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VaR is the loss in market value over the time horizon t that is
exceeded with probability 1− p.

The risk factors are computed from a univariate normal
distribution or a multivariate normal distribution (cf. Jorion,
2000, Duffie and Pan, 1997, and J.P. Morgan, 1995).

There is much empirical evidence suggesting that risk factors,
such as log-returns of US stocks, do not follow a normal
distribution (cf. Blattberg and Gonedes, 1974, Cont, 2001,
Fama, 1965, Mandelbrot, 1963, and Rachev and Mittnik,
2000).

These heavy tails are particularly troublesome because VaR
attempts to capture the behavior of the portfolio return in the
tail.
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Glasserman, Heidelberger and Shahabuddin (2000) use several
variance reduction techniques for estimating VaR, such as
importance sampling, stratified sampling.

Glasserman, Heidelberger and Shahabuddin (2002) also
discuss the portfolio VaR with heavy-tailed risk factors.
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Variance reduction techniques
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Simulation process

1 Parameter estimation for real data.

2 Parameter bootstrap method for new sampling.

3 Importance sampling for quantile estimation.
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Model

Suppose the portfolio V (t, S̃(t)) denotes the function of risk
factor S(t) and time t, where S̃(t) = (S1(t), . . . , Sn(t))

′ is the
n underlying assets of the portfolio at time t, and the value of
the portfolio at time t+ 1 is V (t+ 1, S̃(t+ 1)). The loss in
portfolio value during the holding period is L = −∆V where
∆V = V (t+ 1, S̃(t+ 1))− V (t, S̃(t)), and the VaR, lp,
associated with a given probability p is defined by

P (L > lp) = p. (1)
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Assume the density of the portfolio return is symmetric. We
can change the density of the portfolio loss into the density of
the portfolio return,

P (R(t) > rp) = p, (2)

where rp = 2µ− lp/V , and µ denotes the mean of the
portfolio.
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Linear Portfolio

Let w̃(t) = (w1(t), . . . , wn(t))
′ denote a portfolio weight

vector of the investment assets for the portfolio value where
wi(t) is an adapted process, i.e., Ft-measurable, and
r̃(t) = (r1(t), . . . , rn(t))

′ is a vector of the discrete return of
the assets, where ri(t) = (Si(t+ 1)− Si(t))/Si(t). Then the
return of the portfolio at time t is the linear combination of
the asset returns multiplied by the portfolio weight vector,
denoted as

R(t) = w̃′(t)r̃(t) (3)
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Parameter estimation

(1) The observed data r̃F is assumed to come from distribution
F , the unknown parameters of the distribution are estimated
by the maximum likelihood estimate or the method of
moment. Then, we obtain the empirical distribution F̂ by the
plug in principle.

(2) Select B independent bootstrap samples r̃F,1, r̃F,2, . . . , r̃F,B,
each consisting of T data values drawn with replacement from
F̂ .
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(3) Evaluate the bootstrap replication corresponding to each
bootstrap sample,

p̂Fb =
1

T

T∑
t=1

1AF (b,t) b = 1, 2, · · · , B, (4)

where AF (b, t) = {r̃F (b, t) : f(RF (b, t)) = RF (b, t)− rFp =

w̃′(t)r̃F (b, t)− rFp > 0}.
(4) Estimate the probability p and standard error sep(p̂) by using

the sample standard deviation of B replications.
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Set rNi (t) = ∆Si(t)/Si(t), i = 1, 2, . . . , n, then the vector of the
asset returns follows

r̃N (t) =

 rN1 (t)
...

rNn (t)

 =

 µ1 + σ1ε1
...

µn + σnεn

 = µ̃+ σε̃. (5)

Our basic approach is to use model to approximate the portfolio
return loss probability, and then apply it to obtain importance
resampling distribution for variance reduction.
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We are interested in the event
AN (t) = {r̃N (t) : f(RN (t)) = w̃′(t)r̃N (t)− rNp > 0}. Note that
we can rewrite

f(RN (t)) = w̃′(t)r̃N (t)− rNp = σ̃
′
wε̃+ w̃′(t)µ̃− rNp (6)

d
= KZ + w̃′(t)µ̃− rNp , (7)

where σ̃w = w̃′(t)σ = (w1(t)σ1, w2(t)σ2, . . . , wn(t)σn)
′,

K =
√
σ̃′wΣσ̃w, Z is a normal distribution with mean 0 and

variance 1, rNp (rNp = Kzp + w̃′(t)µ̃) is the quantile of the portfolio

return with a multivariate normal assumption,
d
= means equal in

distribution, and zp is the quantile of the standard normal density.

