Option Pricing, Hedging, and Efficient Monte Carlo Methods

Chuan-Hsiang Han

Dept. of Quantitative Finance, NTHU

Institute of Statistics Academia Sinica

September 29, 2006.

Black-Scholes Model

Under the physical probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})$, there are two assets within an economy:

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$
, (stock)
 $dr_t = rdt$. (bond)

- μ : rate of returns.
- r: risk-free interest rate.
- σ : volatility (constant).
- \bullet W_t : 1-d. standard Brownian Motion.

Black-Scholes Theory

The European option price is

$$P(t, S_t) = \mathbb{E}^{\star} \left\{ e^{-r(T-t)} H(S_T) | \mathcal{F}_t \right\}$$

defined on the risk-neutral pricing probability space $(\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P}^*)$ such that

$$dS_t = {}^{\mathbf{r}}S_t dt + \sigma S_t dW_t^{\star}.$$

Perfect replication of the discounted payoff:

$$P(0,S_0) = e^{-rT}H(S_T) - \int_0^T e^{-rs} \underbrace{\frac{\partial P}{\partial x}(s,S_s)}_{Delta} \sigma S_s dW_s^{\star}.$$

Black-Scholes Formula

Typical payoff functions are nonlinear like $H(x) = \max\{x - K, 0\} = (x - K)^{+}$ a call. $H(x) = \max\{K - x, 0\} = (K - x)^{+}$ a put. K is the **strike** price.

The celebrated BS formula for the **Euro**-**pean** call option price is

$$P(t, S_t = x) = x \mathcal{N}(d_1) - Ke^{-r(T-t)} \mathcal{N}(d_2),$$

where $d_1 = \frac{\ln(x/K) + (r + \frac{1}{2}\sigma^2)(T-t)}{\sigma\sqrt{T-t}}$ and $d_2 = d_1 - \sigma\sqrt{T-t}.$

Some Empirical Evidence

- (1) S. Alizadeh, M. Brandt, and F. Diebold, "Range-based estimation of stochastic volatility models," Journal of Finance, 57, 1047-1091, 2002.
- (2) M. Chernov, R. Gallant, E. Ghysels, and G. Tauchen, "Alternative models for stock price dynamics," Journal of Econometrics, 2003, vol. 116, issue 1-2, pages 225-257.

 (3) ···

Recast Financial Problems

Under generalized models,

• Pricing: No closed-form solution.

$$P_t = \mathbb{E}^* \left\{ e^{-r(T-t)} H(S_T) | \mathcal{F}_t \right\}.$$

Monte Carlo is a good computational *option*.

 Hedging: No perfect (self-financing) replication.

Is Delta hedge enough? What Delta?

Multifactor Stochastic Volatility Model

Under a risk-neutral prob. meas. $IP^{*(\Lambda)}$, a multifactor SV model is of the form:

$$dS_{t} = rS_{t}dt + f(Y_{t}, Z_{t})S_{t}dW_{t}^{(0)*},$$

$$dY_{t} = c_{1}(Y_{t}, Z_{t})dt + g_{1}(Y_{t}, Z_{t})dW_{t}^{(1)*},$$

$$dZ_{t} = c_{2}(Y_{t}, Z_{t})dt + g_{2}(Y_{t}, Z_{t})dW_{t}^{(2)*},$$

$$d\langle W^{(0)}, W^{(1)} \rangle_{t} = \rho_{1}dt$$

$$d\langle W^{(0)}, W^{(2)} \rangle_{t} = \rho_{2}dt$$

$$d\langle W^{(1)}, W^{(2)} \rangle_{t} = \rho_{12}dt.$$

Martingale Representation

Risky asset dynamics:

$$dS_t = rS_t dt + \sigma_t S_t dW_t^{\star},$$

 σ_t is a diffusion process.

$$P(0, S_0, \sigma_0) = e^{-rT}H(S_T) - \mathcal{M}(P) + Martingales$$
 with $\mathcal{M}(P) = \int_0^T e^{-rs} \frac{\partial P}{\partial x}(s, S_s, \sigma_s) \sigma_s S_s dW_s^*$ is a zero-centered martingale.

Additional *martingales* are related to non-tradable risks and perhaps difficult to compute.

