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Abstract

Most derivatives do not have simple valuation formulas and must be priced

by numerical methods. However, the distribution error and the nonlinearity

error introduced by many numerical methods make the pricing results converge

slowly or even oscillate significantly. This paper introduces a novel tree model,

the bino-trinomial tree (BTT) model, for pricing a wide range of derivatives.

The BTT reduces the nonlinearity error sharply by adjusting its structure to

suit the derivative’s specification; consequently, the pricing results converge

smoothly and quickly. As an added benefit, pricing of some European-style

options on the BTT can be made extremely efficient by combinatorial tools,

which is not possible with most traditional tree models. Therefore, the BTT

can efficiently reduce the distribution error by picking a large number of time

steps. Besides, our approach can be easily adapted for nonstandard payoff func-

tions unlike analytical formulas because the tree construction is independent

of the payoff function. This paper uses vanilla options, single-barrier options,

and double-barrier options to demonstrate the effectiveness of the BTT. Ex-

tensive numerical experiments are given to show the superiority of the BTT to

other popular models, including the adaptive mesh model. For example, the

BTT outperforms other methods in solving the notorious “barrier-too-close”

problem.
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1 Introduction

A financial derivative is a financial instrument whose payoff is based on other more

elementary financial “assets,” such as stocks, indexes, currencies, commodities, bonds,

mortgages, other derivatives, temperatures, and countless others. The elementary

financial instrument in this paper is assumed to be stock for convenience. With the

rapid growth of financial markets, more sophisticated derivatives are constantly being

structured by financial institutions to satisfy the needs of their clients.

Although financial innovations make the markets more efficient, they also give

rise to problems in pricing because only a small subset of financial derivatives can

be priced by exact yet simple analytical formulas. Although approximation formulas

may exist for other derivatives, these formulas may potentially lead to large pricing

errors. Those derivatives that can not be valued accurately by analytical formulas

must be priced by numerical methods such as tree models. Take the barrier option for

example. A barrier option is an option whose payoff depends on whether the stock’s

price path ever touches certain price levels called the barriers. Exact yet simple

analytical formulas for single-barrier options exist only when their payoff functions

take certain forms (see Merton (1973) and Reiner and Rubinstein (1991)). For double-

barrier options, no simple, exact closed-form pricing formula is available. The value of

the double-barrier option can be expressed as an infinite series of cumulative normal

distributions. Analytical approximation formulas for the infinite series have been

studied by Kunitomo and Ikeda (1992), German and Yor (1996), Bhagavatula and

Carr (1997), Sidenius (1998), and Luo (2001). Truncation of this infinite series is

necessary in practice, but it can lead to large pricing errors (see Luo (2001)). Besides,

these analytical formulas can not be easily adapted for nonstandard payoff functions.

A tree model is a popular numerical method for pricing options. This approach

is flexible in that an option can be priced with only nominal changes even when its

payoff function is nonstandard, such as power options, for which there may not be

closed-form formulas. A tree divides the time span from now to the option’s maturity

date into n time steps and specifies the stock price discretely at each time step. The
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well-known CRR tree model of Cox, Ross and Rubinstein (1979) is a good example. A

simple 3-time-step CRR tree is illustrated in Fig. 1. The stock price of the root node

of the CRR tree is S0. From an arbitrary node with stock price S, the stock price

after one time step equals Su (the up move) with probability p and Sd (the down

move) with probability 1 − p, where d < u and ud = 1. The option values priced by

tree models converge to the theoretical option value under the continuous-time model

as n → ∞ (see Duffie (1996)). Unfortunately, the convergence may not be smooth

or fast. Worse, for some options like barrier options, the convergence can oscillate

significantly (see Boyle and Lau (1994)). As a result, large amounts of computational

time may be required to achieve acceptable accuracy.

Figlewski and Gao (1999) identify two types of errors, the distribution error and

the nonlinearity error, when pricing with discrete-time, discrete-state tree models.

The distribution error refers to the error introduced by approximating the continuous

lognormal distribution of the stock price with a discrete probability distribution. The

nonlinearity error is introduced by the nonlinearity of the option value function. Look

at the CRR tree in Fig. 1 again. This 3-time step tree approximates the stock price

at the maturity date with the following discrete random variable S :

S =

⎧⎨
⎩ S0u

id3−i, with probability (3
i )p

i(1 − p)3−i, i = 0, 1, 2, 3,

otherwise, with probability 0.

By construction, the random variable S and the stock price at the maturity date

have the same mean and variance, but the discrepancy between these two distributions

produces distribution error in the option value. The distribution error converges to

zero as n → ∞, however.

Recall that the nonlinearity error is introduced by the nonlinearity of the option

value function. Consider the pricing of a single-barrier option with barrier L. The

payoff of a barrier option depends on whether the stock price touches the barrier

before the maturity date. Thus the option value function is highly nonlinear along

the barrier. We demonstrate why price oscillations occur with the CRR trees with

Fig. 2. In the 2-time-step tree of panel (a), the stock price does not hit barrier L

exactly. Instead, a close price on the tree like L1 acts as the barrier. We call L1 the
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effective barrier. Similarly, in the 3-time-step tree of panel (b), the effective barrier

is changed to, say, L2. Price oscillations occur because the effective barrier fluctuates

with the number of time steps, n.

