Stochastic Calculus for Finance II Continuous-Time Models

Chapter 4 Exercise
                                                    戴 慈 Jan 10, 2008 
Exercise 4.5
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(ii) Define the Stratonovich integrél of W (t) with respect to W (¢) to be

n-1

T
/0 WOodW®) = I S W W) - W), (4101)
=0

In contrast to the It integral [ W(t) dW(£) = LW2(T) — LT of (4.3.4),
which evaluates the integrand at the left endpoint of each subinterval
[£5, %541, here we evaluate the integrand at the midpoint t}. Show that

T 1,
/ W(t) o dW(t) = 3W(T).
Q

(Hint: Write the approximating sum in (4.10.1) as the sum of an approx-
imating surn for the Itd integral fOT W(t) dW(t) and Quij2. The approxi-
mating sum for the It6 integral is the one corresponding to the partition
0=1p <tf <ty <t] <.+ <th_y <ty =T, not the partition J7.)

Exercise 4.5 (Solving the generalized geometric Brownian motion
equation). Let S(t) be a positive stochastic process that satisfies the gener-
alized geometric Brownian motion differential equation (see Example 4.4.8)

dS(t) = a(f)S(t) dt + o(£)S() dW (), (410.2)

where a(t) and o(t) are processes adapted to the filtration F(t), ¢ > 0, asso-
ciated with the Brownian motion W(t), t > 0. In this exercise, we show that
5(t) must be given by formula (4.4.26) (i.e., that formula provides the only
solution to the stochastic differential equation (4.10.2)). In the process, we
provide a method for solving this equation.

(i) Using (4.10.2) and the It6-Doeblin formula, compute dlog S(t). Simplify
s0 that you have a formula for dlog S(t) that does not involve S(%).

(it} Integrate the formula you obtained in (i), and then exponentiate the an-
swer to obtain (4.4.26).

Exercise 4.6. Let S{t) = 5(0)exp {aW(t) + (oz— -zl-az)t} be a geometric
Brownian motion. Let p be a positive constant. Compute d (57(¢)), the differ-
ential of S(t) raised to the power p.

Exercise 4.7. (i) Compute dW*(t) and then write W*(T") as the sum of an
ordinary (Lebesgue) integral with respect to time and an Itd integral.

(ii) Take expectations on both sides of the formula you obtained in (i), use
the fact that EW?(t) = t, and derive the formula EW*(T) = 372,

{iii) Use the method of (i) and (ii) to derive a formula for EWS(T).

Exercise 4.8 (Solving the Vasicek equation). The Vasicek interest rate
stochastic differential equation (4.4.32) is




Ans.
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Exercise 4.6
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(ii) Define the Stratonovich integrél of W (t) with respect to W (¢) to be

n-1

T
/0 WOodW®) = I S W W) - W), (4101)
=0

In contrast to the It integral [ W(t) dW(£) = LW2(T) — LT of (4.3.4),
which evaluates the integrand at the left endpoint of each subinterval
[£5, %541, here we evaluate the integrand at the midpoint t}. Show that

T 1,
/ W(t) o dW(t) = 3W(T).
Q

(Hint: Write the approximating sum in (4.10.1) as the sum of an approx-
imating surn for the Itd integral fOT W(t) dW(t) and Quij2. The approxi-
mating sum for the It6 integral is the one corresponding to the partition
0=1p <tf <ty <t] <.+ <th_y <ty =T, not the partition J7.)

Exercise 4.5 (Solving the generalized geometric Brownian motion
equation). Let S(t) be a positive stochastic process that satisfies the gener-
alized geometric Brownian motion differential equation (see Example 4.4.8)

dS(t) = a(f)S(t) dt + o(£)S() dW (), (410.2)

where a(t) and o(t) are processes adapted to the filtration F(t), ¢ > 0, asso-
ciated with the Brownian motion W(t), t > 0. In this exercise, we show that
5(t) must be given by formula (4.4.26) (i.e., that formula provides the only
solution to the stochastic differential equation (4.10.2)). In the process, we
provide a method for solving this equation.

(i) Using (4.10.2) and the It6-Doeblin formula, compute dlog S(t). Simplify
s0 that you have a formula for dlog S(t) that does not involve S(%).

(it} Integrate the formula you obtained in (i), and then exponentiate the an-
swer to obtain (4.4.26).

