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Black-Scholes Model

Under the physical probability space (2, F, F;, IP),
there are two assets within an economy:

dSt
dr

wSidt + o SpdWy, (stock)
rdt. (bond)

e 1. rate of returns.
e 1. risk-free interest rate.
e o: volatility (constant).

o W;. 1-d. standard Brownian Motion.
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Black-Scholes T heory
The BEuropean option price is

P(t,5) = E* {e " TDH(Sp)| 7

defined on the risk-neutral pricing probability
space (2, F, F;, IP*) such that

dS; = rSidt + o SydW7Y.
Perfect replication of the discounted payoff:
P(0,50) = —*TH<ST)
_ / —(s 55 0 SdW;

Delta




Black-Scholes Formula

Typical payoff functions are nonlinear like
H(z) = max{z — K,0} = (¢ — K)7T a call.
H(z) = max{K —z,0} = (K —z)T a put.

K is the strike price.

The celebrated BS formula for the Euro-
pean call option price is

P(t,S; = ) = aN(dy) — Ke " TN (d>),

1 2
where di = In(x/K)‘l(;E;%a )(T—t)

dq1 — o1 —t.

and do =
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Recast Financial Problems

Under generalized models,

e Pricing: No closed-form solution.
P = E* {e—"“<T—t>H(ST)\ft} .

Monte Carlo is a good computational op-
tion.

e Hedging: No perfect (self-financing) repli-
cation.
Is Delta hedge enough? What Delta?
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Multifactor Stochastic Volatility Model

Under a risk-neutral prob. meas.
multifactor SV model is of the form:

dS;
dY;
dZ;

PN 3

rSydt + f(Yz, Z) SedW 0%,

01(}272&)dt-an(ﬁﬁ,Zﬁ)dVVfl)*,
2

co (Y, Zy)dt + go (Y, Z)dW, 2™

d(W(O), W(1)>t
d<W(O)7 W(2)>t
d(W(l), W(2)>t

p1dt

p2dt
p12dt.



Martingale Representation

Risky asset dynamics:
dS; = rSidt+ o1 S dWY,
o¢ 1S a diffusion process.
P(0,8p,00) = e "L H(S) — M(P) + Martingales

with M(P) — fg e_rs%—i(S,SS,Us)O'Ssde; IS
a zero-centered martingale.

Additional martingales are related to non-
tradable risks and perhaps difficult to com-
pute.



Monte Carlo Pricing with Control Variate

1 X - N
P(0,S0.00) = - 3 e TH(S{?) - MO(P)]
i=1
where M(P) = [ e 59 (s, 85, 05)05SsdW?
is a martingale with P being an approxima-
tion of P.



Control by Hedging Portfolio

Clewlow and Carverhill* used hedging port-
folio as a control s.t.
= - -
P(0,S0,00) % 1 3 | T H(S() ~ MO ()
i=

with Pgg(t,Sy) = Ppg(t,St; ). The choice
of ¢ depends on the long-run mean of the
driving volatility process.

*Clewlow, L. and Carverhill, A. (1994) On the sim-
ulation of contingent claims, Journal of Derivatives
2:66-74.



Diffusion Operator Integral Method

Heath and Platen* proposed to use the op-
tion price approximated from deterministic
volatility by removing its random source.

*Heath, D. and Platen, E. (2002) A variance re-
duction technique based on integral representations,
Quantitative Finance 2:362-369.
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Homogenization Method

Fouque and H.* use the homogenized option
price Pgg(t,St; o) to construct a martingale
control M) (Pgo).

The effective variance 52 is defined as the
averaging of the variance function w.r.t. an
invariant distribution of a volatility process.

*Fouque, J.P. and Han (2004) A control variate
method to evaluate option prices under multi-factor
stochastic volatility models. Submitted.
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Evaluate European Option by
Martingale Control Variate
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A Variance Problem

A martingale control Variate method ends
up to compute

1 N - N
P(0, S0, Y0, Z0) ~ . Y- | "TH(S{) = MO(P)|,
1=1
where the martingale is defined by
_ T _ 9P .
M(P) =/O e Z (s, S, Ya, Za) o SsdW;
XL

with P being an approx. to P.

Q: Can we estimate Var(e "1 H(Sp)—M(P))?
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Time-Scaled Stochastic Volatility model

dSy

Ot

dYy

dZ;

rSidt + O'tStdWSt

f(Yy, Zy)
1 Y;

[—01 (Yy) + 91 t)/\l(Yt, Zt)] dt
2 Ve

Y;

91(%) (Pldet +Vi- P%det>

Ve

[502(275) + Vg92(Z)Na (Vs Zt)] dt + Vg2(Z)

: (deWSt ~+ p1odWT, + \/1 — P% — P%degt)

A European option price is defined by

P8’5(t7 x,Y, Z) — E*t,x,y,z {G_T(T_t)H(ST)} .
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Variance Decomosition
Case: No Correlation between BMs