The oscillation phenomenon for pricing vanilla options by the tree model has

been studied by Omberg (1987). To suppress price oscillations, the tree model can

be structured differently to reduce the nonlinearity error. Klassen (2001) reduces

the nonlinearity error by tuning the structure of the tree so that the middle node

of his tree hits the exercise price at the maturity date. Figlewski and Gao (1999)

propose the adaptive mesh model (AMM) to solve this problem. This tree model can

be roughly viewed as a combination of two types of trinomial trees: the base tree

and the finer one(s). The resolution of the base tree is low for efficiency concerns.

The finer trees have higher resolution and are built on only part of the base tree

where the nonlinearity error can be significantly reduced. Take Fig. 3 for example.

The resolution of the AMM is high near the exercise price at the maturity date.

This is because the payoff function of a vanilla option is highly nonlinear near the

exercise price. Although the AMM approach is efficient and fast convergent, it has a

complicated structure, which makes it hard to implement and still harder to tailor to

different derivatives.

Barrier option pricing on a CRR tree oscillates significantly because of the nonlin-

earity error. To handle this problem, Boyle and Lau (1994) propose using only those

n for which the CRR tree has a layer that is very close to the barrier. This method

reduces the oscillations dramatically, but raising n according to the regime sanctioned

by Boyle and Lau (1994) may not necessarily produce more accurate results accord-

ing to Ritchken (1995). Their method can not be easily adapted to handle multiple

barriers, either. This is because it is impossible to pick an n that will tailor to more

than one barrier. Derman et al. (1995) calculate the value for each hallow node (in

panel (b) of Fig. 2) by adopting L2 (equivalent to moving the barrier L outward) and

L′ (equivalent to moving the barrier L inward) as effective barriers, respectively. The

value for each hollow node is then obtained by interpolating the two values mentioned

above. Hull (2000) calls L′ and L2 the inner barrier and the outer barrier.
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Ritchken (1995) proposes a trinomial tree model to alleviate the oscillation prob-

lem. With a stretch parameter to tune the structure of the tree, one layer of the tree

can be made to coincide with the barrier. When pricing double-barrier options, two

separate stretch parameters are required to make two different layers of the tree co-

incide with the two barriers. The branching probabilities of Ritchken’s trinomial tree

model can be made valid (i.e., between 0 and 1) by raising n if necessary. The value

of n can be large when interest rates are high, volatilities are low, or, most seriously,

a barrier is very close to the initial stock price (resulting in the so-called “barrier-too-

close” problem). Ritchken’s algorithm is therefore potentially very costly. Figlewski

and Gao (1999) use the AMM to solve this “barrier-too-close” problem. But no efforts

have been made to extend the AMM to price double-barrier options.

To reduce the nonlinearity error, this paper proposes a simple tree model, the

bino-trinomial tree (BTT), that combines a CRR binomial tree structure and a root

node with a trinomial structure. The construction steps are (1) finding a suitable

length for the time step (∆t) of the CRR tree, (2) properly laying out the CRR

tree, and (3) locating the position of the root node and calculating its branching

probabilities. Let us use the BTT in Fig. 4 to illustrate the ideas. This BTT prices a

double-barrier option with two barriers, L and H, and with time to maturity T . It is

composed of a CRR tree (in shadow) but with the first two time steps removed. To

position this truncated CRR tree properly, we need to fix the underlying grid first.

Note that the width of each cell of the grid equals the length of a time step of the

CRR tree. The ratio of the height and the width of each cell of the grid is a fixed

constant as determined by the CRR structure (it will be detailed later). To reduce

the nonlinearity error, the grid must have two layers that coincide with the barriers

L and H. To realize it, we adjust the width of the cells so the distance between the

two barriers is an integer multiple of the height of a cell. Then we lay out the grid

from the barrier L upward so that barrier H is also on a layer of the grid. The length

of the first time step of the BTT, ∆t′, is the remaining amount of time to make the

whole time span T . Nodes A, B, and C are selected from the light gray nodes of

the grid at time ∆t′ to make the branching probabilities from the root node S (i.e.,
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Pu, Pm, and Pd) valid. The truncated CRR tree is finally laid on top of the grid by

growing from nodes A, B, and C.

That a CRR tree constitutes the bulk of the BTT has important consequences.

Pricing of options like barrier options, lookback options, Parisian options, and vanilla

options on the CRR tree can all be sped up by combinatorial techniques (see Lyuu

(1998) and Dai et al. (2006)). These very combinatorial algorithms therefore speed

up pricing on the BTT as well. The running times of all BTT pricing algorithms

described in this paper turn out to be proportional to n, the number of time steps

of the tree. Thus these algorithms are called O(n)-time algorithms. On the other

hand, the running times of other tree approaches are at least proportional to n2/2.

(These tree approaches are called Ω(n2)-time algorithms.) This is because they must

evaluate the option value on each node of a tree during backward induction and the

number of nodes of the tree alone is at least n2/2. Thus, it costs much less time to use

the BTT than other tree models with the same n, which means the BTT can afford

to reduce the distribution error by picking large n. Finally, the trinomial structure

at the root node allows us to calculate both delta and gamma on the BTT essentially

without extra work (see Pelsser and Vorst (1994)).

In this paper, we will use vanilla options, single- and double-barrier options as

examples to show how to sharply reduce the nonlinearity error with the BTT. Specif-

ically for vanilla options, we make a layer of the BTT coincide with the exercise price.