Exercise 4.6. Let S{t) = 5(0)exp {aW(t) + (oz— -zl-az)t} be a geometric
Brownian motion. Let p be a positive constant. Compute d (57(¢)), the differ-
ential of S(t) raised to the power p.

Exercise 4.7. (i) Compute dW*(t) and then write W*(T") as the sum of an
ordinary (Lebesgue) integral with respect to time and an Itd integral.

(ii) Take expectations on both sides of the formula you obtained in (i), use
the fact that EW?(t) = t, and derive the formula EW*(T) = 372,

{iii) Use the method of (i) and (ii) to derive a formula for EWS(T).

Exercise 4.8 (Solving the Vasicek equation). The Vasicek interest rate
stochastic differential equation (4.4.32) is




Ans.
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Exercise 4.7
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(ii) Define the Stratonovich integrél of W (t) with respect to W (¢) to be

n-1

T
/0 WOodW®) = I S W W) - W), (4101)
=0

In contrast to the It integral [ W(t) dW(£) = LW2(T) — LT of (4.3.4),
which evaluates the integrand at the left endpoint of each subinterval
[£5, %541, here we evaluate the integrand at the midpoint t}. Show that

T 1,
/ W(t) o dW(t) = 3W(T).
Q

(Hint: Write the approximating sum in (4.10.1) as the sum of an approx-
imating surn for the Itd integral fOT W(t) dW(t) and Quij2. The approxi-
mating sum for the It6 integral is the one corresponding to the partition
0=1p <tf <ty <t] <.+ <th_y <ty =T, not the partition J7.)

Exercise 4.5 (Solving the generalized geometric Brownian motion
equation). Let S(t) be a positive stochastic process that satisfies the gener-
alized geometric Brownian motion differential equation (see Example 4.4.8)

dS(t) = a(f)S(t) dt + o(£)S() dW (), (410.2)

where a(t) and o(t) are processes adapted to the filtration F(t), ¢ > 0, asso-
ciated with the Brownian motion W(t), t > 0. In this exercise, we show that
5(t) must be given by formula (4.4.26) (i.e., that formula provides the only
solution to the stochastic differential equation (4.10.2)). In the process, we
provide a method for solving this equation.

(i) Using (4.10.2) and the It6-Doeblin formula, compute dlog S(t). Simplify
s0 that you have a formula for dlog S(t) that does not involve S(%).

(it} Integrate the formula you obtained in (i), and then exponentiate the an-
swer to obtain (4.4.26).

Exercise 4.6. Let S{t) = 5(0)exp {aW(t) + (oz— -zl-az)t} be a geometric
Brownian motion. Let p be a positive constant. Compute d (57(¢)), the differ-
ential of S(t) raised to the power p.

Exercise 4.7. (i) Compute dW*(t) and then write W*(T") as the sum of an
ordinary (Lebesgue) integral with respect to time and an Itd integral.

(ii) Take expectations on both sides of the formula you obtained in (i), use
the fact that EW?(t) = t, and derive the formula EW*(T) = 372,

{iii) Use the method of (i) and (ii) to derive a formula for EWS(T).

Exercise 4.8 (Solving the Vasicek equation). The Vasicek interest rate
stochastic differential equation (4.4.32) is




Ans.
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Exercise 4.8
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(ii) Define the Stratonovich integrél of W (t) with respect to W (¢) to be

n-1

T
/0 WOodW®) = I S W W) - W), (4101)
=0

In contrast to the It integral [ W(t) dW(£) = LW2(T) — LT of (4.3.4),
which evaluates the integrand at the left endpoint of each subinterval
[£5, %541, here we evaluate the integrand at the midpoint t}. Show that

T 1,
/ W(t) o dW(t) = 3W(T).
Q

(Hint: Write the approximating sum in (4.10.1) as the sum of an approx-
imating surn for the Itd integral fOT W(t) dW(t) and Quij2. The approxi-
mating sum for the It6 integral is the one corresponding to the partition
0=1p <tf <ty <t] <.+ <th_y <ty =T, not the partition J7.)

Exercise 4.5 (Solving the generalized geometric Brownian motion
equation). Let S(t) be a positive stochastic process that satisfies the gener-
alized geometric Brownian motion differential equation (see Example 4.4.8)

dS(t) = a(f)S(t) dt + o(£)S() dW (), (410.2)

where a(t) and o(t) are processes adapted to the filtration F(t), ¢ > 0, asso-
ciated with the Brownian motion W(t), t > 0. In this exercise, we show that
5(t) must be given by formula (4.4.26) (i.e., that formula provides the only
solution to the stochastic differential equation (4.10.2)). In the process, we
provide a method for solving this equation.

