Stochastic Calculus for Finance II Continuous-Time Models Chapter 3 Exercise

戴 慈 2007.9.5

VExercise 3.3 (Normal kurtosis). The *kurtosis* of a random variable is defined to be the ratio of its fourth central moment to the square of its variance. For a normal random variable, the kurtosis is 3. This fact was used to obtain (3.4.7). This exercise verifies this fact.

Let X be a normal random variable with mean μ , so that $X - \mu$ has mean zero. Let the variance of X, which is also the variance of $X - \mu$, be σ^2 . In (3.2.13), we computed the moment-generating function of $X - \mu$ to be $\varphi(u) = \mathbb{E}e^{u(X-\mu)} = e^{\frac{1}{2}u^2\sigma^2}$, where u is a real variable. Differentiating this function with respect to u, we obtain

$$\varphi'(u) = \mathbb{E}\left[(X - \mu)e^{u(X - \mu)}\right] = \sigma^2 u e^{\frac{1}{2}\sigma^2 u^2}$$

and, in particular, $\varphi'(0) = \mathbb{E}(X - \mu) = 0$. Differentiating again, we obtain

$$\varphi''(u) = \mathbb{E}\left[(X - \mu)^2 e^{u(X - \mu)} \right] = (\sigma^2 + \sigma^4 u^2) e^{\frac{1}{2}\sigma^2 u^2}$$

and, in particular, $\varphi''(0) = \mathbb{E}\left[(X - \mu)^2\right] = \sigma^2$. Differentiate two more times and obtain the normal kurtosis formula $\mathbb{E}\left[(X - \mu)^4\right] = 3\sigma^4$.

Ans.

$$\varphi'''(u) = E[(X - \mu)^{3} e^{u(X - \mu)}] = (3\sigma^{4}u + \sigma^{6}u^{3})e^{\frac{1}{2}\sigma^{2}u^{2}}$$

$$\varphi''''(u) = E[(X - \mu)^{4} e^{u(X - \mu)}] = (3\sigma^{4} + 3\sigma^{6}u^{2})e^{\frac{1}{2}\sigma^{2}u^{2}} + \sigma^{2}u(3\sigma^{4}u + \sigma^{6}u^{3})e^{\frac{1}{2}\sigma^{2}u^{2}}$$

$$\therefore \varphi''''(0) = E[(X - \mu)^{4} e^{0(X - \mu)}] = E[(X - \mu)^{4}] = 3\sigma^{4}$$

Exercise 3.6 Let W(t) be a Brownian motion and let F(t), $t \ge 0$, be an associated filtration.

(i) For $\mu \in \mathbb{R}$, consider the Brownian motion with drift μ :

$$X(t) = \mu t + W(t).$$

Show that for any Borel-measurable function f(y), and for any $0 \le s < t$, the function

$$g(x) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(y) \exp\left\{-\frac{(y-x-\mu(t-s))^2}{2(t-s)}\right\} dy$$

satisfies $\mathbb{E}[f(X(t))|\mathcal{F}(s)] = g(X(s))$, and hence X has the Markov property. We may rewrite g(x) as $g(x) = \int_{-\infty}^{\infty} f(y)p(\tau, x, y) dy$, where $\tau = t - s$ and

$$p(\tau, x, y) = \frac{1}{\sqrt{2\pi\tau}} \exp\left\{-\frac{(y - x - \mu\tau)^2}{2\tau}\right\}$$

is the transition density for Brownian motion with drift μ .

(ii) For $\nu \in \mathbb{R}$ and $\sigma > 0$, consider the geometric Brownian motion

$$S(t) = S(0)e^{\sigma W(t) + \nu t}.$$

Set $\tau = t - s$ and

$$p(\tau, x, y) = \frac{1}{\sigma y \sqrt{2\pi\tau}} \exp\left\{-\frac{\left(\log \frac{y}{x} - \nu \tau\right)^2}{2\sigma^2 \tau}\right\}.$$

Show that for any Borel-measurable function f(y) and for any $0 \le s < t$ the function $g(x) = \int_0^\infty h(y) p(\tau, x, y) dy$ satisfies $\mathbb{E}[f(S(t)) | \mathcal{F}(s)] = g(S(s))$ and hence S has the Markov property and $p(\tau, x, y)$ is its transition density.

Ans.

$$E[f(X(t)) | F_{s}] = E[f(\mu t + W(t)) | F_{s}]$$

$$= E[f(\mu(t-s) + W(t) - W(s) + X(s)) | F_{s}]$$

$$\therefore \mu(t-s) + W(t) - W(s) \sim N(\mu(t-s), t-s)$$
Let $y = \mu(t-s) + W(t) - W(s) + X(s)$

$$y - X(s) \sim N(\mu(t-s), t-s)$$

$$\therefore E[f(X(t)) | F_{s}] = \int_{-\infty}^{\infty} f(y) p(\tau = t-s, X(s), y) dy$$

$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} f(y) \exp\{-\frac{(y - X(s) - \mu(t-s))^{2}}{2(t-s)}\} dy$$

$$= g(X(s))$$

 $\therefore X$ has the Markov property.

$$\because \log(\frac{S(t)}{S(s)}) = \sigma(W(t) - W(s)) + \nu(t - s), W(t) - W(s) \sim N(0, t - s)$$

$$\therefore \log(\frac{S(t)}{S(s)}) \sim N(\nu\tau, \sigma\tau), \tau = t - s$$

Let
$$y = S(t)$$
, $z = \log(\frac{y}{S(s)}) \Rightarrow \log(\frac{y}{S(s)}) \sim N(v\tau, \tau)$, $dz = \frac{1}{y}dy$

$$\therefore E[f(S(t)) | F_s] = \int_{-\infty}^{\infty} f(y) p(\tau, S(s), y) \frac{1}{y} dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sigma y \sqrt{2\pi\tau}} f(y) \exp\left\{-\frac{(\log(\frac{y}{S(s)}) - v\tau)^2}{2\sigma^2 \tau}\right\} dy = g(S(s)) \text{ where } \tau = t - s$$

 \therefore *S* has the Markov property.