For both single- and double-barrier options, we make each barrier coincide with a layer

of the BTT. Numerical results show that our approach converges more smoothly and

faster than other tree approaches. Most interestingly, the BTT outperforms others

in solving the notorious barrier-too-close problem.

Our paper is organized as follows. The assumptions of the stock price process

and the definitions of vanilla options and barrier options are given in section 2. The

methodology to construct the BTT is given in section 3. We will construct BTTs for

double-barrier options, single-barrier options, and vanilla options. Section 4 details

an efficient O(n)-time algorithm that prices double-barrier options on the CRR tree.

This algorithm is then used to build an O(n)-time algorithm on BTT. Numerical
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results are provided in section 5 to verify the superiority of our methods compared

with many others. Section 6 concludes the paper.

2 Basic Terms and Preliminaries

Let St denote the stock price at time t, where 0 ≤ t ≤ T . St follows the lognormal

diffusion process:

St+dt = St · exp[(r − 0.5σ2) dt + σ dWt], (1)

where Wt is the standard Wiener process, r is the risk-free interest rate per annum,

and σ denotes the volatility of the stock price. We assume that the option initiates

at time 0 (with stock price S0) and matures at time T (with stock price ST ). The

exercise price for this option is denoted by X.

A vanilla option gives its owner the right to buy or sell the stock for the exercise

price and does not have other unusual features. The payoffs of a vanilla call option and

a vanilla put option at time T are max(ST −X, 0) and max(X − ST , 0), respectively.

A barrier option is an option whose payoff depends on whether the stock’s price

path ever touches certain price levels called the barriers. A knock-in barrier option

comes into existence if the stock price touches the barrier(s) before the maturity

date. On the other hand, a knock-out one ceases to exist if the stock price touches

the barrier(s) before the maturity. A single-barrier option is an option with only one

barrier, whereas a double-barrier option is an option with two barriers.

Consider a single-barrier option with barrier L. Assume that L < S0 for conve-

nience. Define Sinf = inf0≤t≤T St. The payoff of a knock-out single-barrier call option

is

Payoff =

⎧⎨
⎩ 0, if Sinf ≤ L,

max(ST − X, 0), otherwise.

Consider a double-barrier option with two barriers L and H. Assume L < S0 < H

for convenience. Define Ssup = sup0≤t≤T St. The payoff of a knock-in double-barrier
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call option is

Payoff =

⎧⎨
⎩ max(ST − X, 0), if Ssup ≥ H or Sinf ≤ L,

0, otherwise.

Finally, the payoff of a knock-out double-barrier call option is

Payoff =

⎧⎨
⎩ 0, if Ssup ≥ H or Sinf ≤ L,

max(ST − X, 0), otherwise.

A tree model divides a certain time interval from time 0 to time T into n time

steps and specifies the stock price discretely at each time step. A tree converges to

the stock price process mentioned in Eq. (1) if the first and second moments of the

stock price process are asymptotically matched at each node of the tree (see Duffie

(1996)). Consider the CRR tree illustrated in Fig. 1. To match the first two moments

of the stock price process, the CRR tree sets u ≡ eσ
√

T/n and d ≡ e−σ
√

T/n. The

probability p is set to (erT/n − d)/(u− d). Note that the stock price S resulting from

j down moves and i − j up moves from time step 0 equals S0u
i−jdj with probability(

i
j

)
pi−j(1 − p)j. This node is at time step i and is denoted as N(i, j) for simplicity.

3 Construction of the BTT

This section shows how to construct BTTs for pricing double-barrier options, single-

barrier options, and vanilla options, in that order as each is a special case of the

predecessor.

Double-Barrier Options

We will be constantly referring to the BTT in Fig. 5. This BTT prices a double-

barrier option with two barriers L and H. The constituent CRR tree is in gray. This

CRR tree is laid on a grid. The first two time steps of the CRR tree are truncated,

and this truncated CRR tree grows from three nodes: A, B, and C at time ∆t′. These

three nodes are connected to node S with stock price S0 at time 0 with branching

probabilities Pu, Pm, and Pd.
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Define the log-price of stock price V ′ as ln(V ′/S0). A log-price of z therefore

implies a stock price of S0e
z. The upward and the downward additive factors of the

log-prices on the CRR tree are σ
√

∆t and −σ
√

∆t, respectively. The intersection

of a vertical line and a horizontal line of the grid defines a vertex. Thus each node

of the CRR tree is on a vertex. The width of a cell (of the grid) equals ∆t, the

length of a time step in the CRR tree. The height of a cell is σ
√

∆t. Note that the

difference between the log-prices of two adjacent nodes like nodes A and B is 2σ
√

∆t.

The log-prices of the two barriers H and L are h ≡ ln(H/S0) and � ≡ ln(L/S0),

respectively.

To price a double-barrier option accurately and efficiently, the BTT should have

the following two features: (1) Two layers of BTT coincide with L and H so that

the nonlinearity error is sharply reduced, and (2) the branching probabilities Pu, Pm,

and Pd are valid (i.e., 0 ≤ Pu, Pm, Pd ≤ 1). We proceed to show how to achieve both

goals.

First, we show how to choose the width of a cell to make the grid hit both H and L.

If the grid has two layers that coincide with H and L, h−�
2σ

√
∆t

should be some integer k.