(i) Using (4.10.2) and the It6-Doeblin formula, compute dlog S(t). Simplify
s0 that you have a formula for dlog S(t) that does not involve S(%).

(it} Integrate the formula you obtained in (i), and then exponentiate the an-
swer to obtain (4.4.26).

Exercise 4.6. Let S{t) = 5(0)exp {aW(t) + (oz— -zl-az)t} be a geometric
Brownian motion. Let p be a positive constant. Compute d (57(¢)), the differ-
ential of S(t) raised to the power p.

Exercise 4.7. (i) Compute dW*(t) and then write W*(T") as the sum of an
ordinary (Lebesgue) integral with respect to time and an Itd integral.

(ii) Take expectations on both sides of the formula you obtained in (i), use
the fact that EW?(t) = t, and derive the formula EW*(T) = 372,

{iii) Use the method of (i) and (ii) to derive a formula for EWS(T).

Exercise 4.8 (Solving the Vasicek equation). The Vasicek interest rate
stochastic differential equation (4.4.32) is




 [image: image9.png]192 4 Stochastic Celculus
dR(t) = (a — BR(t)) dt+ o dW (2),

where @, B, and ¢ are positive constants. The solution to-this equation is
given in Example 4.4.10. This exercise shows how to derive this solution.

(1) Use (4.4.32) and the It6-Doeblin formula to compute d{ePtR(z)). Simplify
it s0 that you have a formula for d(e? R(t)) that does not involve R(%).

(ii) Integrate the equation you obtained in (i) and solve for R(t) to obtain
(4.4.33).

Exercise 4.9. For a European call expiring at time T with strike price X,
the Black-Scholes-Merton price at time ¢, if the time-t stock price is #, is

(4, @) = aN(dy (T~ t,2)) — Ke " T-ON(d_(T ~ t,2)),

where

dy(r,3) = # [log% + (r + %02) 7'] ,
d_(r,z) = di(r,3) ~ oV7,

and N(y) is the cumulative standard normal distribution

1 v 1 0 a2
N = [ R [
—00 -y

The purpose of this exercise is to show that the function c satisfies the Black-
Scholes-Merton partial differential equation .

exlt, @) -+ rca(t, z) + %U2zzcﬂ(t, o) =re(tz), 0<t< T,z >0, (410.3)
the terminal condition .
ltiTrqqc(t,w) =(@@—-K)t, z>03#K, (4.10.4)
and the boundary conditions
lim e(t,z) =0, lim [e(t,2) - (z - e T IK)] =0, 0<t<T. (4.105)
Equation (4.10.4) and the first part of (4.10.5) are usually written more simply

but less precisely as
c(T,z)=(z - K)*, z>0




Ans.
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Exercise 4.13
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denote the price for 2 Buropean call, expiring at time T with strike price K]
where

2T~ t,2) = — e |19 z+(r:l:fi)(T-t)} ;
£3 s ;o g X . §
This option price assumes the underlying stock is a geometric Brownian mo:

tion with volatility oy > 0. For this problem, we take this to be the market

price of the option. i
Suppose, however, that the underlying asset is really a geometric Brownian!

motion with volatility o2 > o1, ie.,

dS(t) = aS(t)dt + UQS(t) dw(t).

SRS

Consequently, the market price of the call is incorrect.

We set up a portfolio whose value at each time ¢ we denote by X(t). Wef
begin with X(0) = 0. At each time ¥, the portfolio is long one European call,
is short cx (¢, S(t)) shares of stock, and thus has a cash position

i

X(0) - ot S0 + S)ealt, SE), |

which is invested at the constant interest rate r. We also remove cash frofrg
this portfolio at a rate (02 — 02)5%(t)csz (¢, S(¢)). Therefore, the gifferentislf
of the portfolio value is

AX(t) = de(t, $(8)) — ca(t, S(2)) dS(2t) i
X @) - elt, SE) + S(Ehen(t, S@))] de

: —1(03 — 0})82(B) e (t, S(E)) dE, 0SS T

Show that X (t) = 0 for all ¢ € [0,7]. In particular, because ¢z (t, S(t)) > 0
and o2 > 0y, we have an arbitrage opportunity; we can start with zero mxtml]
capital, remove cash at a positive rate between times 0 and 7', and at time T
have zero liability. (Hint: Compute d(e~"X(2)).)

