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Problem Statement

In real world, we have many data analysis involve estimation
unknown quantities from some given observations.

In state-space model, if joins new other to be possible to
obtain the information whether can be helpful to its
estimation both on unobservable state variables and unknown
parameters in the model.
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In intuition, we join to have the correlation the recent information
are helpful to the model estimate. For instance, in finance model,
the REE (Rational Expectations Equilibrium Models) that use the
market price and individual private information extrapolated other
people’s private information to get the equilibrium price. Although
this model has in some logical questions, but this also provides
everybody a very interesting direction to guess the equilibrium
price.
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Related literature

There are two kinds of literature for estimation of the state
space model in financial model. One kind is modelling stock
price and volatility to financial market. The other kind is
involving option price or others derivatives. The first kind
model is usually estimated by generalized method of moments
(GMM) or Markov Chain Monte Carlo (MCMC) methods.

Hansen and Scheinkman (1995) show in an important paper
how to apply the GMM approach in such situations. They
derive moment restrictions in continuous-time models with
discretely sampled data. Their paper is quite technical and is
difficult to apply when there are unobserved state variables,
such as stochastic volatility, for example.
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Related literature

Pan (2002) provide a “implied-state” generalized method of
moments (IS-GMM) estimation to solve this problem. They
proxy for the unobserved volatility, with an option implied
volatility, inverted from the time-t spot price, and a
near-the-money short-dated option price, using the
model-implied option-pricing formula.

Recently, MCMC methods have been used in the estimation
of continuous time models. Jacquier, Polson, and Rossi
(1994) developed this approach to analyze stochastic volatility
models. Papers by Eraker (1998) and Jones (1998) are
examples of this approach that have recently used this
approach in finance.
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Related literature

Kitagawa (1998), Kitagawa and Sato (2000) use the
self-organising state model to estimate a stochastic volatility
model. They develop a self-organising state model wherein the
state and unknown parameters are estimated simultaneously.

Bhar, Chiarella and Runggaldier (2004) use the forward
contracts and option into the state space model. But, their
model assume the market price of risk replaced by the
volatility. They suggest the Kalman filter to estimate
unobservable market price of risk. Runggaldier (2004) extend
their results to general setting for partial information.
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State Space Model

The general state space form applies to a multivariate time
series, yt, containing N elements.

In general the elements of αt(state variables) are not
observable. They are known to be generated by a first-order
Markov process, transition equation

αt = Ttαt−1 + ct + Rtηt, t = 1, . . . , T

where Tt is an m×m matrix, ct is an m× 1 vector, Rt is an
m× g matrix and ηt is a g × 1 vector of serially uncorrelated
disturbances with mean zero and covariance matrix Qt,

E(ηt) = 0, V ar(ηt) = Qt.
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State Space Model

The observable variables are related to an m× 1 state vector,
αt, via a measurement equation

yt = Ztαt + dt + εt, t = 1, . . . , T

where Zt is an N ×m matrix, dt ia an N × 1 vector and εt is
an N × 1 vector of serially uncorrelated disturbances with
mean zero and covariance matrix Ht,

E(εt) = 0, V ar(εt) = Ht.
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Example(Heston model (1993))

The process for the stock price S will become

dSt = (rt − qt + ηSVt)Stdt +
√

VtStdW
(1)
t

dVt = κv(v̄ − Vt)dt + σv

√
Vt(ρdW

(1)
t +

√
1− ρ2dW

(2)
t ).

(1)
This is a stochastic volatility model. Under Q measure is

dSt = (rt − qt)Stdt +
√

VtStdW
(1)
t (Q)

dVt = κv(v̄ − Vt + ηvVt)dt + σv

√
Vt(ρdW

(1)
t (Q)

+
√

1− ρ2dW
(2)
t (Q)).
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For simplify, ρ = 1, we will use the new notation for stochastic
volatility model

dSt = µtStdt +
√

VtStdBt

dVt = κv(v̄ − Vt)dt + σv

√
VtdBt

under P measure and

dSt = (rt − qt)Stdt +
√

VtStdBQ
t

dVt = κ∗
v(v̄

∗ − Vt)dt + σv

√
VtdBQ

t

under Q measure, where dBQ
t = dBt + λtdt and λt is referred to

market price of risk.

SSM



Problem Statement
Filter Methods

Simulation Results
Summary

Therefore, √
VtStλt = (µt + qt − rt)St,

λt =
µt + qt − rt√

Vt
.
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Filter Methods

Kalman Filter

Particle Filter
(closely related names are bootstrap filters, Monte Carlo
filters, et al.)
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State Space Model

If data are modelled by a linear Gaussian state-space model, it
is possible to derive an exact analytical expression to compute
the evolving sequence of posterior distribution.