For example, k = 4 in Fig. 5. Suppose that we want to construct an (approximately)

m-time-step BTT. Ideally, the length of each time step is ∆τ ≡ T/m, but in really

h−�
2σ

√
∆τ

may not be an integer. So instead we pick a ∆t that is close to, but does not

exceed, ∆τ and that makes h−�
2σ

√
∆t

an integer. It is hence natural to pick ∆t =
(

h−�
2κσ

)2
,

where κ =
⌈

h−�
2σ

√
∆τ

⌉
. Lay out the grid from barrier L upward. Automatically, a layer

coincides with barrier H. Note that the number of time steps of the BTT is � T
∆t
�

(instead of m) as the truncated CRR tree has
⌊

T
∆t

⌋− 1 time steps. The length of the

first time step of the BTT, ∆t′, is the remaining amount of time to make the whole

tree span T years:

∆t′ = T −
(⌊

T

∆t

⌋
− 1

)
∆t.

It is easy to verify that ∆t ≤ ∆t′ < 2∆t.

We still need to select nodes A, B, and C among the light gray vertices to make

the branching probabilities from node S valid. These three nodes are then connected

to node S. Three branches are needed to match the first two moments of the loga-
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rithmic stock price process; a binomial branch simply does not have enough degrees

of freedom. The mean and the variance of the log-prices at A, B, and C equal

µ ≡ (r − σ2/2) ∆t′,

Var ≡ σ2∆t′,

respectively. The log-price for each light gray vertex at time ∆t′ is:⎧⎨
⎩ � + 2jσ

√
∆t, if the CRR tree has an even number of time steps,

� + (2j + 1)σ
√

∆t, otherwise,
(2)

for some integer j. As the difference between the log-prices of two adjacent light

gray vertices is 2σ
√

∆t , there must exist a unique vertex whose log-price lies in the

interval [ µ − σ
√

∆t, µ + σ
√

∆t). We select this vertex for node B. For example, the

log-price at node B is � + 3σ
√

∆t in Fig. 5. Denote the log-price at B as µ̂, which is

closest to µ among the log-prices at time ∆t′. The log-prices at nodes A and C are

therefore µ̂ + 2σ
√

∆t and µ̂ − 2σ
√

∆t, respectively. Define

β ≡ µ̂ − µ,

α ≡ µ̂ + 2σ
√

∆t − µ = β + 2σ
√

∆t ,

γ ≡ µ̂ − 2σ
√

∆t − µ = β − 2σ
√

∆t .

Note that the first equation implies that β ∈ [−σ
√

∆t, σ
√

∆t). Note also that α >

β > γ. The branching probabilities can be derived by solving the following three

equalities

Puα + Pmβ + Pdγ = 0, (3)

Puα
2 + Pmβ2 + Pdγ

2 = Var, (4)

Pu + Pm + Pd = 1. (5)

Equations (3) and (4) match the first two moments of the logarithmic stock price,

and Eq. (5) ensures that Pu, Pm, Pd as probabilities sum to one. Appendix A verifies

that the above three equations yield valid branching probabilities.
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Pricing European-style double-barrier options on the BTT can be sped up by a

combinatorial algorithm given by Lyuu (2002) and Dai and Lyuu (2005) in section

4. The combinatorial algorithm is used to evaluate the option values of nodes A, B,

and C in O(n) time. The final pricing result of our BTT at node S is evaluated by

standard backward induction:

VS = e−r∆t′ (PuVA + PmVB + PdVC) , (6)

where VX denotes the double-barrier option value at node X.

Single-Barrier Options

The BTT for pricing a single-barrier option with barrier L follows similar lines and

is illustrated in Fig. 6. Again, barrier L must be hit by the BTT to realize reduction

in the nonlinearity error. This can be achieved by laying the underlying grid from

barrier L upward as before. Note that we no longer adjust the width of a cell of the

grid as we did in the case of double-barrier options. This is because only one barrier

needs to be hit now instead of two. Thus the length of a cell (∆t) is simply set to be

T/n for an n-time step BTT. Note also that the length of the first time step of the

BTT is now simply ∆t. Finally, select adjacent nodes A, B, and C among the light

gray vertices at time ∆t to make the branching probabilities Pu, Pm and Pd valid.

These three nodes are required for node S to match the first two moments of the

logarithmic stock price process. By the lognormality of the stock price, the mean and

the variance of the log-prices of A, B, and C equal

µ ≡ (r − σ2/2) ∆t,

Var ≡ σ2∆t,

respectively. The log-price of a light gray vertex at time ∆t is expressed in Eq. (2).

Again, there exists a unique light gray vertex whose log-price lies in the interval

[ µ − σ
√

∆t, µ + σ
√

∆t), and this vertex is selected as node B. Denote the log-price

of B as µ̂. The log-prices of the two nodes A and C are selected as µ̂ + 2σ
√

∆t and
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µ̂ − 2σ
√

∆t, respectively. Define

β ≡ µ̂ − µ,

α ≡ µ̂ + 2σ
√

∆t − µ = β + 2σ
√

∆t ,

γ ≡ µ̂ − 2σ
√

∆t − µ = β − 2σ
√

∆t .

The valid branching probabilities can be derived by solving Eqs. (3)–(5) again.

Pricing European-style single-barrier options on the BTT can be sped up by the

efficient combinatorial algorithm of Lyuu (1998), which evaluates the option values

at nodes A, B, and C in O(n) time. The final pricing result is obtained by applying

Eq. (6), where ∆t′ is replaced by ∆t.

