows that
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in Subsection 3.3. For the X(t)-lattice, we have X(t) = (r(t)− r(0))/σr by Eq. (9). Since X(t) is a

bijection, we first construct the lattice for the interest rate by the procedure in Subsection 2.3 and

then transform this lattice to form the X(t)-lattice. For the Y (t)-lattice, by Eq. (10), the default

boundary PV (t) can be transformed to the boundary on the Y (t)-lattice. Once we have the default

boundary on the Y (t)-lattice, the construction methodology is the same as that in Subsection 3.3.

4 Numerical Evaluation

This section shows that our methodology can be applied to the pricing of a wide range of complex

financial contracts, such as vulnerable options, insurance contracts GMWB, and defaultable bonds.

We first analyze the numerical results for vulnerable vanilla and barrier options with a bivariate

lattice for two correlated lognormal processes, the underlying being the stock price and the firm’s

asset value. Our methodology can also build bivariate lattices with asset price and interest rate

as the market variables. When the underlying asset is interpreted as the firm’s asset value, this

lattice can be used to evaluate interest-sensitive securities on the firm, like defaultable corporate

bonds. When the underlying asset is interpreted as the insurer’s account, this lattice can be used

to evaluate variable annuity, like GMWB. Subsection 4.2 analyzes the numerical results for the

defaultable corporate bonds and GMWB. The following numerical results confirm that our lattice

can generate accurate and smoothly-convergent prices that are unavailable to alternative analytical

formulas and numerical methods.

4.1 Vulnerable Options

Many financial institutions trade derivatives through the over-the-counter (OTC) markets with

other financial institutions or their corporate clients. Since there are no margin and daily settle-

ment mechanisms in the OTC markets, the holders of these financial derivatives are vulnerable

to counterparty credit risk (see Johnson and Stulz, 1987). These derivatives are sometimes called

vulnerable derivatives (see Ammann (2001)). The solvency of the counterparty must be considered

to evaluate them. The structural model pioneered by Merton (1974) is adopted here to model

the financial status of the counterparty. In this subsection, the counterparty is assumed to be a

firm, the underlying asset is assumed to be stock, and the derivative is assumed to be option for

17



convenience. To evaluate a vulnerable option, our bivariate lattice models the dynamics of the

firm’s asset value and the stock price. It has the capability to fit the settings of different structural

models to suppress the numerical errors.

Table 1 tabulates the values of the vulnerable vanilla options under different structural models.

To make analytical formulas possible, Klein (1996) and Klein and Inglis (2001) make some simpli-

fying assumptions. Both papers follow Merton (1974) by assuming that the firm can only default

at the option’s maturity date, and it defaults when it cannot meet the debt obligation then. The

debt obligation in Klein (1996) is approximately set as the value of all other outstanding debts of

the firm, D, by assuming that the obligation of the option is much smaller than D. The option

holder receives c(S(T ), T )/D of the firm’s asset value when the firm defaults. On the other hand,

Klein and Inglis (2001) include the potential liability of the written option into the debt obligation

so the total obligation at maturity becomes D+ c(S(T ), T ). In this case, the option holder receives

c(S(T ),T )
D+c(S(T ),T ) of the firm’s asset value when the firm defaults. The prices generated by their formulas

appear in the second and forth columns of the table. The two columns marked by Lattice next

to the aforementioned two Formula columns denote the prices generated by our lattice. The ac-

curacy of our lattice is verified by observing that the prices generated by our lattice are close to

those generated by the analytical formulas. Note that a higher debt obligation implies a higher

likelihood for option holders to suffer from the loss of firm’s default at the option’s maturity date.

Thus the option prices under the Klein and Inglis (2001) setting (with a higher debt obligation

D + c(S(T ), T )) should be lower than those under the Klein (1996) setting (with a lower debt

obligation D), as expected.