Monte Carlo Pricing with Control Variate

$$P(0, S_0, \sigma_0) \approx \frac{1}{N} \sum_{i=1}^{N} \left[e^{-rT} H(S_T^{(i)}) - \mathcal{M}^{(i)}(\tilde{P}) \right],$$

where $\mathcal{M}(\tilde{P}) = \int_0^T e^{-rs} \frac{\partial \tilde{P}}{\partial x}(s, S_s, \sigma_s) \sigma_s S_s dW_s^*$ is a *martingale* with \tilde{P} being an approximation of P.

Control by Hedging Portfolio

Clewlow and Carverhill* used hedging portfolio as a control s.t.

$$P(0, S_0, \sigma_0) \approx \frac{1}{N} \sum_{i=1}^{N} \left[e^{-rT} H(S_T^{(i)}) - \mathcal{M}^{(i)}(P_{BS}) \right],$$

with $P_{BS}(t, S_t) = P_{BS}(t, S_t; \hat{\sigma})$. The choice of $\hat{\sigma}$ depends on the **long-run mean** of the driving volatility process.

^{*}Clewlow, L. and Carverhill, A. (1994) On the simulation of contingent claims, Journal of Derivatives 2:66-74.

Diffusion Operator Integral Method

Heath and Platen* proposed to use the option price approximated from deterministic volatility by removing its random source.

^{*}Heath, D. and Platen, E. (2002) A variance reduction technique based on integral representations, Quantitative Finance 2:362-369.

Homogenization Method

Fouque and H.* use the homogenized option price $P_{BS}(t, S_t; \bar{\sigma})$ to construct a martingale control $\mathcal{M}^{(i)}(P_{BS})$.

The **effective** variance $\bar{\sigma}^2$ is defined as the averaging of the variance function w.r.t. an invariant distribution of a volatility process.

^{*}Fouque, J.P. and Han (2004) A control variate method to evaluate option prices under multi-factor stochastic volatility models. Submitted.

Evaluate European Option by Martingale Control Variate

blue: Basic MC samples

green: MC+CV samples

A Variance Problem

A martingale control Variate method ends up to compute

$$P(0, S_0, Y_0, Z_0) \approx \frac{1}{N} \sum_{i=1}^{N} \left[e^{-rT} H(S_T^{(i)}) - \mathcal{M}^{(i)}(\tilde{P}) \right],$$

where the martingale is defined by

$$\mathcal{M}(\tilde{P}) = \int_0^T e^{-rs} \frac{\partial \tilde{P}}{\partial x}(s, S_s, Y_s, Z_s) \sigma_s S_s dW_s^{\star}$$

with \tilde{P} being an approx. to P.

Q: Can we estimate $Var(e^{-rT}H(S_T)-\mathcal{M}(\tilde{P}))$?

Time-Scaled Stochastic Volatility model

$$dS_{t} = rS_{t}dt + \sigma_{t}S_{t}dW_{0t}^{*}$$

$$\sigma_{t} = f(Y_{t}, Z_{t})$$

$$dY_{t} = \left[\frac{1}{\varepsilon}c_{1}(Y_{t}) + \frac{g_{1}(Y_{t})}{\sqrt{\varepsilon}}\Lambda_{1}(Y_{t}, Z_{t})\right]dt$$

$$+ \frac{g_{1}(Y_{t})}{\sqrt{\varepsilon}}\left(\rho_{1}dW_{0t}^{*} + \sqrt{1 - \rho_{1}^{2}}dW_{1t}^{*}\right)$$

$$dZ_{t} = \left[\frac{\delta c_{2}(Z_{t}) + \sqrt{\delta}g_{2}(Z_{t})\Lambda_{2}(Y_{t}, Z_{t})\right]dt + \sqrt{\delta}g_{2}(Z_{t})$$

$$\cdot \left(\rho_{2}dW_{0t}^{*} + \rho_{12}dW_{1t}^{*} + \sqrt{1 - \rho_{2}^{2} - \rho_{12}^{2}}dW_{2t}^{*}\right)$$

A European option price is defined by

$$P^{\varepsilon,\delta}(t,x,y,z) = \mathbb{E}^{\star}_{t,x,y,z} \left\{ e^{-r(T-t)} H(S_T) \right\}.$$