The Kalman filter is a recursive procedure for computing the
optimal estimator of the state vector at time t, based on the
information available at time t.

The optimal estimator of αt in the sense that it is minimises
the mean square error(MSE).
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State Space Model

dS = µSdt +
√

V SdB
dC = (r + λσC)Cdt + σCCdB

dV = κ(v̄ − V )dt + b
√

V dB

(2)

where state variables X = [S, C, V ]′ and

Xk = ak + TkXk−1 + Rkηk

where

ak =

 0
0

κv̄∆t

 , Tk =

 1 + (r − q + λk−1σ)∆t 0 0
0 1 + (r + λk−1σC)∆t 0
0 0 1 − κ∆t
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State Space Model

where η is a random variable with E(ηk) = 0, V ar(ηk) = ∆t. The
observation equation is

Yk = ZXk + εk

where

Z =
[

1 0 0
0 1 0

]
where ε is a random variable with E(εk) = 0, V ar(εk) = H. The
case without including C is

Z =
[

1 0 0
0 0 0

]
.
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Kalman Filter

Xt|t−1 = TtXt−1 + at

Pt|t−1 = TtPt−1T
′
t + RtQR′

t t = 1, 2, . . . , n

Xt = Xt|t−1 + Pt|t−1Z
′F−1

t (Yt − ZXt|t−1)
Pt = Pt|t−1 − Pt|t−1Z

′F−1
t ZPt|t−1

Ft = ZPt|t−1Z
′ + H.

The log likelihood function is

log L = −mn
2 log(2π)− 1

2

∑n
t=1 log |Ft|

−1
2

∑n
t=1(Yt − ZXt|t−1)′F

−1
t (Yt − ZXt|t−1).
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Particle Filter

The key idea of the bootstrap filter is to eliminate the

particles having low importance weight w̃
(i)
t and to multiply

particles having high importance weight (Gordon et al. 1993).

The unobserved signal (hidden states) {xt; t ∈ N} is modelled
as a Markov process of initial distribution p(x0) and transition
equation p(xt|xt−1). The observations {yt; t ∈ N∗} are
assumed to be conditionally independent given the process
{xt; t ∈ N} and of marginal distribution p(yt|xt).

p(x0)
p(xt|xt−1) for t ≥ 1
p(yt|xt) for t ≥ 1

Denote x0:t ≡ {x0, . . . , xt} and y1:t ≡ {y1, . . . , yt}.
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Particle Filter

1 Initialisation, t=0.

For i = 1, . . . N , sample x
(i)
0 ∼ p(x0) and set t = 1.

2 Importance sampling step

For i = 1, . . . N , sample x̃
(i)
t ∼ p(xt|x(i)

t−1) and set

x̃
(i)
0:t = (x̃(i)

0:t−1, x̃
(i)
t ).

For i = 1, . . . N , evaluate the importance weights

w̃
(i)
t = p(yt|x̃(i)

t ).

Normalise weights.

3 Selection step

Resample with replacement N particles (x(i)
0:t; i = 1, . . . , N)

from set (x̃(i)
0:t; i = 1, . . . , N) by importance weights.

Set t← t + 1 and go to step 2.
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Particle Filter
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Particle Filter
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Particle Filter

Easiest way to approximate the likelihood function at fixed θ from

L(θ|y1:T ) = p(y1:T |θ) =
T∏

t=1

p(yt|y1:t−1, θ)

=
T∏

t=1

∫
p(yt|xt, η)p(xt|y1:t−1, θ)dxt

=
T∏

t=1

E[p(yt|xt, η)|y1:t−1, θ]

≈
T∏

t=1

1
N

N∑
j=1

p(yt|x(j)
pr,t, η)

where x
(j)
pr,t ∼ p(xt|x(j)

t−1, θ)dxt. Approximate

log L(θ|y1:T ) + T log N ≈
T∑

t=1

log(
N∑

j=1

p(yt|x(j)
pr,t, η)).
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We compare the estimation of state variable volatility under controlling single parameter changed. The Monte
Carlo size is 10000. If

H =

(
1 0
0 0.09

)
.