The first-passage model (FPM hereafter) proposed by Black and Cox (1976) generalizes Merton’s

credit risk model by allowing the default to occur prior to the option’s maturity. In the sixth column,

we generalize the setting in Klein (1996) by assuming that the default boundary at time t as the

discounted value of D; that is, De−r(T−t). In the seventh column, the setting in Klein and Inglis

(2001) is generalized by assuming that the default boundary as the sum of the non-vulnerable

option value at time t, c(S(t), t), and the discounted value of other outstanding debts; that is,

De−r(T−t) + c(S(t), t). In this case, analytical formulas and numerical methods are hard to come

by since the default boundary contains a stochastic term c(S(t), t), which is governed by the stock

price process. Again, a higher default boundary implies a higher likelihood for the option holders to
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suffer from the loss of firm’s default. Thus under the FPM, the option prices under the generalized

Klein and Inglis (2001) setting (with a higher default boundary De−r(T−t) + c(S(t), t)) should also

be lower than those under the Klein (1996) setting (with a lower default boundary De−r(T−t)), as

expected.

Our lattice can be extended to price barrier options with counterparty risk. To suppress the

nonlinearity error, our lattice matches both the default boundary in the firm’s asset value and the

barrier in the stock price. The robustness and the fast convergence of our lattice is confirmed by the

solid line in Fig. 9 for pricing a vulnerable barrier call option under the FPM. To our knowledge, no

analytical formulas are available to handle this problem in which each dimension has one boundary

(the default boundary and the barrier); even both boundaries are all simple constants. A naive

numerical method that does not align with the barrier and the default boundary will generate

oscillating prices depicted as the dashed line in Fig. 9.

Our lattice is able to price vulnerable barrier options under various structural models and

different barrier settings as illustrated in Table 2. Analytical formulas are only available for Merton’s

structural model with a constant debt obligation (see Pan (2010)) as in the Formula column. The

robustness of our lattice is corroborated by the closeness of the prices generated by our lattice to

those generated by analytical formulas. Furthermore, our lattice can be easily extended to deal

with other more complex structural models that are analytically intractable. Like the results of the

vulnerable vanilla options in Table 1, the values of the vulnerable barrier options priced under the

setting in Klein and Inglis (2001) are lower than those priced under the setting in Klein (1996).

Option price behaviors may differ greatly under different structural models. In the volatility

sensitivity plot in Fig. 10, for example, the discrepancy of option prices under two different struc-

tural models increases with the stock price volatility. Moreover, the option values under Merton’s

model with the Klein and Inglis (2001) setting assume a humped shape, while the option values

under other models increase monotonically with volatility.

The relationships between option values and structural models are discussed as follows. Since

the default boundary under Klein (1996) is lower than that under Klein and Inglis (2001), the firm

incurs less bankruptcy cost under the former setting than the latter one. Therefore, the option

values under Klein (1996) (the dotted and dashed lines in Fig. 10) are greater than those under Klein

and Inglis (2001) (the solid and dot-dashed lines). Compared to Merton’s model, the FPM allows
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the firm to default prior to maturity and has a higher default probability. Thus more bankruptcy

cost is introduced under the FPM, which harms the value of the vulnerable option. However, the

FPM provides protections to option holders by letting the firm default when its asset value goes

below the default boundary. This protection raises the option value. If the effct of incurring more

bankruptcy cost under the FPM dominates that of the protection provided by the FPM, the option

values under Merton’s model will be higher than those under the FPM; see the prices in Fig. 10

under the Klein (1996) setting for example. On the contrary, Klein and Inglis (2001) include the

potential liability of the written option (c(S(t), t)) into the debt obligation which provides more

protection to the option holders. So in this case, the effect of the protection dominates that of

increased bankruptcy cost and the option values under Merton’s model are lower than those under

the FPM.

4.2 Evaluating Defaultable Bonds and GMWBs under Short Rate Models

To price defaultable bonds under short rate models, we build a bivariate lattice with asset price

and interest rate as market variables. Our lattice describes the dynamics of the asset value and

the interest rate, which is assumed to follow the Hull-White model (see Hull and White (1994)).

Table 3 compares defaultable zero-coupon bond prices by our lattice and those by the analytical

formula proposed by Briys and De Varenne (1997). The robustness of our lattice is affirmed by the

low relative pricing errors. Note that the values of defaultable zero-coupon bonds are lower than

default-free ones due to the credit risk. Their price discrepancy increases with the face value since

the credit risk increases with the amount of outstanding bonds.