Vanilla Options

To drastically reduce the nonlinearity error, the BTT must hit the exercise price X

at the maturity date. This is because the payoff function of a vanilla option is highly

nonlinear at X at the maturity date (see Figlewski and Gao (1999)). Constructing a

BTT for pricing a vanilla option mimics that for pricing a single-barrier option except

that the underlying grid should have a layer coinciding with X instead of L. The

term “terminal node” refers to a node at the maturity date of the CRR tree. The

value of a call option priced by an n-time-step CRR tree can be efficiently calculated

by summing the value contributed by each terminal node:

e−rT

n∑
i=0

(n
i )pi(1 − p)n−i max

(
S0u

idn−i − X, 0
)
. (7)

This formula can be evaluated in O(n) time (see Lyuu (2002)).

4 An O(n)-Time Algorithm for Double-Barrier Op-

tions

An efficient combinatorial algorithm for pricing double-barrier options on the CRR

tree is presented in this section. First, a useful formula derived in Lyuu (2002) and
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Dai and Lyuu (2005) is given. This combinatorial formula is then used to build up

the BTT pricing algorithm. We focus on the pricing of knock-in double-barrier call

options. Extension to other types of double-barrier options is straightforward.

4.1 A Combinatorial Formula

Refer to Fig. 7 in the following. This grid reflects the structure of the CRR tree model.

The x-coordinate denotes the time step of the CRR tree, and the y-coordinate denotes

the logarithmic price. To mimic stock price movements on the CRR tree model, each

path in the grid can move from node (i, j) to node (i + 1, j + 1) (the up move) or

node (i + 1, j − 1) (the down move). To price a double-barrier option, we need to

count the number of price paths form (0,−a) (node A) to (n,−b) (node B) that reach

either barrier H or barrier L at least one. Without loss of generality, we assume that

a, b ≥ 0. The count turns out to be

N(a, b, s) =

�n
s
�∑

i=1

(−1)i+1(|αi| + |βi|), (8)

where s denotes the distance between barrier L and barrier H and

|αi | =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ n

n+a+b+(i−1) s
2

⎞
⎠ for odd i

⎛
⎝ n

n+a−b+is
2

⎞
⎠ for even i

|βi | =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ n

n−a−b+(i+1) s
2

⎞
⎠ for odd i

⎛
⎝ n

n−a+b+is
2

⎞
⎠ for even i

(9)

The above formula is derived by applying the reflection principle and the inclusion-

exclusion principle. Appendix B sketches the ideas.

4.2 The Pricing Algorithms

The pricing algorithm varies slightly under different scenarios. We first consider the

degenerate case X ≥ H. In this case, if the knock-in double-barrier call option is

in the money at maturity, this barrier option must also come into existence. Thus

the value of this double-barrier call option equals the value of an otherwise identical

vanilla call option. From now on, we focus on X < H.
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The price is obtained by summing the value contributed by each terminal node

of the CRR tree much like direct integration. Combinatorial techniques are required

to implement this idea efficiently. To explain how we develop the pricing algorithms

clearly, we place the CRR tree on a grid as displayed in Fig. 8. The barriers H and L

equal S0u
n−hdh(= S0u

n−2h) and S0u
n−ldl(= S0u

n−2l), respectively. The exercise price

X satisfies the following equalities S0u
n−ada ≤ X < S0u

n−a+1da−1 for some integer a.

Now we analyze the option value contributed by a price path that reaches terminal

node N(n, j). The probability for this price path is pn−j(1− p)j. The payoff at node

N(n, j) is max(S0u
n−jdj − X, 0). Thus the value contributed by this price path is

p(j) ≡ e−rT pn−j(1 − p)j max(S0u
n−jdj − X, 0) (10)

if this price path hits the barrier (i.e., the barrier option comes into existence). Fur-

thermore, the value contributed by terminal node N(n, j) is

V (j) ≡ (n
j )p(j) (11)

if node N(n, j) is above the barrier H (inclusive) or below the barrier L (inclusive).

This is because the number of price paths reaching node N(n, j) is (n
j ), and any price

path reaching this node must also hit a barrier.

The algorithms for pricing the knock-in double-barrier call option are now within

reach. Two non-degenerate cases are discussed as follows.

Case 1. L < X < H:

The option value can be decomposed into two parts: (1) the value contributed by

the terminal nodes between X and H (exclusive), and (2) the value contributed by

the terminal nodes above H (inclusive).

The first part of the option value is by accumulating the values contributed by

the terminal nodes N(n, j), h < j < a, between X and H. The number of paths that

reach one of the barriers before reaching N(n, j) is N(n−2h, 2j−2h, 2l−2h) as defined

in Eq. (8). The value contributed by such a path is p(j) from Eq. (10). Therefore,

the value contributed by node N(n, j) is N(n− 2h, 2j − 2h, 2l− 2h)p(j). The sum of
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the values contributed by the terminal nodes between X and H is therefore

a−1∑
j=h+1

N(n − 2h, 2j − 2h, 2l − 2h)p(j). (12)

The second part of the option value is by accumulating the values contributed by

the terminal nodes N(n, i), 0 ≤ i ≤ h, above the barrier H (inclusive). The value

contributed by N(n, i) is V (i) (see Eq. (11)). Therefore, the second part of the option

value is
h∑

i=0

V (i). (13)

We conclude that the value of a knock-in double-barrier call option is (12)+(13).