Kalman Filter

v̄ is known v̄ is unknown

no include C include C no include C include C

state variable state variable state variable |ˆ̄v − v̄| state variable |ˆ̄v − v̄|
v̄ = 0.1 0.014 0.012 0.027 0.012 0.025 0.009

(0.022) (0.016) (0.037) (0.018) (0.034) (0.015)
v̄ = 0.3 0.031 0.028 0.046 0.021 0.044 0.020

(0.049) (0.041) (0.056) (0.024) (0.054) (0.022)
v̄ = 0.5 0.038 0.034 0.058 0.033 0.053 0.031

(0.051) (0.048) (0.066) (0.046) (0.061) (0.039)

Table: The difference of state variable V and ˆ̄v for included C or no included C case with parameters r = 0.05,
q = 0.01, κ = 5, σ = 0.1, n = 50, ∆t = 1/250.
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Practical Filter

v̄ is known v̄ is unknown

no include C include C no include C include C

state variable state variable state variable |ˆ̄v − v̄| state variable |ˆ̄v − v̄|
v̄ = 0.1 0.014 0.011 0.026 0.012 0.022 0.007

(0.021) (0.013) (0.035) (0.019) (0.031) (0.012)
v̄ = 0.3 0.030 0.025 0.044 0.020 0.040 0.016

(0.044) (0.038) (0.053) (0.022) (0.048) (0.019)
v̄ = 0.5 0.037 0.031 0.057 0.031 0.051 0.029

(0.049) (0.044) (0.061) (0.043) (0.056) (0.038)

Table: The difference of state variable V and ˆ̄v for included C or no included C case with parameters N = 100,
r = 0.05, q = 0.01, κ = 5, σ = 0.1, n = 50, ∆t = 1/250.
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Kalman Filter

κ is known κ is unknown

no include C include C no include C include C

state variable state variable state variable |κ̂ − κ| state variable |κ̂ − κ|
κ = 5 0.012 0.011 0.038 0.852 0.034 0.837

(0.016) (0.014) (0.045) (0.472) (0.041) (0.460)
κ = 10 0.028 0.025 0.061 1.241 0.058 1.127

(0.037) (0.035) (0.108) (0.806) (0.104) (0.798)
κ = 20 0.032 0.031 0.152 2.139 0.146 2.063

(0.055) (0.053) (0.241) (1.493) (0.235) (1.469)

Table: The difference of state variable V and κ̂ for included C or no included C case with parameters r = 0.05,
q = 0.01, v̄ = 0.1, σ = 0.1, n = 50, ∆t = 1/250.
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Practical Filter

κ is known κ is unknown

no include C include C no include C include C

state variable state variable state variable |κ̂ − κ| state variable |κ̂ − κ|
κ = 5 0.012 0.010 0.037 0.838 0.029 0.773

(0.014) (0.011) (0.043) (0.442) (0.034) (0.372)
κ = 10 0.026 0.022 0.059 1.151 0.051 1.062

(0.034) (0.031) (0.101) (0.726) (0.092) (0.685)
κ = 20 0.031 0.026 0.147 1.967 0.124 1.847

(0.052) (0.047) (0.225) (1.235) (0.183) (1.108)

Table: The difference of state variable V and κ̂ for included C or no included C case with parameters N = 100,
r = 0.05, q = 0.01, v̄ = 0.1, σ = 0.1, n = 50, ∆t = 1/250.
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Kalman Filter

σ is known σ is unknown

no include C include C no include C include C

state variable state variable state variable |σ̂ − σ| state variable |σ̂ − σ|
σ = 0.1 0.023 0.021 0.044 0.037 0.040 0.035

(0.028) (0.024) (0.053) (0.034) (0.047) (0.031)
σ = 0.3 0.047 0.045 0.072 0.131 0.068 0.123

(0.056) (0.047) (0.084) (0.075) (0.081) (0.068)
σ = 0.5 0.061 0.057 0.114 0.183 0.107 0.177

(0.059) (0.051) (0.108) (0.093) (0.103) (0.086)

Table: The difference of state variable V and σ̂ for included C or no included C case with parameters r = 0.05,
q = 0.01, v̄ = 0.1, κ = 5, n = 50, ∆t = 1/250.
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Practical Filter

σ is known σ is unknown

no include C include C no include C include C

state variable state variable state variable |σ̂ − σ| state variable |σ̂ − σ|
σ = 0.1 0.021 0.020 0.043 0.035 0.035 0.027

(0.026) (0.023) (0.051) (0.033) (0.042) (0.024)
σ = 0.3 0.043 0.039 0.068 0.128 0.052 0.073

(0.047) (0.043) (0.077) (0.073) (0.067) (0.045)
σ = 0.5 0.058 0.053 0.109 0.179 0.088 0.136

(0.055) (0.046) (0.105) (0.091) (0.072) (0.065)

Table: The difference of state variable V and σ̂ for included C or no included C case with parameters N = 100,
r = 0.05, q = 0.01, v̄ = 0.1, κ = 5, n = 50, ∆t = 1/250.
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If

H =

(
1 0
0 1

)
.