Var (e_TTH(ST) — M(PBS)) — E*Oa'xayaZ{

T OPsS  OPpc\ 2
/ e_QTS - BS (87587YS7ZS)f2(Y57Z3)S$2(
0 Ox 8:6

£,0
W (ap ) (5, S, Vs, Z5)g3 (Y )ds

2
_I_(S 6_2,’,,8 aP€,5 (8 S Y Z ) 2(Z )d
0 82 y Sy L Sy S 92 S S :
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Variance Analysis

Under some smooth and bound conditions,

,

c 2
1.E*S [§ e2rs (313 0 apBS) fQ(YS,ZS)SSst} <

ox ox
C' max{e, o}

£,0 2
2. FE* < fg e 2Ts (8g—y) g%(YS)ds} < Ce?

g,0 2
3.E*« fg e=2rs (mgz ) g%(Zs)ds} <C
such fhat

Var (G_TTH(ST) — M(PBS)) < Cmax{e,d}.
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First Inequality

By Cauchy-Schwartz inequality

T aPs  9Ppc\?
E* / —2rs L BS 2 Y,Z SQd
{Oe <8x Ox 7 (s, Z5) S5 ds
T 4
S \}E* {/O (Q_TSSS> f4(Y3,Z3)dS}
T 8P8’5 8PBS 4
x |IE* / ( — > ds
\ 0 Ox ox
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Delta Approximation

o PE:0 oS
t.S:, Vs, Zp) = E* e (T =T
= b {I{ST>K}}

where the Radon-Nikodym derivative is

~ 02 .

AP _ I3 G+ g o 0"
dIP*

Digital option approximation vields

‘ <8P8’5 B 8PBS

< C'max{/e, Vé}.

t.S. Y. Z
5 5. )( t, Ye, Zt)
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Second Inequality

T 5 PE:0 2
/O e‘2”< 5 ) (s,Ss,Ys, Zs)gi (Ys)ds < C'e2.
Yy

Conditional on the volatility process,
PPt 0.y, 2) = B { Pog (10 K, T V5%, ) |
where the realized variance is denoted by 52,

1

T
oy, 2) = T——t/t f(YSaZs)QdS-
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Chain Rules

/52,
Oy

8P6’5 8PBS
oy Oo

(t,az; K,T; \/5(3@(%2))

o _ I B0 20+ B0 200 s 2

% (T - 1)y/52,

How fast does ( %3;3 %is ) grow?

21



Perturbed Dynamical System

Rescaling Yf = Y. and Z¢ = Z., we deduce

oYe oYe
dl g | (=29 [ 3y
ds | 94s O O 0Zg
oy dy

Vl\/767\1(?€ 7€) 3/\1(Ya 7€)
\/Suza/\z(ya 78) —8 +VouaV/2%2(YE, Z9)

OYE ~ -\ T

8 oYS 075

| with (ao, 8()) = (1,0)7.
5 Yy Y

+ Ve

22



Stability Theory

By a classical stability result,” we obtain |%3;8| <

Cie~(5-8)/ and |8£S| < C6 for some con-
stants C'; and Co.

*R. Bellman, Stability Theory of Differential Equa-
tions, McGraw-Hill, 1953.

23



Third Inequality

T PEd 2
/O 6_2T8 (aaz ) (87 587YS7 ZS)Q%(ZS)dS S C

The proof is similar as in the second inequal-
ity.
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Replication Error and Variance Reduction *

1. European Options

2. Barrier Options

3. American Options

*Fouque, J.-P. and H. (2005) A martingale control
variate method for option pricing with stochastic
volatility.
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Numerical Results I:. European Options
Double Heston Model

1/e | 6 StdPMC StdMcV Ratio
1/75[0.01 [ 0.1103 (7.03) | 0.0068 (7.09) | 265
1/50 | 0.1 [0.1102 (6.97) | 0.0073 (7.08) | 230
1/10| 0.5 [ 0.1085 (6.94) | 0.0103 (7.03) | 111
1/5 | 1 [0.1063 (6.91) | 0.0113 (6.99) | 89
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Numerical Results II: Barrier Options

1/e | & StdBMC StdMcV Ratio
100 [ 0.01 | 0.2822 (10.82) | 0.0304 (10.85) | 86
75 | 0.1 | 0.2047 (10.77) | 0.0306 (10.76) | 45
50 | 1 |0.2455 (11.21)]0.0474 (11.10) | 27
25 | 10 | 0.2604 (12.62) | 0.0417 (12.44) | 39
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Variance Reduction: a down and out

Down-and-Out Barrier Option Prices
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American Option Pricing Problem

Given the risk-neutral prob. space (Q,]-“, P*,]-“[O:TD,
an Americcan option pricing problem is for-
mulated as an optimal stopping problem:
Pum(0,S0) = sup E*{e ""H(S:)|Fo},

0<r<T
where 7 is any Fs-adapted stopping time and
S is the underlying asset price (diffusion) pro-
cess.
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Variational Inequality Characterization

It can be shown that Py, (t,x) admits the
classical solution of the PDIE

[ (5 4 As) Pam(t,z) <0
Pam(t,iﬁ) > H(CC)
\ ((% + AS) Pam(t, 33)) (Paym(t,x) — H(xz)) = 0.