Exercise 4.12. (i) Use formulas (4.5.23)-(4.5.25), (4.5.26), and (4.5.29) to
determine the delta p,(t,z), the gamma p;.(t,x), and the theta p,(t,z)
of & European put.

(i) Show that an agent hedging a short position in the put should have 4
short position in the underlying stock and a long position in the money;

market account. !
(iii) Show that f{t,x) of (4.5.26) and p(t, v} satisfy the same Black-Scholes®
Merton partial differential equation (4.5.14) satisfied by c(t, ).

Exercise 4.13 (Decomposition of correlated Brownian motions inte
independent Brownian motions). Suppose B (t) and Ba(t) are Brownian

motions and .
dBy(t) dBa(t) = p(t) dt



[image: image12.png]188 4 Stochastic Calculus

where p is a stochastic process taking values strictly be(:ween —1 and L. Define
processes Wi(t) and Wa(t) such that

By(t) = Wi(#),

B0 = [ srawiio)+ [ VIZ (),

and show that Wy () and W,(t) are independent; Brownian motions.

Exercise 4.14. In the derivation of the It3-Doeblin formula, Theorem 4.4.1,
we considered only the case of the function f(z) = =7, for which f”(x) = 1.
‘This made it easy to determine the limit of the last term,

15 Zf"( EN W (tga) - WD)

g—Q

appearing in (4.4.5). Indeed,

n—-1 n—1
e 2y /D ) =Wl ) =n},i§{gOZ[W(t]+1) Wi
=W, WiT) =
T
- [ rovena.

If we had been working with an arbitrary function f(x), we could not
replace f/(W(t;)) by 1 in the argument above. It is tempting in this case to

just argue that [W(tj41) — W(t])] is approximately equal to (tj+1 ~ t5), 50
thet

=1
W ENI ) - W)
350

lis approximately equal to

n-1
3T P )~ ),
=0
and this has limit fo FUW(E) dt as |IT[} — 0. However, as discussed in

Remark 3.4.4, it does not make sense to say that [W(t].H) - W(t; )]
spproximately equal to {£j+1 — 1;). In this exercise, we develop a correct
explanation for the equation

i 5 1O W = [ OO (g20m)

IIHII—*’D




Ans.
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Exercise 4.17
[image: image14.png]=

Exercise 4.17 (Instantaneous correlation). Let
t t
X1(t) = X1(0) +/ O1(u) du +/ o1(u) dBy(u),
0 0
t t
Xa(t) = X2(0) +/ Oa(u) du +/ oa(u) dBy(u),
o [}
where B (t) and Bs(t) are Brownian motions satisfying dB; (¢) dBa(t) = p(t)
and p(t), ©1(t), O2(t), o1(t), and o2(t) are adapted processes. Then
dX1(t) dXa(t) = o1(t)oa(t) dBi(t) dBa(t) = p(t)oy (t)oo(8) dt.

We call p(t) the instantaneous correlation between X (t) and X2(t) for the
reason explained by this exercise.
We first consider the case when p, ©;, 2, 01, and oo are constant. Then

CXu(t) = X2(0) + €1t + 1 Buf),
Xa(t) = X2(0) + Oot + 02 By (t).
Fix o > 0, and let € > 0 be éiven.
(i) Use Itd’s product rule to show that
E [(Bi(to +€) — Bi(to)) (Ba(to + €) — Ba(to))| F(to)] = pe.
(ii) Show that, conditioned on F(tp), the pair of random variables
(X1(to + €) = X1 (to), Xa(to + €) ~ Xa(fo))
has means, variances, and covariance
Mi(e) = E[Xi(to + €) — Xy(t0)| F(to)] = Osefori=1,2, (4.10.28)
Vile) = B [ (Xalto + €) — Xi(to)*| F(to)] — M2
=ofefori=1,2, (4.10.29)

Cle) =E[(Xa(to + €) — X1 (to)) (Xalto + €) ~ Xa(to))| Flto)]
—M1(e)Ma(e) = poyoae. . _ (4.10.30)




Ans.
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In particular, conditioned on F(tg), the correlation between the incre-
ments X3 (fo +¢€) ~ X1(to) and Xa{to + €} ~ Xa(to) is

o9
Vieva®

We now allow p(t), 61(t), @2(t), o1(t), and o2(t) to be continuous adapted
processes, assuming only that there is a constant M such that

OIS M, |ou) <M, |02()) S M, |oa(D) <M, |o()) <M
. (4.10.31)
for all t > 0 slmost surely. We again fix & > 0.