Kalman Filter

v̄ is known v̄ is unknown

no include C include C no include C include C

state variable state variable state variable |ˆ̄v − v̄| state variable |ˆ̄v − v̄|
v̄ = 0.1 0.014 0.016 0.027 0.012 0.029 0.009

(0.022) (0.024) (0.037) (0.018) (0.041) (0.015)
v̄ = 0.3 0.031 0.037 0.046 0.021 0.054 0.024

(0.049) (0.042) (0.056) (0.024) (0.064) (0.028)
v̄ = 0.5 0.038 0.044 0.058 0.033 0.079 0.063

(0.051) (0.058) (0.066) (0.046) (0.071) (0.059)

Table: The difference of state variable V and ˆ̄v for included C or no included C case with parameters r = 0.05,
q = 0.01, κ = 5, σ = 0.1, n = 50, ∆t = 1/250.
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Practical Filter

v̄ is known v̄ is unknown

no include C include C no include C include C

state variable state variable state variable |ˆ̄v − v̄| state variable |ˆ̄v − v̄|
v̄ = 0.1 0.014 0.013 0.026 0.012 0.025 0.008

(0.021) (0.021) (0.035) (0.019) (0.033) (0.015)
v̄ = 0.3 0.030 0.029 0.044 0.020 0.043 0.019

(0.044) (0.041) (0.053) (0.022) (0.049) (0.028)
v̄ = 0.5 0.037 0.032 0.057 0.031 0.054 0.030

(0.049) (0.043) (0.061) (0.043) (0.058) (0.039)

Table: The difference of state variable V and ˆ̄v for included C or no included C case with parameters N = 100,
r = 0.05, q = 0.01, κ = 5, σ = 0.1, n = 50, ∆t = 1/250.
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If ρ = Corr(B1, B2) = 0.3,

v̄ is known v̄ is unknown

no include C include C no include C include C

state variable state variable state variable |ˆ̄v − v̄| state variable |ˆ̄v − v̄|
v̄ = 0.1 0.301 0.312 0.420 0.082 0.411 0.077

(0.217) (0.204) (0.337) (0.091) (0.342) (0.086)
v̄ = 0.3 0.833 0.852 1.031 0.213 1.038 0.234

(0.741) (0.785) (0.856) (0.182) (0.874) (0.248)
v̄ = 0.5 2.331 2.298 3.352 0.425 3.391 0.416

(1.804) (1.716) (1.582) (0.366) (1.616) (0.379)

Table: The difference of state variable V and ˆ̄v for included C or no included C case with parameters r = 0.05,
q = 0.01, κ = 5, σ = 0.1, n = 50, ∆t = 1/250.
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Out-of-sample forecast

From Findley(2005), assume we are interested in h−step
forecasting of time series Yt, 1 ≤ t ≤ n. The out-of-sample h−step
forecast of Yt+h is defined by Yt+h|t. Define the forecast error by
et+h|t = Yt+h − Yt+h|t. The sequence of accumulating sums of
squared out-of-sample forecast errors is

SSh,M =
M∑

t=n0

e2
t+h|t, M = n0, . . . , n− h.
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Out-of-sample forecast

In Figure, we plot a standardized version of the differences

SS
(1)
h,M − SS

(2)
h,M defined by

SS1,2
h,M =

SS
(1)
h,M − SS

(2)
h,M

SS
(2)
h,n−h/n− h− n0

, M = n0, . . . , n− h.
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Out-of-sample forecast

210 220 230 240 250 260 270

-12

-10

-8

-6

-4

-2

50−Step Forcasting

210 220 230 240 250 260 270

-8

-6

-4

-2

2

4

20−Step Forcasting

210 220 230 240 250 260 270

-35

-30

-25

-20

-15

-10

-5

1−Step Forcasting

SSM



Problem Statement
Filter Methods

Simulation Results
Summary

Summary

Remark: From the Tables, we can observe some interest
phenomenon about state variable estimation and parameter
estimation. We summary the results as follows:

The correlation between new information and state variable is
very important for estimation. More higher correlation, the
estimation will be improved more.

The quality of new information is a key for state variable
estimation. Here, we say that the quality is high, it means
smaller the measurement error than original data.
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The state variable estimation is more sensitive than the
parameter estimation. Because the parameter estimation can
be improved by including the other new information.

The non-linearity problem will reduce the new information
effect, especially in unknown state estimation.

We conclude the observations that the useful new information is
both high correlation and high quality for original data.
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