VaR



Value-at-Risk (VaR)
Literature

Model
Linear Portfolio

Nonlinear portfolio
Simulation results

Risk factors with a multivariate normal distribution
Risk factors with a multivariate t distribution

By using the Cholesky decomposition for Σ, we have

f(RN (t)) = w̃′(t)r̃N (t)− rNp
d
= σ̃′wCZ̃ + w̃′(t)µ̃− rNp (8)

d
= DZ + w̃′(t)µ̃− rNp , (9)

where C = [cij ] is used by Cholesky decomposition for Σ, and

D =
√∑n

j=1(
∑n

i=1wi(t)σicij)
2 = K.
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Glasserman et al. (1999a) describes how to select the tilting
measure in risk factors. Standard exponential embedding leads to

dPθ
ãN

dP
= exp{θf(RN (t))− ψN (θ)}, (10)

where dP is the original probability measure, and dPθ
ãN (θ)

is the

tilting measure from the multivariate normal distribution MN(0̃, I)
to the multivariate normal distribution MN(ãN (θ), I). Here

ψN (θ) = logE(exp{θf(RN (t))}) = θ(w̃′(t)µ̃− rNp ) +
1

2
θ2K2.

(11)
Let ANθ (t) = {r̃Nθ (t) : f(RNθ (t)) = w̃′(t)r̃Nθ (t)− rNp > 0} be the
event to be simulated.
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Denote

p̂N (θ) = 1ANθ (t) exp{−θf(RNθ (t)) + ψN (θ)}, (12)

and let r̃Nθ (t) be drawn from the tilting measure Pθ
ãN (θ)

, then the

estimator 1AN (t) is unbiased. That is,

E(1AN (t)) = Eθ(1ANθ (t) exp{−θf(RNθ (t))+ψN (θ)}) = Eθ(p̂N (θ)) = p.
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Therefore, we only compute the second moment of the estimator
for the tail probability

MN
2 (θ) = Eθ(1ANθ (t) exp{2ψN (θ)− 2θf(RNθ (t))})

= exp{ψN (θ)− θw̃′(t)µ̃+ θrNp +
1

2
θ2K2}

∫ ∞

λ1

φ(z)dz,(13)

where λ1 = θK + (rNp − w̃′(t)µ̃)/K, and φ(z) is the standard
normal density.
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Since it is difficult to find the value of θ by minimizing MN
2 (θ), we

will minimize its upper bound (cf. Glasserman et al., 1999a) as
follows,

MN
2 (θ) = Eθ(1ANθ (t) exp{2ψN (θ)− 2θf(RNθ (t))})

≤ exp{ψN (θ)}, (14)

because exp{−θf(RNθ (t))} ≤ 1 (∵ f(r̃Nθ (t)) > 0 and θ > 0), and
1ANθ (t) ≤ 1. Taking log of the bound equation (14) and
differentiating θ we have

θNg =
rNp − w̃′(t)µ̃

K2
. (15)
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We can also find the new upper bound of the second moment for
the estimate of the tail probability by using the inequality (Durrett,
1995), the Laplace method,∫ ∞

λ
exp{−z2}dz ≤ λ−1 exp{−λ2/2}. (16)

Compute the new second moment upper bound,

MN
2 (θ) = Eθ(1ANθ (t) exp{2ψN (θ)− 2θf(R(t))})

≤ exp{ψN (θ)− 1

2
(
rNp − w̃′(t)µ̃

K
)2} 1√

2π

K

rNp − w̃′(t)µ̃+ θK2
.(17)

VaR



Value-at-Risk (VaR)
Literature

Model
Linear Portfolio

Nonlinear portfolio
Simulation results

Risk factors with a multivariate normal distribution
Risk factors with a multivariate t distribution

Then, taking the new bound equation (17) into log and
differentiating θ, we obtain the solution of θNl for the second
moment of tail probability by the inequality (Durrect, 1995) in the
multivariate normal distribution,

θNl =

√
K2 + (rNp − w̃′(t)µ̃)2

K4
. (18)
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Risk factors with a multivariate t distribution

Although the multivariate normal distribution assumption is
commonly used in the literature, many empirical studies
suggest that the distribution has heavy tails. One of the most
pervasive features observed across equity, foreign exchange,
and interest rate markets is that they have kurtosis excess, so
the distribution of the asset has leptokurtic features.