(iii) Show that, conditioned on F(tg), we have the conditional mean formulas
M;(e) = E|X;(to+ €) — Xito)) F(to)] = Oifto)e + ofe) for i =1, 2,
(4.10.32)

where we denote by o(¢) any quantity that is so small that limyg —(—2 B3N
In other words, show that

.1 _ .
1(%1 ~€'M,~(5) =6&;(ty) for i = 1,2. (4.10.33)

(Hint: First show that
tode

M{e)=E { Bi{u) du

to

f(tg)} . (4.10.39)

The Dominated Convergence Theorem, Theorem 1.4.9, works for condi-
tional expectations as well as for expectations in the following sense. Let
X be a random variable. Suppose for every ¢ > 0 we have a random vari-
able X{e) such that lim.yo X (¢} = X almost surely. Finally, suppose there
is another random variable Y such that EY < co and |X(e}| < ¥ almost
surely for every € > 0. Then

HmELX ()l F (to)] = BIX |7 (ta)]-
. Use this to obtain (4.10.33) from (4.10.34).)
(iv) Show that D;;{e) defined by

ng(e) =K [(.Xg(to +€) — X;(to)) (Xj(to -+ 6) — Xj(tu))l]:(to)]
~M;(e) M;(e)

for i=1,2 and j = 1,2 satisfies
Dy; (e) = pij(to)oi(to)o; (to)e + o(e), (4.10.35)

where we set p11(t) = paa(t) = 1 and pya(t) = par(t) = p(t). (Hint: You
should define the martingales
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In particular, conditioned on F(tg), the correlation between the incre-
ments X3 (fo +¢€) ~ X1(to) and Xa{to + €} ~ Xa(to) is

o9
Vieva®

We now allow p(t), 61(t), @2(t), o1(t), and o2(t) to be continuous adapted
processes, assuming only that there is a constant M such that

OIS M, |ou) <M, |02()) S M, |oa(D) <M, |o()) <M
. (4.10.31)
for all t > 0 slmost surely. We again fix & > 0.

(iii) Show that, conditioned on F(tg), we have the conditional mean formulas
M;(e) = E|X;(to+ €) — Xito)) F(to)] = Oifto)e + ofe) for i =1, 2,
(4.10.32)

where we denote by o(¢) any quantity that is so small that limyg —(—2 B3N
In other words, show that

.1 _ .
1(%1 ~€'M,~(5) =6&;(ty) for i = 1,2. (4.10.33)

(Hint: First show that
tode

M{e)=E { Bi{u) du

to

f(tg)} . (4.10.39)

The Dominated Convergence Theorem, Theorem 1.4.9, works for condi-
tional expectations as well as for expectations in the following sense. Let
X be a random variable. Suppose for every ¢ > 0 we have a random vari-
able X{e) such that lim.yo X (¢} = X almost surely. Finally, suppose there
is another random variable Y such that EY < co and |X(e}| < ¥ almost
surely for every € > 0. Then

HmELX ()l F (to)] = BIX |7 (ta)]-
. Use this to obtain (4.10.33) from (4.10.34).)
(iv) Show that D;;{e) defined by

ng(e) =K [(.Xg(to +€) — X;(to)) (Xj(to -+ 6) — Xj(tu))l]:(to)]
~M;(e) M;(e)

for i=1,2 and j = 1,2 satisfies
Dy; (e) = pij(to)oi(to)o; (to)e + o(e), (4.10.35)

where we set p11(t) = paa(t) = 1 and pya(t) = par(t) = p(t). (Hint: You
should define the martingales
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t .
Yit) = / ox(w) dBy(u) for i = 1,2,
(]
$0 you can write

to+-¢
Dyj(e) =E [(Ye(to +6) = Yilto) + A ei(u)du)

fote

. (Yj(tn +€) ~ Y;(to) +[ O;(u) du) _F(to)]
—Mi(e)M;(e). (4.10.36)