Both asset-sales assumptions and positive net-worth covenants affect bond prices. The coupon

payments can be either financed by selling the firm’s asset, which is called the total-asset-sales

assumption (see Merton (1974); Brennan and Schwartz (1978)), or by issuing new equities, which

is called the no-asset-sales assumption (see Leland (1994)). Lando (2004) argues that the existence

of jumps under the total-asset-sales assumption makes analytical formulas impossible and lattices

non-recombining. But our proposed methodology proves otherwise. The defaultable bond prices

under these two assumptions are listed under the “Total-asset-sales” and “No-asset-sales” columns

in Table 4. Under the total-asset-sales assumption, the firm’s asset value jumps downward by the

amount of the coupon at the payment date. These downward jumps weaken the firm’s financial
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status and increase its default risk. That explains why the bond values under the total-asset-sales

assumption are lower than those of an otherwise identical bond under the no-asset-sales assumption.

The only exception when the bonds values are equal is the annual coupon payment setting. This is

because the only coupon is paid at maturity T=1 (year), which, coinciding with the return of the

face value, can be treated as part of the face value.

The FPM assumes the firm is allowed to default prior to maturity and the firm defaults when

its asset value goes below an exogenous default boundary. We follow Leland (1994) by calling a

bond with an exogenous default boundary a protected bond, and a bond without an exogenous

default boundary an unprotected one. In numerical experiments, we adopt Briys and De Varenne

(1997) in setting the boundary at ξ = 90% of the present value of bonds’ unpaid coupons and the

face values at maturity. Note that this stochastic default boundary depends on the term structure

of interest rates, and the naive lattice will find it hard to address the price oscillation problem.

In contrast, our lattice can address this problem by the technique in Subsection 3.3. As shown in

Table 4, the above-mentioned default boundary does affect the prices of the bonds.

Although the early redemption features (such as callable or putable rights) are hard to evaluate

analytically, our bivariate lattice can easily cope with it, as illustrated in Table 5. As expected,

the prices of defaultable bonds are always lower than those of default-free bonds regardless of the

presence of early redemption features. It is also not surprising that the callable feature decreases

the bond value, whereas the putable feature increases it. Finally, the values of both callable and

putable bonds increase with the call and put prices, as expected.

The aforementioned bivariate lattice for evaluating defaultable bonds can be extended to evalu-

ate GMWBs by replacing the firm’s asset value with the policy holder’s account value. The insurer

will receive the charge from the policy holder to make the expected present value of what the policy

holder can receive from the insurer equal to the initial payment to the insurer. Thus, to evaluate

the charge accurately is a vital issue. Table 6 lists the fare charges of the GMWBs under different

maturities and correlations between the account value and the interest rate. Observe that the

charges decrease with maturities but increase with correlations.
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5 Conclusions

This paper proposes a flexible multi-phase method to build a multivariate lattice for pricing deriva-

tives accurately. To simultaneously handle the correlations and make the lattice match the critical

locations, the market variables are first properly ordered. Then our multivariate lattice describes

the evolution of the uncorrelated processes transformed from the original, correlated processes of

market variables by orthogonalization. Numerical results for vulnerable options, insurance con-

tracts GMWB, and defaultable bonds show that our multi-phase method can be applied to the

pricing of various complex financial contracts accurately.
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Figure 1: The CRR Lattice. The value of process S(t) at time step 0 is denoted as S0. The
upward and downward multiplicative factors are u and d, respectively. The upward and downward
branching probabilities are Pu and Pd = 1−Pu, respectively. The log-distance between two adjacent
stock prices at any given time step is 2σ

√
∆t, where ∆t is the length of a period.
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Figure 2: The Trinomial Structure. Node A with value X(τ) at time τ can move to node B(at
position x) with probability Pu, node C (at position x + 2