The similar process compute the tilting point θ.
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θTg =
rTp − w̃

′
(t)µ̃

K2
, (19)

and

θTl =
(rTp − w̃′(t)µ̃) +

√
(rTp − w̃′(t)µ̃)2(ν2 + ν + 1) +K2ν2

(ν + 1)K2
.

(20)

Compared with (15), (19) is the tilting formula for the
multivariate t distribution. The formulations of (15) and (19)
are quite similar, but with different rip, i = N,T . Note that as

ν tends to infinity, rTp converges to rNp and the tilting points
are the same. By using the same argument, it is easy to see
that (18) will converge to (20), as ν tends to infinity.
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Quadratic Approximation

By the delta-gamma approximation (quadratic
approximation), the change in portfolio value for the nonlinear
portfolio can be written as

V (t + 1, S̃(t + 1))− V (t, S̃(t)) ≈ ∂V

∂t
∆t + δ′∆S̃(t) +

1

2
∆S̃(t)′Γ∆S̃(t),

where ∂V
∂t is the change of the portfolio from t to t+ 1,

δi = ∂V
∂Si

denotes the delta approximation of the portfolio for
the asset i, δ′ = [δ1, . . . , δn] is the vector of the delta

approximation, Γij = ∂2

∂Si∂Sj
is the gamma approximation of

the portfolio for the asset i and asset j, Γ is the matrix of the
gamma approximation, and ∆S̃(t)′ = [∆S1(t), . . . ,∆Sn(t)]
denotes the change of the assets.

VaR



Value-at-Risk (VaR)
Literature

Model
Linear Portfolio

Nonlinear portfolio
Simulation results

Risk factors with a multivariate t distribution

The loss in portfolio, L, can be rewritten as

L ≈ a0 + a′∆S̃(t) + (∆S̃(t))′A∆S̃(t)

= a0 + a′1r̃ + r̃′A1r̃,

where a0 = ∂V
∂t ∆t is a scalar, a = −δ, A = −1

2Γ is a m×m
matrix, a′1 = [−S1δ1, . . . ,−Snδn], (A1)ij = −1

2ΓijSiSj , and

r̃′ = [∆S1(t)
S1(t)

, . . . , ∆Sn(t)
Sn(t) ] denotes the vector of the discrete

returns in the assets.
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Risk factors with a multivariate t distribution

Assume the return of the assets is equal to the mean ũ, and a
multivariate t distribution with the degree of freedom v as follows:

r̃ = ũ+ tv,

where tv = (ε1,ε2,...,εn)√
Y/v

= ε̃√
Y/v

has a multivariate t distribution

with the degree of freedom v, ε̃ = (ε1, ε2, . . . , εn) denotes a
multivariate normal distribution with zero mean vector and
covariance matrix Σ.
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Let CC ′ = Σ, and C ′A1C = Λ. Then

L = a0 + a′1r̃ + r̃′A1r̃

= b0 + a′1tv + (tv)
′A1(tv)

where b0 = a0 + a′1ũ+ ũ′A1ũ. Thus, let Q ≡ L− b0, then

Q = a′1tv + (tv)
′A1(tv)

d
= a′1CX +X ′C ′A1CX

= b′X +X ′ΛX =
n∑
j=1

bjXj + λjX
2
j (21)

where b′ = a′1C. Let tv
d
= CX = C Z̃√

Y/v
, where Z̃ has a

multivariate normal distribution with zero mean vector and identity
covariance matrix I, and

X = (X1, . . . , Xn) =
Z̃√
Y/v

,

where Xj =
Z̃j√
Y/v

are independent.
VaR



Value-at-Risk (VaR)
Literature

Model
Linear Portfolio

Nonlinear portfolio
Simulation results

Risk factors with a multivariate t distribution

The probability of the loss can be rewritten

P (L > l1−p) = p = P (b0 +Q > l1−p)

= P (Yv (Q− x) > 0)

= P (Qx > 0),

where x = l1−p − b0 and Qx = Y
v (Q− x).