Variance Decomosition

Case: No Correlation between BMs

$$Var\left(e^{-rT}H(S_T) - \mathcal{M}(P_{BS})\right) = \mathbb{E}^{\star}_{0,x,y,z} \left\{ \int_0^T e^{-2rs} \left(\frac{\partial P^{\varepsilon,\delta}}{\partial x} - \frac{\partial P_{BS}}{\partial x}\right)^2 (s, S_s, Y_s, Z_s) f^2(Y_s, Z_s) S_s^2 ds + \frac{1}{\varepsilon} \int_0^T e^{-2rs} \left(\frac{\partial P^{\varepsilon,\delta}}{\partial y}\right)^2 (s, S_s, Y_s, Z_s) g_1^2(Y_s) ds + \delta \int_0^T e^{-2rs} \left(\frac{\partial P^{\varepsilon,\delta}}{\partial z}\right)^2 (s, S_s, Y_s, Z_s) g_2^2(Z_s) ds \right\}.$$

Variance Analysis

Under some smooth and bound conditions,

$$1.\mathbb{E}^{\star} \left\{ \int_{0}^{T} e^{-2rs} \left(\frac{\partial P^{\varepsilon,\delta}}{\partial x} - \frac{\partial P_{BS}}{\partial x} \right)^{2} f^{2}(Y_{s}, Z_{s}) S_{s}^{2} ds \right\} <$$

 $C \max\{\varepsilon, \delta\}$

$$2.\mathbb{E}^{\star} \left\{ \int_{0}^{T} e^{-2rs} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial y} \right)^{2} g_{1}^{2}(Y_{s}) ds \right\} \leq C \varepsilon^{2}$$

3.
$$\mathbb{E}^{\star} \left\{ \int_{0}^{T} e^{-2rs} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial z} \right)^{2} g_{2}^{2}(Z_{s}) ds \right\} \leq C$$

such that

$$Var \left(e^{-rT}H(S_T) - \mathcal{M}(P_{BS})\right) \le C \max\{\varepsilon, \delta\}.$$

First Inequality

By Cauchy-Schwartz inequality

$$\mathbb{E}^{\star} \left\{ \int_{0}^{T} e^{-2rs} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial x} - \frac{\partial P_{BS}}{\partial x} \right)^{2} f^{2}(Y_{s}, Z_{s}) S_{s}^{2} ds \right\}$$

$$\leq \sqrt{\mathbb{E}^{\star} \left\{ \int_{0}^{T} \left(e^{-rs} S_{s} \right)^{4} f^{4}(Y_{s}, Z_{s}) ds \right\}}$$

$$\times \sqrt{\mathbb{E}^{\star} \left\{ \int_{0}^{T} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial x} - \frac{\partial P_{BS}}{\partial x} \right)^{4} ds \right\}}$$

Delta Approximation

$$\frac{\partial P^{\varepsilon,\delta}}{\partial S_t}(t, S_t, Y_t, Z_t) = \mathbb{E}^{\star}_t \left\{ e^{-r(T-t)} \mathbf{I}_{\{S_T > K\}} \frac{\partial S_T}{\partial S_t} \right\}
= \tilde{E}_t \left\{ \mathbf{I}_{\{S_T > K\}} \right\}$$

where the Radon-Nikodym derivative is

$$\frac{d\tilde{P}}{dP^*} = e^{-\int_0^T \frac{\sigma_t^2}{2} dt + \int_0^T \sigma_t dW_t^{(0)*}}.$$

Digital option approximation yields

$$\left| \left(\frac{\partial P^{\varepsilon,\delta}}{\partial x} - \frac{\partial P_{BS}}{\partial x} \right) (t, S_t, Y_t, Z_t) \right| \le C \max\{\sqrt{\varepsilon}, \sqrt{\delta}\}.$$

Second Inequality

$$\int_0^T e^{-2rs} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial y} \right)^2 (s, S_s, Y_s, Z_s) g_1^2(Y_s) ds \leq C \varepsilon^2.$$