√
∆t) with probability Pm, and node

D (at position x + 4
√

∆t) with probability Pd. The conditional expected value of X(τ + ∆t′), or
E(X(τ + ∆t′)|X(τ)), is marked by the cross. The symbols |α|, |β|, and |γ| denote the distances
between E(X(τ + ∆t′)|X(τ)) and the nodes B, C, D, respectively.
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Figure 3: The Branching Structures of Our Bivariate Lattice. The branching structure
from node A at time τ to the nine nodes at time τ + ∆t′ are marked in thick black lines. The
projections of nodes A, B1, . . . are marked by dashed gray lines. The trinomial branches emitting
from node A′ to nodes B′, C ′, and D′ with probabilities Pu, Pm, and Pd approximate the evolution
of the process X1. EX1 and EX2 denote the conditional expected values of processes X1 and X2 at
time τ + ∆t′, respectively.
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∆t. The option knocks out when the gray nodes are hit.
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Y -t planes are both 2
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∆t. The option knocks out when X(t) reaches the gray nodes. The firm

defaults when Y (t) reaches the black nodes.
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Figure 6: The (X(t), Y (t)) Bivariate Lattice. Node O at time step t has 9 branches leading to
nodes A, B, C, D, E, F , G, H, and I at time step t+ 1. Let Xi,j denote the jth highest value on
the X(t)-lattice at time step i, and Y k

i,j denote the jth highest value on the Y (t)-lattice associated
with the value k on the X(t)-lattice at time step i. The value on the X(t)-lattice at nodes A,
D, and G is Xt+1,x1 , that at nodes B, E, and H is Xt+1,x1+1, and that at nodes C, F , and I is
Xt+1,x1+2. The values on the Y (t)-lattices are listed next to the nodes.
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Figure 7: A 2-Time-Step X(t)-Lattice. The dashed curve denotes the time-varying barrier
BX(t). The log-distance between any two vertically adjacent nodes is 2

√
∆t = 2.45. The option

knocks out when X(t) reaches the gray nodes.
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Figure 9: Convergence of the Vulnerable Barrier Call Option under the FPM Model.
The x and the y axes denote the number of time steps and the option value, respectively. A barrier
call option is assumed to be issued by a firm at time 0 and the call matures at T = 3 (years). The
amount of all other outstanding debts of the firm is D = 90. The initial stock price is S(0) = 40,
the strike price is K = 40, the initial firm’s asset value is V (0) = 100, the volatility of the stock
price is σS = 0.2, the volatility of the firm’s asset value is σV = 0.2, the correlation between the
stock price and firm’s asset value is ρ = 0, the risk-free interest rate is r = 0.05, and the recovery
rate is α = 0.75, The barrier is 35. The default boundary for the firm’s asset value at time t is
D∗(t) = De−r(T−t) + c(S(t), t).
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Figure 10: Vanilla Option Values with Various Stock Price Volatilities. A call option is
assumed to be issued by a firm at time 0 and the call matures at T = 3 (years). The amount of all
other outstanding debts of the firm is D = 90. The initial stock price is S(0) = 40, the strike price
is K = 40, the initial firm’s asset value is V (0) = 100, the volatility of the stock price is σS = 0.2,
the volatility of the firm’s asset value is σV = 0.2, the correlation between the stock price and firm’s
asset value is ρ = 0, the risk-free interest rate is r = 0.05, the recovery rate is α = 0.75, and the
number of the time steps is n = 500. In Klein (1996), the default boundary for the firm’s asset
value at time t is D∗(t) = De−r(T−t), whereas in Klein and Inglis (2001), the default boundary for
the firm’s asset value at time t is D∗(t) = De−r(T−t) + c(S(t), t), where c(S(t), t) denotes the value
of the call option at time t. In Merton’s model, the default can only occur at maturity, whereas
the default can occur prior to maturity in the FPM.
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Merton FPM

D D + c(S(T ), T ) De−r(T−t) De−r(T−t) + c(S(t), t)
Formula Lattice Formula Lattice Lattice Lattice

Base case 7.44 7.41 6.24 6.22 7.28 6.63
S = 30 2.27 2.26 2.01 2.01 2.22 2.09
S = 50 14.75 14.69 11.59 11.58 14.43 12.70
V = 90 7.03 7.00 5.71 5.70 6.87 6.37
V = 110 7.74 7.71 6.65 6.67 7.60 6.89
ρ = 0.5 8.06 8.04 7.36 7.33 7.71 7.07
ρ = −0.5 6.59 6.56 5.23 5.23 6.84 6.41
σS = 0.15 6.45 6.42 5.66 5.66 6.31 5.84
σS = 0.25 8.48 8.44 6.70 6.71 8.29 7.45
σV = 0.15 7.80 7.79 6.47 6.45 7.60 6.70
σV = 0.25 7.10 7.09 5.98 5.98 7.06 6.57
T = 2 5.79 5.77 4.97 4.98 5.62 5.14
T = 4 8.91 8.89 7.27 7.28 8.79 7.97
α = 1 7.93 7.93 7.11 7.13 8.37 8.37
α = 0.5 6.95 6.89 5.36 5.32 6.19 4.89
r = 0.03 6.17 6.14 5.16 5.14 6.03 5.58
r = 0.07 8.80 8.77 7.40 7.39 8.62 7.76