Then, use the exponential change of measure (Glasserman et al.,
2000 and 2002)

dQ
dP

= exp{θQx − ψ(θ)}, (22)

where ψ(θ) = logE(exp(θQx)).
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In Glasserman et al. (2002), they obtain the moment generating
function of Qx as follows:

φ(θ) =

1 +
2θx

v
−

n∑
j=1

θ2b2j
(1− 2θλj)v

− v
2 n∏
j=1

1√
1− 2θλj

, (23)

and

ψ(θ) = log φ(θ) = −v
2 log

(
1 + 2θx

v −
∑n

j=1

θ2b2j
(1−2θλj)v

)
+

∑n
j=1 log 1√

1−2θλj
.

(24)

VaR



Value-at-Risk (VaR)
Literature

Model
Linear Portfolio

Nonlinear portfolio
Simulation results

Risk factors with a multivariate t distribution

Let Aθ(t) = {r̃θ(t) : Qx > 0} be the event of interest to be
simulated for the tail probability, and let the estimator of the tail
probability be

p̂ = e−θQx+ψ(θ)1{Qx>0}.

The estimator p̂ is unbiased in the sense that

Eθ(p̂) = E(1{Qx>0})

= P (Qx > 0) = p.
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We use the Laplace method to find the new upper bound of
the second moment.

Eθ(p̂2) ≤
∫ ∞

−∞
exp

{
yxθ

v
+ ψ(θ) +

b21θ
2y

2(1 + 2λ1θ)v

}
1√

1 + 2λ1θ

 1
√

2π(h1(θ)
√
y
v

)

exp

{
−

(h1(θ))2 y
v

2

}
+

1
√

2π(h2(θ)
√
y
v

)
exp

{
−

(h1(θ))2 y
v

2

} 1

Γ( v
2

)βv/2
y
v
2
−1

exp
{
− y

2

}
dy

=
√
v exp{ψ(θ)}√

1+2λ1θ
√

2πh1(θ)

∫ ∞

−∞

1

Γ( v
2

)βv/2
y

( v−1
2
−1)

exp

{
−(

1

2
+
h1(θ)2

2v
−
θx

v
−

b21θ
2

2(1 + 2λ1θ)v
)y

}
dy

+
√
v exp{ψ(θ)}√

1+2λ1θ
√

2πh2(θ)

∫ ∞

−∞

1

Γ( v
2

)βv/2
y

( v−1
2
−1)

exp

{
−(

1

2
+
h2(θ)2

2v
−
θx

v
−

b21θ
2

2(1 + 2λ1θ)v
)y

}
dy

= I1(θ) + I2(θ),
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where

I1(θ) =
√
v exp{ψ(θ)}√

1+2λ1θ
√

2πh1(θ)∫ ∞

−∞

1

Γ( v
2

)βv/2
y

( v−1
2
−1)

exp

{
−(

1

2
+
h1(θ)2

2v
−
θx

v
−

b21θ
2

2(1 + 2λ1θ)v
)y

}
dy,

I2(θ) =
√
v exp{ψ(θ)}√

1+2λ1θ
√

2πh2(θ)∫ ∞

−∞

1

Γ( v
2

)βv/2
y

( v−1
2
−1)

exp

{
−(

1

2
+
h2(θ)2

2v
−
θx

v
−

b21θ
2

2(1 + 2λ1θ)v
)y

}
dy,

β1(θ) = 1

1
2

+
h1(θ)2

2v
− θx
v
−

b2
1
θ2

2(1+2λ1θ)v

,

β2(θ) = 1

1
2

+
h2(θ)2

2v
− θx
v
−

b2
1
θ2

2(1+2λ1θ)v

.
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Rewrite I1(θ) and I2(θ)