Conditional on the volatility process,

$$P^{\varepsilon,\delta}(t,x,y,z) = \mathbb{E}^{\star}_{t} \left\{ P_{BS}\left(t,x;K,T;\sqrt{\bar{\sigma}_{av}^{2}}\right) \right\},\,$$

where the realized variance is denoted by $\bar{\sigma}_{av}^2$:

$$\bar{\sigma}_{av}^2(y,z) = \frac{1}{T-t} \int_t^T f(Y_s, Z_s)^2 ds.$$

Chain Rules

$$\frac{\partial P^{\varepsilon,\delta}}{\partial y} = \mathbb{E}^{\star}_{t} \left\{ \frac{\partial P_{BS}}{\partial \sigma} \left(t, x; K, T; \sqrt{\bar{\sigma}_{av}^{2}(y, z)} \right) \frac{\partial \sqrt{\bar{\sigma}_{av}^{2}}}{\partial y} \right\}.$$

$$\frac{\partial \sqrt{\overline{\sigma_{av}^2}}}{\partial y} = \frac{\int_t^T \left[\frac{\partial f}{\partial y} (Y_s, Z_s) \frac{\partial Y_s}{\partial y} + \frac{\partial f}{\partial z} (Y_s, Z_s) \frac{\partial Z_s}{\partial y} \right] f(Y_s, Z_s) ds}{(T - t) \sqrt{\overline{\sigma_{av}^2}}}$$

How fast does $\left(\begin{array}{cc} \frac{\partial Y_s}{\partial u} & \frac{\partial Z_s}{\partial u} \end{array}\right)$ grow?

Perturbed Dynamical System

Rescaling $\tilde{Y}_s^{\varepsilon} = Y_{s\varepsilon}$ and $\tilde{Z}_s^{\varepsilon} = Z_{s\varepsilon}$, we deduce

$$\frac{d}{ds} \begin{pmatrix} \frac{\partial \tilde{Y}_{s}^{\varepsilon}}{\partial y} \\ \frac{\partial \tilde{Z}_{s}^{\varepsilon}}{\partial y} \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{\partial \tilde{Y}_{s}^{\varepsilon}}{\partial y} \\ \frac{\partial \tilde{Z}_{s}^{\varepsilon}}{\partial y} \end{pmatrix}$$

$$+ \sqrt{\varepsilon} \cdot \begin{pmatrix} \nu_{1} \sqrt{2} \frac{\partial \tilde{\Lambda}_{1}}{\partial y} (\tilde{Y}_{s}^{\varepsilon}, \tilde{Z}_{s}^{\varepsilon}) & \frac{\partial \tilde{\Lambda}_{1}}{\partial z} (\tilde{Y}_{s}^{\varepsilon}, \tilde{Z}_{s}^{\varepsilon}) \\ \sqrt{\delta} \nu_{2} \frac{\partial \tilde{\Lambda}_{2}}{\partial y} (\tilde{Y}_{s}^{\varepsilon}, \tilde{Z}_{s}^{\varepsilon}) & -\delta + \sqrt{\delta} \nu_{2} \sqrt{2} \frac{\partial \tilde{\Lambda}_{2}}{\partial z} (\tilde{Y}_{s}^{\varepsilon}, \tilde{Z}_{s}^{\varepsilon}) \\ \cdot \begin{pmatrix} \frac{\partial \tilde{Y}_{s}^{\varepsilon}}{\partial y} \\ \partial \tilde{Z}_{s}^{\varepsilon} \end{pmatrix} \text{ with } \begin{pmatrix} \frac{\partial \tilde{Y}_{0}^{\varepsilon}}{\partial y}, \frac{\partial \tilde{Z}_{0}^{\varepsilon}}{\partial y} \end{pmatrix}^{T} = (1, 0)^{T}.$$

Stability Theory

By a classical stability result,* we obtain $|\frac{\partial Y_s}{\partial y}| < C_1 e^{-(s-t)/\varepsilon}$ and $|\frac{\partial Z_s}{\partial y}| < C_2 \delta$ for some constants C_1 and C_2 .

*R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, 1953.

Third Inequality

$$\int_0^T e^{-2rs} \left(\frac{\partial P^{\varepsilon, \delta}}{\partial z} \right)^2 (s, S_s, Y_s, Z_s) g_2^2(Z_s) ds \le C$$

The proof is similar as in the second inequality.

Replication Error and Variance Reduction *

- 1. European Options
- 2. Barrier Options
- 3. American Options

^{*}Fouque, J.-P. and H. (2005) A martingale control variate method for option pricing with stochastic volatility.