Case 2. X ≤ L:

The option value can be decomposed into three parts: (1) the option value con-

tributed by the terminal nodes between L (exclusive) and H (exclusive), (2) the option

value contributed by the terminal nodes above H (inclusive), and (3) the option value

contributed by the terminal nodes between L (inclusive) and X.

The first part of the option value is by accumulating the values contributed by

the terminal nodes between L and H as follows:

l−1∑
j=h+1

N(n − 2h, 2j − 2h, 2l − 2h)p(j). (14)

The second part of the option value is by accumulating the values contributed by the

terminal nodes above the barrier H (inclusive) and equals Eq. (13). The third part

of the option value is by accumulating the option value contributed by the terminal

nodes N(n, k), l ≤ k < a, between L (inclusive) and X. As the value contributed by

N(n, k) is V (k) (see Eq. (11)), the third part is

P ′
1 =

a∑
k=l

V (k). (15)

Finally, the value of a knock-in double-barrier call option is (13)+(14)+(15).

15



5 Experimental Results

This section evaluates the performance of the BTT and other numerical methods

in pricing vanilla options, single-barrier options, and double-barrier options. All the

running time measurements are obtained by running programs on a Pentium-4 2.8GHz

computer.

Vanilla Options

We first compare the performance of the CRR, Klassen’s binomial tree model, the

AMM, and the BTT on pricing vanilla options. In the setting of Fig. 9, the theoretical

option value given by the Black-Scholes formula is 17.7943. All models converge to

the theoretical option value as n → ∞; however, their behaviors differ. The CRR

oscillates significantly. Klassen’s binomial model converges more smoothly but slowly.

The AMM seems to converge more smoothly than the above two methods. Finally,

the BTT converges most smoothly among all methods.

Single-Barrier Options

We next compare the BTT and Ritchken’s (1995) trinomial tree model in pricing a

European-style down-and-out single-barrier call option (see Fig. 10). The numerical

settings and the true value are from Ritchken (1995). The x-axis and the y-axis

denote the computation time and the option value, respectively. For example, it

costs 0.014 second to compute a 350-time-step Ritchken’s trinomial tree to obtain

5.998 (point A). It costs almost the same time to compute a 4,500-time-step BTT

to obtain 5.997 (point B). Both Ritchken’s model and the BTT converge well to the

true value 5.9968, but the BTT converges more smoothly and faster.

It is a well-known hard problem to price a barrier option when the barrier is very

close to the initial stock price: the so-called barrier-too-close problem. Table 1 reveals

this fact. The numerical results of Ritchken’s model in the second column and the

true values listed in the last column are from Ritchken (1995). Each row contains

information about the number of time steps and the computational time required
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by each approach to achieve 3-digit accuracy. Indeed, a large number of time steps

is required for Ritchken’s trinomial tree model to ensure that the barrier is exactly

hit. Ritchken’s approach is thus very inefficient in this case. On the other hand,

although a much larger number of time steps is required for the BTT to achieve 3-

digit accuracy, the BTT consumes much less time than Ritchken’s model. This is

because the BTT costs only O(n) time instead of Ritchken’s Ω(n2) time. The AMM

is another algorithm that can efficiently solve the barrier-too-close problem. All the

numerical results for the AMM in Table 1 are computed by setting the AMM level to

be 1. (The number of time steps of the AMM is determined by the AMM level.) To

achieve 3-digit accuracy, the AMM again consumes more computation time than the

BTT. We conclude that the BTT is superior to the AMM and Ritchken’s trinomial

tree model when addressing the barrier-too-close problem.

Double-Barrier Options

We first compare Ritchken’s model and the BTT in pricing a European-style knock-

out double-barrier call. The numerical results are illustrated in Fig. 11. The x-axis

and the y-axis denote the computational time and the option value, respectively. The

parameters and the accurate value 1.4580 are from Ritchken (1995). Note that both

methods converge well to the accurate value. But the BTT converges much more

smoothly and faster.

Second, the BTT solves the barrier-too-close problem efficiently. Numerical evi-

dence for pricing a knock-out double-barrier call is given in Fig. 12. The x-axis and

the y-axis denote the number of time steps and the option value, respectively. The

initial stock price 90.05 is very close to the lower barrier 90. It can be observed that

the BTT converges smoothly and quickly to 10.55.

The AMM efficiently solves the barrier-too-close problem when pricing single-

barrier options. When the AMM is applied to pricing double-barrier options without

modifications, the pricing results are inaccurate, and the experimental results in Table

2 reveal this fact. The first column (“Level”) in Table 2 denotes the level of the AMM,

and the second column (n) denotes the number of time steps of the AMM. Note that
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n is determined by the AMM level. The third column (“Inner Barrier”) and the

fourth column (“Outer Barrier”) denote the pricing results of the AMM computed by

moving the upper barrier (120) to the inner barrier or the outer barrier, respectively.

When pricing a knock-out barrier option, the AMM underestimates the option value

if the upper barrier moves down to the inner barrier. On the other hands, the AMM

overestimates the option value if the upper barrier moves up to the outer barrier.

Both phenomena are as expected. Each pricing result of the BTT in the same table

is selected so the number of time steps of the BTT is close to, but does not exceed,

that of the AMM. Clearly, the BTT converges more accurately and smoothly than the

AMM as it generates results between the lower and the upper bounds of the AMM.