I1(θ) =

√
v exp{ψ(θ)}Γ( v−1

2
)β1(θ)

v−1
2

√
1+2λ1θ

√
2πh1(θ)Γ( v

2
)βv/2

∫ ∞

−∞

1

Γ( v−1
2

)β1(θ)
v−1

2

y
( v−1

2
−1)

exp{−
y

β1(θ)
}dy

=

√
v exp{ψ(θ)}Γ( v−1

2
)β1(θ)

v−1
2

√
1+2λ1θ

√
2πh1(θ)Γ( v

2
)βv/2

,

I2(θ) =

√
v exp{ψ(θ)}Γ( v−1

2
)β2(θ)

v−1
2

√
1+2λ1θ

√
2πh2(θ)Γ( v

2
)βv/2

∫ ∞

−∞

1

Γ( v−1
2

)β2(θ)
v−1

2

y
( v−1

2
−1)

exp{−
y

β2(θ)
}dy

=

√
v exp{ψ(θ)}Γ( v−1

2
)β2(θ)

v−1
2

√
1+2λ1θ

√
2πh2(θ)Γ( v

2
)βv/2

.
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Quantile estimation

Under the titling measure Pθ, the order of the portfolio return is

(R∗
(1), . . . , R

∗
(T )), (25)

where R∗
(1), . . . , R

∗
(T ) are the order statistics of the sample

{R∗
1, . . . , R

∗
T }. Therefore, an estimate of the quantile R∗

1−p for the
portfolio return is

R∗
(1−p) := (1− s)R∗

(j) + sR∗
(j+1). (26)

where j is defined by

1

N

j∑
k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ(R∗
(k))

< 1− p, (27)

1

N

j+1∑
k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ(R∗
(k))

> 1− p, (28)
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and s is defined by

s = (1− p− 1

N

j∑
k=1

1{R(k)<rp}
dP(R∗

(k))

dPθ(R∗
(k))

)
dPθ(R∗

(j+1))

dP(R∗
(j+1))

.

The asymptotic properties of the unbiased estimator for order
statistics guarantee that as n→∞

√
n(r̂p − rp) → N(0,

p(1− p)

f2(rp)
),

where f = F ′ exists and is continuous at rp. (cf. Hall, 1990,
Johns, 1988, and Goffinet and Wallach, 1996). The decrease in
variance of the classical estimator in place of the importance
sampling estimator of the quantile will be the same as for p.
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Consider parameters µ1 = 0.01, µ2 = 0.05, σ1 = 0.2, σ2 = 0.8,
ρ12 = 0.3, ν = 5, sample size T = 500 and Monte Carlo replication
M = 10, 000. For simplicity, we set wi(t) = 1 for all i and t. Table
1 reports the relative efficiency of quantile using naive Monte Carlo
simulations and importance sampling for a multivariate normal
distribution. The relative efficiency of the quantile estimation r̂p(θ)
relative to the quantile estimation r̂p is defined (cf. Hall (1991)) by

eff(r̂p(θ), r̂p) =
V ar(r̂p)

V ar(r̂p(θ))
, (29)

where V ar(r̂p(θ)) is the variance of the quantile estimator r̂p(θ)
with the parameter θ of importance sampling.
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Table 1: The relative efficiency of the quantile estimation for a multivariate
normal distribution in Monte Carlo simulation

rNp 0.5219 0.8013 1.1889 1.5091 2.1093 2.7822
p 0.3000 0.2000 0.1000 0.0500 0.0100 0.0010

r̂Np 0.5150 0.7979 1.1727 1.4827 2.0739 2.4659

ŝeNp 5.19E-02 5.57E-02 6.68E-02 8.14E-02 0.1404 0.2257
r̂Np (θNg ) 0.5227 0.8012 1.1884 1.5092 2.1090 2.7822

ŝeNp (θNg ) 3.93E-02 3.95E-02 3.98E-02 3.96E-02 3.95E-02 3.97E-02
eff(r̂Np (θNg ), r̂Np ) 1.7439 1.9879 2.8208 4.2291 12.6258 32.2879
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Table 2: The relative efficiency of the quantile estimation for a multivariate t
distribution in Monte Carlo simulation

rTp 0.5527 0.8698 1.3590 1.8350 3.0235 5.2450
p 0.3000 0.2000 0.1000 0.0500 0.0100 0.0010

r̂Tp 0.5449 0.8655 1.3392 1.7968 2.9527 4.1251

ŝeTp 5.75E-02 5.46E-02 9.17E-02 0.1320 0.3367 0.8190
r̂Tp (θTg ) 0.5533 0.8702 1.3594 1.8355 3.0228 5.2454

ŝeTp (θTg ) 5.26E-02 5.46E-02 6.16E-02 6.83E-02 9.27E-02 0.1434
eff(r̂Tp (θTg ), r̂Tp ) 1.1956 1.4591 2.2208 3.7381 13.1855 32.5792
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Table 3: Quadratic approximation function compared with the GHS
method.