Then expand the expression on the right-hend side of (4.10.36). You
should use Itd’s product rule to show that the first term in the expan-
sion is

E [ (¥ito + &) ~ Yilto)) (Y (to + &) — ¥;(t0))| F(t0)]
to+e
=E [ [ mtintiesea f(m)] :

This equation is similar to (4.10.34}, and you can use the Dominated
Convergence Theorem as stated in the hint for (iii) to conclude that

lin 2B [ (%lto + ) — ilto)) (Y(to + 9 = % (t0)| #(to)]
= py; (to)os(to)a;(to)-

To handle the other terms that arise from expanding (4.10.36), you will
need (4.10.31) and the fact that

i E[[¥(to + ) — ¥i(to) [ 7(t0)] =0. (41037)

You may use (4.10.37) without proving it.
(v) Show that, conditioned on F{iy), the pair of random variables

(X1(to + €) — X1 (to), Xalto + €) — Xalto))
has variances and covariance

Vi(e) = B [ (Xilto + ) = Xilto))| F(to)] - M(e)

= o} (to)e +ole) for i =1,2, (4.10.3%)
O = E [ (X1t + €) = Xa{to)) (Xa(to + €) ~ Xa(ta)) | F(to)]
—My(e)Ma(e) (4.10.39)

= p(to)t?l (tu)a’z(io)e + o(e),
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(vi) Show that
lim ——C )
m———
0 /Vi(e)Va(e)
In other words, for small values of € > 0, conditioned on F(¢y), the corre-
lation between the increments X1 (to +¢) — X1 (to) and Xa(to+¢) — Xa(ty)
is approximately equal to p(ty), and this approximation becomes exact ag
el 0.

Exercise 4.18. Let a stock price be a geometric Brownian mc tion

dS(t) = aS(t)dt + o S(t) dW(t),

= plto). (4.10.40)

and let 7 denote the interest rate. We define the market price of risk to be
oa—-T
o

8=
and the state price density process to be

= EXP{ — W (2) - (r + %Gz)t}.

(i) Show that
de(t) = —BC(E) AW (8) — r( () dt.
(ii) Let X denote the value of an investor’s portfolio when he uses a portfolio
process A(t). From (4.5.2), we have

dX () = rX(t) dt + A(E)(a — r)S(E) dt + A{)oS(E) dW(E).

Show that ((¢)X(t) is a martingale. (Hint: Show that the differential
d(¢(t)X () has no dt term.)

(iii) Let T > O be a fixed terminal time. Show that if an investor wants to
begin with some initial capital X(0) and invest in order to have portfolio
value V(T) at time T, where V(T) is a given F(T)-measurable random
variable, then he must begin with initial capital

X(0) = EL(TV(T)].

In other words, the present value at time zero of the random payment
V(T) at time T is E[{(T)V(T)). This justifies calling {(t) the state price
density process. ’

Exercise 4.19. Let W(¢) be a Brownian motion, and define

3
B(t) = /0 sign(W (s)) dW (s),

where
. 1 ifz>0,
sign(=) = _tifz <0,
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Exercise 4.18
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(vi) Show that
lim ——C )
m———
0 /Vi(e)Va(e)
In other words, for small values of € > 0, conditioned on F(¢y), the corre-
lation between the increments X1 (to +¢) — X1 (to) and Xa(to+¢) — Xa(ty)
is approximately equal to p(ty), and this approximation becomes exact ag
el 0.

Exercise 4.18. Let a stock price be a geometric Brownian mc tion

dS(t) = aS(t)dt + o S(t) dW(t),

= plto). (4.10.40)

and let 7 denote the interest rate. We define the market price of risk to be
oa—-T
o

8=
and the state price density process to be

= EXP{ — W (2) - (r + %Gz)t}.

(i) Show that
de(t) = —BC(E) AW (8) — r( () dt.
(ii) Let X denote the value of an investor’s portfolio when he uses a portfolio
process A(t). From (4.5.2), we have

dX () = rX(t) dt + A(E)(a — r)S(E) dt + A{)oS(E) dW(E).

Show that ((¢)X(t) is a martingale. (Hint: Show that the differential
d(¢(t)X () has no dt term.)

(iii) Let T > O be a fixed terminal time. Show that if an investor wants to
begin with some initial capital X(0) and invest in order to have portfolio
value V(T) at time T, where V(T) is a given F(T)-measurable random
variable, then he must begin with initial capital

X(0) = EL(TV(T)].