6 Conclusion

This paper proposes a novel, accurate, and efficient tree model, the bino-trinomial

tree (BTT) model, for pricing a wide variety of derivatives. The BTT combines a

CRR binomial tree structure and a root node with a trinomial structure. To reduce

the nonlinearity error, the BTT structure can be adjusted by (1) finding a suitable

length for the time step of the CRR tree, (2) properly laying out the CRR tree, and (3)

locating the position of the root node and calculating its branching probabilities. We

use vanilla options, single-barrier options, and double-barrier options to show how to

construct the BTT for them. Numerical results are given to confirm the superiority

of the BTT. Interestingly, our method outperforms other methods in solving the

notorious barrier-too-close problem.
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A Validity of Risk-Neutral Probabilities

Define

det = (β − α)(γ − α)(γ − β),

detu = (βγ + Var)(γ − β),

detm = (αγ + Var)(α − γ),

detd = (αβ + Var)(β − α).

Then Cramer’s rule applied to Eqs. (3)–(5) gives Pu = detu/det, Pm = detm/det,

and Pd = detd/det. Note that det < 0 because α > β > γ. To ensure that the

branching probabilities are valid, it suffices to show that Pu, Pm, Pd ≥ 0. As det < 0,

it is sufficient to show detu, detm, detd ≤ 0 instead. Finally, as α > β > γ, it suffices

to show that βγ + Var ≥ 0, αγ + Var ≤ 0, and αβ + Var ≥ 0 under the premise

β ∈ [−σ
√

∆t, σ
√

∆t). Indeed,

βγ + Var = β2 − 2βσ
√

∆t + σ2∆t′ ≥ β2 − 2βσ
√

∆t + σ2∆t = (β − σ
√

∆t)2 ≥ 0,

αγ + Var = β2 − 4σ2∆t + σ2∆t′ ≤ β2 − 4σ2∆t + 2σ2∆t = β2 − 2σ2∆t ≤ 0,

αβ + Var = β2 + 2βσ
√

∆t + σ2∆t′ ≥ β2 + 2βσ
√

∆t + σ2∆t = (β + σ
√

∆t)2 ≥ 0,

as desired.

B A Useful Combinatorial Formula

The following analysis is based on the grid in Fig. 7. Before counting the number of

price paths from node A to node B and reaching either barrier L or H at least once,

we consider a simplified problem first: How many price paths from node A to node B

will hit barrier H before one hit of barrier L? One such path may hit barrier H first

at J and barrier L later at K. We can reflect the path ÂJ marked by the solid curve
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with respect to the H-axis to obtain path Â1J marked by the dash curve. Each path

from node A to node J maps to a unique path from node A1 to node J , and vice

versa. Thus the number of paths from node A to node J equals the number of paths

from node A1 to node J . This is the celebrated reflection principle. So the number

of paths from node A to node B and hitting barrier H equals the number of paths

from node A1 to node B.

The reflection principle can be applied more than once. The curve Â1K can be

reflected with respect to the L-axis to obtain Â2K. Therefore, the number of paths

from node A1 to node B and reaching barrier L at least once equals the number of

paths from node A2 to node B. In conclusion, the number of paths from node A

to node B and reaching barrier H at least once before reaching barrier L equals the

number of paths from A2 to B.

Assume that x up moves and y down moves are required to move from node A2

(with coordinate (0,−(a + 2s))) to node B (with coordinate (n,−b)). They must

satisfy

x + y = n,

x − y = a − b + 2s,

which yield x = (n+a−b+2s)/2. So the answer to this simplified problem mentioned

above is (
n

n+a−b+2s
2

)
for even, non-negative n + a − b. (16)

Note that a path counted by Eq. (16) may hit L first before hitting H. The point is

that among the hits, one hit of barrier H must appear before one hit of barrier L.

The answer to the number of paths that will hit either barrier L or H before

arriving at node B is now within reach. It is useful to consider a function f that

maps paths to strings. The strings contain the information about the barrier hitting

sequences. For example, f(ÂB) = HHL since the path ÂB hits the barrier H twice

before hitting the barrier L. Next, we define αi as the set of paths whose f value

contains

i︷ ︸︸ ︷
H+L+H+ · · · with i ≥ 1. Here, L+ and H+ denote a sequence of Ls and Hs,
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respectively. For example, the path ÂB belongs to both set α1 and set α2. Similarly,

define βi as the set of paths whose f value contains

i︷ ︸︸ ︷
L+H+L+ · · · with i ≥ 1. For

example, the path ÂB belongs to set β1. The number of elements in set αi and βi can

be calculated by repeatedly using the reflection principle. The number of elements

in each set is described in Eq. (9). Note that each path that hits the barrier may

belong to more than one set. For example, ÂB in Fig. 7 belongs to set α1, α2, and β1.