The parameters are ν = 5, k = 0, b = −1, λ = 0.5, T = 500, and
M = 10000.

x = 1 x = 2 x = 3 x = 5
true P(A) 2.69E-01 1.47E-01 8.78E-02 3.80E-02

naive 2.69E-01 1.47E-01 8.77E-02 3.80E-02
variance 3.94E-04 2.52E-04 1.62E-04 7.30E-05
I.S. p̂ 2.69E-01 1.47E-01 8.78E-02 3.80E-02

variance 2.24E-04 9.70E-05 4.26E-05 9.85E-06
θ 4.56E-01 5.30E-01 5.83E-01 6.48E-01

GHS p̂ 2.69E-01 1.47E-01 8.78E-02 3.80E-02
variance 2.56E-04 1.04E-04 4.33E-05 9.92E-06

θ 2.16E-01 4.08E-01 5.00E-01 5.93E-01
relative efficiency 1.14 1.07 1.02 1.01
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Table 4: Quadratic approximation function compared with the GHS
method.

The parameters are
ν = 5, k = 0, b1 = 0, b2 = −1.183, λ1 = 0.247, λ2 = 0.147, T = 500,

and M = 10000.

x = 1 x = 2 x = 3 x = 5
true P(A) 3.16E-01 1.56E-01 8.06E-02 2.71E-02
naive p̂ 3.16E-01 1.56E-01 8.05E-02 2.70E-02
variance 4.22E-04 2.69E-04 1.48E-04 5.26E-05
I.S. p̂ 3.16E-01 1.56E-01 8.06E-02 2.70E-02

variance 2.06E-04 7.38E-05 2.48E-05 3.49E-06
θ 5.47E-01 8.94E-01 1.14E+00 1.37E+00

GHS p̂ 3.16E-01 1.56E-01 8.07E-02 2.70E-02
variance 2.49E-04 7.91E-05 2.53E-05 3.51E-06

θ 3.11E-01 6.48E-01 8.64E-01 1.12E+00
relative efficiency 1.21 1.07 1.02 1.00
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Empirical study

We also analyze option returns from Ivy DB OptionMetrics,
including the call option returns of “MICROSOFT CORP(MSFT)”,
put option returns of “AT& T(T)”, and call option returns of
“LUCENT TECHNOLOGIES INC(LU)”. The sample period is
drawn from January 2, 2004, to January 21, 2005, and includes
266 observations. All excise dates are the same on January 22,
2005. We assume the returns follow a multivariate t distribution
with the degree of freedom ν = 6 and use the quadratic
approximation method with standard sensitivities (delta, gamma).
Hence the event Q(RT (t)) > 0 can be computed in equation,
given the estimate and standard error of the tail probability
p = 0.05, and the bootstrap algorithm with importance resampling
for replications B = 200, the VaR are 0.1528 and 3.87E−03.
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Table 5: The statistics of “MSFT(call)”, “T(put)” and “LU(call)”

Company Mean Standard Deviation Skewness Kurtosis

MSFT(call) -0.0264% 2.7943% -1.3797 5.9770
T(put) -0.0980% 2.9305% 1.8324 6.1437
LU(call) 0.1333% 7.0605% 0.7929 6.0522
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Further work

This paper considered the situation in which the change in
risk factors has a multivariate t distribution. A possible
shortcoming is that they require all Xi to share a parameter ν
and thus have equally heavy tails. We can extend the model
to allow multiple degrees of freedom and use a copula to
do it (cf. Nelson, 1999 and Embrechts, 1999), but leave this
for further studies.

we can also change our model to the multivariate jump
diffusion model or others to capture the heavy tails.

Consider the nonparametric bootstrap method with
importance resampling to evaluate VaR.
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