Table 1: Pricing Vulnerable Vanilla Call Options. A call option is assumed to be issued by
a firm at time 0 and the call matures at T = 3 (years). The amount of all other outstanding debts
of the firm is D = 90. For the base case, the initial stock price is S(0) = 40, the strike price is
K = 40, the initial firm’s asset value is V (0) = 100, the volatility of the stock price is σS = 0.2, the
volatility of the firm’s asset value is σV = 0.2, the correlation between the stock price and firm’s
asset value is ρ = 0, the risk-free interest rate is r = 0.05, and the recovery rate is α = 0.75. The
numerical settings of the other cases are the same as those of the base case except the parameter in
the first column. The columns under Merton assume that the firm can only default at the option’s
maturity date, and the debt obligation at maturity is listed in the second row. The columns under
FPM assume that the firm is allowed to default prior to maturity, and the default boundary at time
t for t ∈ [0, T ] is listed in the second row. The prices under Formula are generated by the analytical
formulas in Klein (1996) (the second column) and Klein and Inglis (2001) (the fourth column), and
the prices under Lattice are generated by our lattice with 500 time steps.
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Merton FPM

D D + c(S(T ), T ) De−r(T−t) De−r(T−t) + c(S(t), t)
B Formula Lattice Lattice Lattice Lattice

20 7.44 7.41 6.22 7.28 6.63
25 7.43 7.40 6.21 7.27 6.62

Constant barrier 30 7.15 7.12 5.96 6.99 6.36
35 5.39 5.37 4.41 5.27 4.76
40 0.00 0.00 0.00 0.00 0.00

20 7.44 7.41 6.22 7.28 6.63
25 7.44 7.41 6.22 7.28 6.63

Exponential barrier 30 7.38 7.35 6.17 7.22 6.58
(γ = 0.06) 35 6.93 6.90 5.75 6.78 6.16

40 5.37 5.35 4.38 5.25 4.75

Table 2: Pricing Vulnerable Barrier Options under Different Structural Models and
Barrier Settings. A barrier call option is assumed to be issued by a firm at time 0 and the
call matures at T = 3 (years). The amount of all other outstanding debts of the firm is D = 90.
The initial stock price is S(0) = 40, the strike price is K = 40, the initial firm’s asset value is
V (0) = 100, the volatility of the stock price is σS = 0.2, the volatility of the firm’s asset value
is σV = 0.2, the correlation between the stock price and firm’s asset value is ρ = 0, the risk-free
interest rate is r = 0.05, and the recovery rate is α = 0.75. The barrier B for the constant barrier
option is listed in the second column, and the barrier for the exponential barrier option at time t
is equal to B(t) = Be−γ(T−t). The columns under Merton assume that the firm can only default
at the option’s maturity date, and the debt obligation at maturity is listed in the second row. The
columns under FPM assume that the firm is allowed to default prior to maturity, and the default
boundary at time t for t ∈ [0, T ] is listed in the second row. The prices under Formula are generated
by the analytical formulas in Pan (2010), and the prices under Lattice are generated by our lattice
with 500 time steps.