In other words, the present value at time zero of the random payment
V(T) at time T is E[{(T)V(T)). This justifies calling {(t) the state price
density process. ’

Exercise 4.19. Let W(¢) be a Brownian motion, and define

3
B(t) = /0 sign(W (s)) dW (s),

where
. 1 ifz>0,
sign(=) = _tifz <0,
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Exercise 4.19
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(vi) Show that
lim ——C )
m———
0 /Vi(e)Va(e)
In other words, for small values of € > 0, conditioned on F(¢y), the corre-
lation between the increments X1 (to +¢) — X1 (to) and Xa(to+¢) — Xa(ty)
is approximately equal to p(ty), and this approximation becomes exact ag
el 0.

Exercise 4.18. Let a stock price be a geometric Brownian mc tion

dS(t) = aS(t)dt + o S(t) dW(t),

= plto). (4.10.40)

and let 7 denote the interest rate. We define the market price of risk to be
oa—-T
o

8=
and the state price density process to be

= EXP{ — W (2) - (r + %Gz)t}.

(i) Show that
de(t) = —BC(E) AW (8) — r( () dt.
(ii) Let X denote the value of an investor’s portfolio when he uses a portfolio
process A(t). From (4.5.2), we have

dX () = rX(t) dt + A(E)(a — r)S(E) dt + A{)oS(E) dW(E).

Show that ((¢)X(t) is a martingale. (Hint: Show that the differential
d(¢(t)X () has no dt term.)

(iii) Let T > O be a fixed terminal time. Show that if an investor wants to
begin with some initial capital X(0) and invest in order to have portfolio
value V(T) at time T, where V(T) is a given F(T)-measurable random
variable, then he must begin with initial capital

X(0) = EL(TV(T)].

In other words, the present value at time zero of the random payment
V(T) at time T is E[{(T)V(T)). This justifies calling {(t) the state price
density process. ’

Exercise 4.19. Let W(¢) be a Brownian motion, and define

3
B(t) = /0 sign(W (s)) dW (s),

where
. 1 ifz>0,
sign(=) = _tifz <0,
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(i) Show that B(t} is a Brownian motion.

(i1) Use Itd's product rule to compute d[B(£)W(t)]. Integrate both sides of
the resulting equation and take expectations. Show that ]E[B(t)W(t)] =0
(i.e., B(t) and W(2) are uncorrelated).

(i) Verify that

AW2(t) = 2W (£} dW (£) -+ dt.

(iv) Use Ité’s product rule to compute d[B(£)W2(2)). Integrate both sides of

the resulting equation and take expectations to conclude that

E[B(t)W(t)] £ EB(t) - EW2(z),

Explain why this shows that, although they are tincorrelated normal ran-
dom variables, B(2) and W{(¢) are not independent.

Exercise 4.20 (Local time). Let W(¢) be a Brownian motion. The Ité-
Doeblin formula in differential form says that

df (W) = (W) dw(t) + % W) de. (4.10.41)

In integrated form, this formula is
T 1 (T
FW D) = F(WO) + fo Fwe) W)+ 5 /0 FIw ) dt. (4.10.42)

The usual statement of this formula assumes that the function f”(z) is defined
for every = € R and is & continuous function of z. In fact, the formula still
holds if there are finitely many points = where f”(z) is undefined, provided
that f'(z) is defined for every & € R and is 2 continuous function of 2 (and
provided that |f”(z)| is bounded so that the integral [ f” (W(2)) dt is de-
fined). However, if f/(x) is not defined at some point, naive application of the
It6-Doeblin formula can give wrong answers, as this problem demonstrates.

(i) Let K be a positive constant, and define f(z) = (z— K)*. Compute f/(z)
and f“(z). Note that there is a point = where f'(2) is not defined, and
note also that f”(x) is zero everywhere except at this point, where f/(z)
is also undefined. :

(if) Substitute the function f(z) = (z~K)* into (4.10.42), replacing the term
3 j;)T F"(W(t)) dt by zero since f” is zero everywhere except at one point,
where it is not defined. Show that the two sides of this equation cannot
be equal by computing their expected values.

(iti) To get some idea of what is going on here, define a sequence of functions
{fn}22; by the formula

2

0 fog K&,
folz)={ e~ KP+3a-K)+ &K~ L Sz K44,
z-K fo>K+ &
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