Numerical Results I: European Options Double Heston Model

1/arepsilon	δ	Std^{BMC}	Std^{MCV}	Ratio
1/75	0.01	0.1103 (7.03)	0.0068 (7.09)	265
1/50	0.1	0.1102 (6.97)	0.0073 (7.08)	230
1/10	0.5	0.1085 (6.94)	0.0103 (7.03)	111
1/5	1	0.1063 (6.91)	0.0113 (6.99)	89

Numerical Results II: Barrier Options

1/arepsilon	δ	Std^{BMC}	Std^{MCV}	Ratio
100	0.01	0.2822 (10.82)	0.0304 (10.85)	86
75	0.1	0.2047 (10.77)	0.0306 (10.76)	45
50	1	0.2455 (11.21)	0.0474 (11.10)	27
25	10	0.2604 (12.62)	0.0417 (12.44)	39

Variance Reduction: a down and out Barrier Option

American Option Pricing Problem

Given the risk-neutral prob. space $(\Omega, \mathcal{F}, \mathbb{P}^*, \mathcal{F}_{[0:T]})$, an Americaan option pricing problem is formulated as an optimal stopping problem:

$$P_{am}(0,S_0) = \sup_{0 \le \tau \le T} \mathbb{E}^{\star} \left\{ e^{-r\tau} H(S_{\tau}) | \mathcal{F}_0 \right\},\,$$

where τ is any \mathcal{F}_t -adapted stopping time and S is the underlying asset price (diffusion) process.

Variational Inequality Characterization

It can be shown that $P_{am}(t,x)$ admits the classical solution of the PDIE

$$\begin{cases} \left(\frac{\partial}{\partial t} + \mathcal{A}_{\mathcal{S}}\right) P_{am}(t, x) \leq 0 \\ P_{am}(t, x) \geq H(x) \\ \left(\left(\frac{\partial}{\partial t} + \mathcal{A}_{\mathcal{S}}\right) P_{am}(t, x)\right) (P_{am}(t, x) - H(x)) = 0. \end{cases}$$

Or one can solve a free boundary problem in PDE.

Deterministic schemes are highly sensitive to dimensionalities.

Recent Development on Efficient Monte Carlo Pricing Algorithms

- (1) Primal Approach: approximate optimal stopping rule
 Tsitsiklis and Van Roy (2001), Longstaff and Schwartz (2001)
- (2) Dual Approach: approximate (super-)martingales Rogers (2002) used martingale approxim..

 Haugh and Kogan (2004) used super-martingale approxim..

Primal Approach (I) A Low-Biased Solution

For any stopping time $\tilde{\tau}$, a lower solution is deduced

$$P_{am}(0, S_0) = \sup_{0 \le \tau \le T} \mathbb{E}^{\star} \left\{ e^{-r\tau} H(S_{\tau}) | \mathcal{F}_0 \right\},$$

$$\geq \mathbb{E}^{\star} \left\{ e^{-r\tilde{\tau}} H(S_{\tilde{\tau}}) | \mathcal{F}_0 \right\} \equiv P_{am}^{low}(0, S_0)$$

 $\tilde{\tau}$ can be estimated from least squares methods from the dynamic programming formulation.

Primal Approach (II) Variance Reduction

By martingale control variate methods*,

$$\mathbb{E}^{\star}\left\{e^{-r\tilde{\tau}}H(S_{\tilde{\tau}})\right\} = \mathbb{E}^{\star}\left\{e^{-r\tilde{\tau}}H(S_{\tilde{\tau}}) - \mathcal{M}_{\tilde{\tau}}\right\},\,$$

where $\mathcal{M}_{\tilde{\tau}} = \int_0^{\tilde{\tau}} e^{-rs} \frac{\partial \tilde{P}}{\partial x}(s, S_s) \sigma_s S_s dW_s$, and \tilde{P} is an approxim. of the option price, one can reduce the variance of the basic Monte Carlo estimator.

Given $\tilde{\tau}$, we transform an American option problem to a **Barrier option problem**.

^{*}Fouque and H. (2006)

Dual Approach (I) A Direct Monte Carlo Simiulation

Rogers (2002) derived the duality of the American option problem by

$$P_{am}(0, S_0) = \inf_{\mathcal{M} \in H_0^1} \mathbb{E}^* \left\{ \sup_{0 \le t \le T} \left(e^{-rt} H(S_t) - \mathcal{M}_t \right) \right\},\,$$

 $H_0^1=\{$ all integrable martingales but vanish at time $0\}$

proof:

≥: trivial

Dual Approach (II) A High-Biased Solution

Given any martingale $\tilde{M} \in H^1_0$, one deduces an upper solution

$$P_{am}^{high}(0, S_0) \equiv \mathbb{E}^{\star} \left\{ \sup_{0 \le t \le T} \left(e^{-rt} H(S_t) - \tilde{M}_t \right) \right\}$$

$$\geq P_{am}(0, S_0)$$

Given \tilde{M} we transform an American option problem to a **Lookback option problem**.