To avoid counting paths more than once, the inclusion-exclusion principle is applied

to calculate the exact number of paths from node A to node B and reaching either

barrier L or H at least once, which is done in Eq. (8).
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Figure 1: The CRR Tree. The initial stock price is S0. The upward and downward

multiplicative factors for the stock price are u and d, respectively. The upward and

downward branching probabilities are p and 1 − p, respectively. N(i, j) denotes a

node at time step i resulting from j down moves and i − j up moves from time step

0.
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(a) (b)

1L
2L

Figure 2: Barrier and the CRR Tree Model at Different Numbers of Time Steps. The

contractual barrier is denoted by L. (a) The effective barrier for the 2-time-step tree

is L1. (b) The effective barrier for the 3-time-step tree is L2. L′ and L2 are the inner

and the outer barriers to L, respectively.
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X

Figure 3: Pricing a Vanilla Option by the AMM. The base tree is denoted by thick

lines and solid circles. The finer trees are denoted by thin lines and hallow circles.

The strike price X is also marked.
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Figure 4: The BTT for Pricing Double-Barrier Options. Two barriers, L and H, are

denoted by thick dashed lines. The root of the BTT is denoted by node S. The CRR

tree (with the first two time steps truncated) that comprises the bulk of the BTT is

shadowed. This CRR tree is placed on a grid (thin lines) that as two layers coinciding

with the barriers.
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Figure 5: The BTT for Pricing Double-Barrier Options. Two barriers, L and H, are

denoted by thick dashed lines. The root of the BTT is denoted by node S. The CRR

tree (with the first two time steps truncated) that comprises the bulk of the BTT is

shadowed. This CRR tree is put on a grid (marked in thin lines). The log-prices for

the nodes at maturity are listed next to these nodes.
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Figure 6: The BTT for Pricing Single-Barrier Options. Barrier L is denoted by thick

dotted lines. The root of the BTT is denoted by node S. The CRR tree (with the

first two time steps truncated) that comprises the bulk of the BTT is shadowed. This

CRR tree is placed on a grid in thin dotted lines.
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Figure 7: Paths That Hit H or L. Barrier H is the horizontal line y = 0, and
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the root node of the CRR tree is (0, 2h − n). The two barriers L and H are denoted

by thick dotted lines, and s denotes the distance between H and L. The values in

parentheses denote the stock prices.
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Figure 9: Oscillations of the CRR, Klassen’s Binomial Model, the AMM,

and the BTT in Valuing Vanilla Call Options. The x-axis denotes the number

of time steps of each tree model. The y-axis denotes the option value. The initial

stock price is 100, the exercise price is 98, the risk-free rate is 10% per annum, the

volatility of the stock price is 30%, and the time to maturity is 1 year. The line that

oscillates significantly is the CRR tree model. The line formed by hollow squares

denotes Klassen’s binomial tree model. The thin solid line denotes the AMM with

AMM level 1. The dotted line denotes the AMM with AMM level 2. The thick solid

line denotes the BTT. The analytical option value is 17.7943.
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Figure 10: Convergence of the BTT and Ritchken’s Trinomial Model in

Pricing a Down-and-Out Single-Barrier Call Option. The initial stock price

is 95, the exercise price is 100, the risk-free rate is 10% per annum, the volatility of

the stock price is 25%, the time to maturity is 1 year, and the barrier is 90. The

horizontal line y = 5.9968 denotes the true value, the line passing through point B

denotes the BTT, and the line passing through point A denotes Ritchken’s model.
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Table 1: Ritchken’s Model, the BTT, and the AMM When the Barrier Is

Close to the Initial Stock Price.

Stock Ritchken AMM BTT True

Price n Time Value Time Value n Time Value Value

91 1000 0.110 1.274 0.032 1.274 2000 0.005 1.274 1.274

90.5 4000 1.891 0.642 0.235 0.642 8000 0.023 0.642 0.642

90.4 5000 3.062 0.515 0.562 0.515 11000 0.031 0.515 0.515

A down-and-out single-barrier call option is priced above. The initial stock prices

are listed in the first column, the barrier is 90, the exercise price is 100, the risk-

free rate is 10% per annum, the volatility of the stock price is 25%, and the time to

maturity is 1 year. Ritchken denotes Ritchken’s trinomial tree model. AMM denotes

the adaptive mesh model. BTT denotes the BTT. The variable n, Time, and Value

denote the number of time steps, the computational time, and the price of each tree

model, respectively. The true values with 3-digit accuracy are from Ritchken (1995).
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Figure 11: Pricing Knock-Out Double-Barrier Options. The initial stock price

is 95, the exercise price is 100, the risk-free rate is 10% per annum, the volatility

of the stock price is 25%, the time to maturity is 1 year, and the two barriers are

140 and 90. The thin curve (with large oscillations) and the thick curve denote the

Ritchken’s trinomial tree model and the BTT, respectively.
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Figure 12: Convergence of the BTT When the Barrier Is Close to the Initial

Stock Price. The initial stock price is 90.05, the exercise price is 100, the risk-free

rate is 10% per annum, the volatility of the stock price is 25%, the time to maturity

is 1 year, and the two barriers are 140 and 90.

36



Table 2: Convergence Rates of the AMM and the BTT.

AMM BTT

Level n Inner Barrier Outer Barrier n Value

3 167 0.000000 0.000014 163 0.000002

2 671 0.000001 0.000015 655 0.000003

1 2686 0.000001 0.000005 2625 0.000003

A knock-out double-barrier call option is priced above. The initial stock price is 100,

the exercise price is 100, the risk-free rate is 10% per annum, the volatility of the

stock price is 30%, the time to maturity is 1 year, and the two barriers are 99.5 and

120. The pricing results of the BTT (running up to 20,000 time steps) converge to

0.000003.
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