7\

Or one can solve a free boundary problem in
PDE.

Deterministic schemes are highly sensitive to
dimensionalities.
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Recent Development on Efficient Monte
Carlo Pricing Algorithms

(1) Primal Approach: approximate optimal

stopping rule
Tsitsiklis and Van Roy (2001), Longstaff and
Schwartz (2001)

(2) Dual Approach: approximate (super-)martingales
Rogers (2002) used martingale approxim..

Haugh and Kogan (2004) used super-martingale
approxim..

32



Primal Approach (I)
A Low-Biased Solution

For any stopping time 7, a lower solution is
deduced

Pam(o, SO) — sup E* {e_TTH(ST)lfO} ,
0<7r<T

> E*{e"TH(S7)|Fo} = Pan(0,So)

7 can be estimated from least squares meth-

ods from the dynamic programming formu-
lation.
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Primal Approach (II)
Variance Reduction

By martingale control variate methods*,
E*{e7TH(S7)} = BE* {e TTH(S;) — Mz},

where M%‘-‘ — fg e_rs%—f(S,SS)O'SsdeSy and P
IS an approxim. of the option price, one can
reduce the variance of the basic Monte Carlo

estimator.
Given 7, we transform an American option
problem to a Barrier option problem.

*Fouque and H. (2006)
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Dual Approach (I)
A Direct Monte Carlo Simiulation

Rogers (2002) derived the duality of the Amer-
ican option problem by

Pam(O, So) = inf E*{ sup (e_TtH(St) — ./\/lt)} )
MeH} 0<t<T

Hy={ all integrable martingales but vanish

at time 0}

proof:

> trivial

<: use Doob-Meyer decomposition of a super-

martingale. (infemum can be attained)
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Dual Approach (II)
A High-Biased Solution

Given any martingale M € H&, one deduces
an upper solution

thgh(O SO)

E~ { sup (e_”H(St) — Mt)}
0<t<T

> Pam(QSO)

Given M we transform an American option
problem to a Lookback option problem.
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Dual Approach (III)
Error Bound Estimate

Lemma 1 For any given martingale M €
H3, Pani" (0, 50) < Pam(0, So)+E* {TM* |}
Proof

P9"(0, So)

= FE* { sup (e_TtH(St) — M} + My — Mt)}
0<t<T

< Pum(0,Sg) + E* { sup (M; - Mt)}
0<t<T

< Pum(0,Sp) + \/Var {M% - MT}

37



Variance Bound V.S. Error Bound
Lemma 2: For low-biased solution, the vari-
ance of its MCV estimator is

Var (H(Sr) — M(P; 1)) = Var (M (P — P))
—E ( / T —2rs (8P am _ a_g) agsgds)

0 ox ox
T

<E / e 2T (apﬂ - 8—B> 025%ds| = VB
0 ox ox

For high-biased solution, the error bound was
shown

PlMal(0,89) — Pum(0, Sp) < VV
38



Remark: the STD of lower solution and the
error bound of higher solution are bounded
from above by the same quantity.



Numerical Results III: Low-Biased Solution
Primal Approach

Use the Least-squares method, which pro-
vides a biased lower bound solution.

1/e | & Std, "MC | Std) "V (Pgay) | Ratio
100 | 0.01 | 0.235 (21.43) | 0.024 (21.59) | 96
75 | 0.1 | 0.256 (21.48) | 0.028 (21.80) | 81
50 | 1 |0.257 (21.52) | 0.035 (21.63) | 54
25 | 10 | 0.260 (21.96) | 0.045 (21.32) | 32

Ref: G. Barone-Adesi and R. E. Whaley, “Efficient
Analytic Approximation of American Option Values,”
The Journal of Finance, Vol. XLII, No. 2, June 1987.
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Variance Reduction: American Options
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Numerical Results 1V:
Low-Biased Solution VS High-Biased
Solution

Use our control martingale. (Rogers’ ap-
proach is not easy to generalized to SV mod-
els.)

low

1/e | & Std, "CV StaPut

100 | 0.01 | 0.0240 (21.59) | 0.0239 (22.29)

75 | 0.1 | 0.0286 (21.80) | 0.0271 (22.33)

50 | 1 |0.0350 (21.63) | 0.0334 (22.37)

25 | 10 | 0.0453 (21.32) | 0.0433 (22.29)
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Conclusion

e Martingale control variate method is very
general for option pricing problems. The
control is related to the accumulative value
of delta-hedging portfolios.

e [ his variance analysis technique can also
be applied to characterize the error bound
analysis under randomize Quasi-MC meth-
ods.

e some future works on importance sam-
pling and the use of statistical estima-

tion..etc.
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