Defaultable Zero Bonds
with an Exogenous Default Boundary

Face value (F ) Lattice Formula Relative errors Default-free bonds

2000 1924.8 1924.8 −0.002% 1925.0
2500 2404.0 2404.4 −0.015% 2406.2
3000 2874.9 2876.2 −0.045% 2887.4

Table 3: Pricing Defaultable Zero-Coupon Bonds with an Exogenous Default Boundary.
The initial firm’s asset value is V (0) = 5000, the volatility of the firm’s asset is σV = 30%, the
maturity is T = 1, the correlation between the firm’s asset value and the interest rate is ρ = −0.25,
the recovery rate is α = 1, and the tax rate is τ = 0. The parameters for the interest rate model
are a = 50% and σr = 1%. The default boundary at time t is ξ = 90% of the present value of the
bond’s face value. The annualized yields of zero-coupon bonds for years 0.5 and 1 are 0.0343 and
0.0382, respectively, and those for any other time t ∈ [0, 1] is calculated by linear interpolation.
Lattice and Formula denote the option values computed by our lattice with 180 time steps and by
the analytical formula proposed by Briys and De Varenne (1997). The relative errors are defined
as (Lattice− Formula)/Formula.
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Payment frequency Total-asset-sales No-asset-sales
(per year) ξ = 0.9 ξ = 0 ξ = 0.9 ξ = 0 Default-free bonds

Continuously 3017.6 3014.6 3021.4 3019.9 3034.8
4 3016.5 3013.4 3019.7 3017.7 3034.1
2 3015.3 3012.2 3017.7 3015.3 3033.4
1 3012.8 3009.5 3012.8 3009.5 3031.8

Table 4: Pricing Coupon Bonds under Different Payment Frequencies, Asset Sales
Assumptions, and Default Boundaries. The initial firm’s asset value is V (0) = 5000, the
volatility of the firm’s asset is σV = 30%, the face value of the outstanding bond is F = 3000, the
annualized coupon rate is c = 5%, the maturity is T = 1, the correlation between the firm’s asset
value and the interest rate is ρ = −0.25, the recovery rate is α = 1, and the tax rate is τ = 0. The
parameters for the interest rate model are a = 50% and σr = 1%. The default boundary at time t
is set as ξ of the sum of the present values of the unpaid coupons and the face value at maturity of
the defaultable bond. The annualized yields of zero-coupon bonds for years 0.5 and 1 are 0.0343
and 0.0382, respectively, and those for any other time t ∈ [0, 1] is calculated by linear interpolation.
The bond prices are evaluated numerically by our lattice with 180 time steps.

Call/
Put Callable bonds Putable bonds Straight bonds

prices Defaultable Default-free Defaultable Default-free Defaultable Default-free

3030 3016.6 3029.4 3063.6 3063.8 3017.6 3034.8
3035 3017.2 3033.0 3068.4 3068.7 3017.6 3034.8
3040 3017.5 3034.4 3073.2 3073.5 3017.6 3034.8
3050 3017.6 3034.8 3082.9 3083.2 3017.6 3034.8

Table 5: Pricing Callable and Putable Bonds. The initial firm’s asset value is V (0) = 5000,
the volatility of the firm’s asset is σV = 30%, the face value is F = 3000, the annualized coupon rate
is c = 5%, the maturity is T = 1, the correlation between the firm’s asset value and the interest rate
is ρ = −0.25, the recovery rate is α = 1, and the tax rate is τ = 0. The parameters for the interest
rate model are a = 50% and σr = 1%. The annualized yields of zero-coupon bonds for years 0.5
and 1 are 0.0343 and 0.0382, respectively, and those for any other time t ∈ [0, 1] is calculated by
linear interpolation. The default boundary for defaultable bonds at time t is ξ = 90% of the sum
of the present values of the unpaid coupons and the face value at maturity. The continuous coupon
payments are fully financed by selling the firm’s asset. The bond prices are evaluated numerically
by our lattice with 180 time steps.
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Charges (bps)
T ρ = −0.2 ρ = 0 ρ = 0.2

1 140.43 141.85 142.48
5 42.94 44.21 45.32
10 19.07 20.13 21.15
20 7.73 8.48 9.21
25 5.61 6.25 6.86

Table 6: Charges Change with Maturities and Correlations. The initial account value
is W (0) = 100, and the volatility of the account value is σW = 20%. In the table, T represents
the maturity, and ρ represents the correlation between the account value and the interest rate.
The number of the time steps is n = 20 × T , and the annual withdrawal is G = W (0)/T . The
curve of annualized yields of zero-coupon bonds is generated by the Vasicek model with parameters
r(0) = 3%, θ = 0.3%, σr = 1%, and a = 0.1.
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