Dual Approach (III) Error Bound Estimate

Lemma 1: For any given martingale $\tilde{M} \in H_0^1$, $P_{am}^{high}(0, S_0) \leq P_{am}(0, S_0) + \mathbb{E}^* \left\{ \left| M_T^* - \tilde{M}_t \right| \right\}$. Proof:

$$P_{am}^{high}(0, S_0)$$

$$= \mathbb{E}^{\star} \left\{ \sup_{0 \le t \le T} \left(e^{-rt} H(S_t) - M_t^{\star} + M_t^{\star} - \tilde{M}_t \right) \right\}$$

$$\leq P_{am}(0, S_0) + \mathbb{E}^{\star} \left\{ \sup_{0 \le t \le T} \left(M_t^{\star} - \tilde{M}_t \right) \right\}$$

$$\leq P_{am}(0, S_0) + \sqrt{Var \left\{ M_T^{\star} - \tilde{M}_T \right\}}$$

Variance Bound V.S. Error Bound

Lemma 2: For low-biased solution, the variance of its MCV estimator is

$$Var\left(H(S_{\underline{\tau}}) - \mathcal{M}(\underline{P};\underline{\tau})\right) = Var\left(\mathcal{M}(\mathcal{P} - \underline{P})\right)$$

$$= E\left(\int_{0}^{\underline{\tau}} e^{-2rs} \left(\frac{\partial P_{am}}{\partial x} - \frac{\partial \underline{P}}{\partial x}\right) \sigma_{s}^{2} S_{s}^{2} ds\right)$$

$$\leq E\left(\int_{0}^{T} e^{-2rs} \left(\frac{\partial P_{am}}{\partial x} - \frac{\partial \underline{P}}{\partial x}\right) \sigma_{s}^{2} S_{s}^{2} ds\right) \equiv VB$$

For high-biased solution, the error bound was shown

$$P_{am}^{high}(0, S_0) - P_{am}(0, S_0) \le \sqrt{VB}.$$

Remark: the STD of lower solution and the error bound of higher solution are bounded from above by the same quantity.

Numerical Results III: Low-Biased Solution Primal Approach

Use the Least-squares method, which provides a biased **lower** bound solution.

1/arepsilon	δ	$Std_{oldsymbol{low}}^{Pri_{MC}}$	$Std_{oldsymbol{low}}^{Pri_{CV}}(P_{BAW})$	Ratio
100	0.01	0.235 (21.43)	0.024 (21.59)	96
75	0.1	0.256 (21.48)	0.028 (21.80)	81
50	1	0.257 (21.52)	0.035 (21.63)	54
25	10	0.260 (21.96)	0.045 (21.32)	32

Ref: G. Barone-Adesi and R. E. Whaley, "Efficient

Analytic Approximation of American Option Values,"

The Journal of Finance, Vol. XLII, No. 2, June 1987.

Variance Reduction: American Options

Numerical Results IV: Low-Biased Solution VS High-Biased Solution

Use our control martingale. (Rogers' approach is not easy to generalized to SV models.)

1/arepsilon	δ	$Std_{oldsymbol{low}}^{Pri_{CV}}$	$Std_{oldsymbol{high}}^{Dul}$
100	0.01	0.0240 (21.59)	0.0239 (22.29)
75	0.1	0.0286 (21.80)	0.0271 (22.33)
50	1	0.0350 (21.63)	0.0334 (22.37)
25	10	0.0453 (21.32)	0.0433 (22.29)

Conclusion

- Martingale control variate method is very general for option pricing problems. The control is related to the accumulative value of delta-hedging portfolios.
- This variance analysis technique can also be applied to characterize the error bound analysis under randomize Quasi-MC methods.
- some future works on importance sampling and the use of statistical estimation..etc.

Acknowledgment

- results from joint works with Jean-Pierre Fouque and Yongzeng Lai
- Don Aronson
- IMA, University of Minnesota
- Ford Education Fundation
- NSC, Taiwan