補充

Exercise1.

Let c > 0 be a constant. Prove that

$$(1)X_t := W_{t+c} - W_c$$
 is a Brownian motion.

$$(2)X_t := \frac{1}{c}W_{c^2t}$$
 is a Brownian motion.

Ans.

(1)

$$1.X_0 = W_{0+c} - W_c = 0$$

$$2.X_{t+s} - X_t = (W_{t+s+c} - W_c) - (W_{t+c} - W_c) = W_{t+s+c} - W_{t+c} \sim N(0, s)$$

$$3. \forall t_1 \leq t_2 \leq t_3 \leq t_4$$

$$\boldsymbol{X}_{t_4} - \boldsymbol{X}_{t_3} = \boldsymbol{W}_{t_4+c} - \boldsymbol{W}_{t_3+c} \,, \boldsymbol{X}_{t_2} - \boldsymbol{X}_{t_1} = \boldsymbol{W}_{t_2+c} - \boldsymbol{W}_{t_1+c}$$

$$: t_1 + c \le t_2 + c \le t_3 + c \le t_4 + c, W_t$$
 is a B.M

$$W_{t_1+c} - W_{t_2+c} \perp W_{t_2+c} - W_{t_1+c} => X_{t_1} - X_{t_2} \perp X_{t_2} - X_{t_3}$$

By 1.2.3 and definition 3.3.1, X_t is a B.M.

(2)

1.
$$X_0 = \frac{1}{c} W_{c^2 \cdot 0} = \frac{1}{c} W_0 = 0$$

$$2.X_{t+s} - X_t = \frac{1}{c} (W_{c^2(t+s)} - W_{c^2t})$$

$$:: (W_{c^2(t+s)} - W_{c^2t}) \sim N(0, c^2(t+s) - c^2(t)) = N(0, c^2s) :: X_{t+s} - X_t \sim N(0, s)$$

$$3.\forall t_1 \le t_2 \le t_3 \le t_4$$

$$X_{t_4} - X_{t_3} = \frac{1}{C} (W_{c^2 t_4} - W_{c^2 t_3}), X_{t_2} - X_{t_1} = \frac{1}{C} (W_{c^2 t_2} - W_{c^2 t_1})$$

:
$$c^2 t_1 \le c^2 t_2 \le c^2 t_3 \le c^2 t_4$$
, W_t is a B.M

$$\therefore (W_{c^2t_4} - W_{c^2t_3}) \perp (W_{c^2t_2} - W_{c^2t_1})$$

$$\forall x, y \in \mathbb{R}, P(X_{t_4} - X_{t_3} \le x; X_{t_2} - X_{t_1} \le y) = P(\frac{1}{c}(W_{c^2t_4} - W_{c^2t_3}) \le x; \frac{1}{c}(W_{c^2t_2} - W_{c^2t_1}) \le y)$$

$$= P((W_{c^2t_4} - W_{c^2t_3}) \le cx; (W_{c^2t_2} - W_{c^2t_1}) \le cy)$$

$$= P((W_{c^2t_4} - W_{c^2t_3}) \le cx) P((W_{c^2t_2} - W_{c^2t_1}) \le cy) \quad \because (W_{c^2t_4} - W_{c^2t_3}) \perp (W_{c^2t_2} - W_{c^2t_1})$$

$$= P(\frac{1}{c}(W_{c^2t_4} - W_{c^2t_3}) \le x) P(\frac{1}{c}(W_{c^2t_2} - W_{c^2t_1}) \le y)$$

$$= P(X_{t_1} - X_{t_2} \le x) P(X_{t_2} - X_{t_1} \le y)$$

$$\therefore X_{t_1} - X_{t_2} \perp X_{t_2} - X_{t_1}$$

By 1.2.3 and definition 3.3.1, X_t is a B.M.

Exercise2.

Check whether the following processes are maringales.

$$(1)X_t = W_t + 4t.$$

$$(2)X_t = W_t^2.$$

$$(3)X_t = W_t^3 - 3tW_t.$$

Ans.

(1)

$$E[X_t | F_s] = E[W_t + 4t | F_s], t > s$$

$$= E[(W_t - W_s) + 4(t - s) + X_s | F_s]$$

 $(W_t - W_s)$ and (t - s) are independent of F_s

$$= E[(W_t - W_s)] + 4(t - s) + X_s$$

$$=4(t-s)+X_s>X_s$$

 $\therefore X_t$ is not a martingale.

(2)

$$E[X_t | F_s] = E[(W_s + (W_t - W_s))^2 | F_s], t > s$$

$$= E[W_{s}^{2} + 2W_{s}(W_{t} - W_{s}) + (W_{t} - W_{s})^{2} | F_{s}]$$

 $(W_t - W_s)^2$ and $(W_t - W_s)$ are independent of F_s

$$= X_{s} + 2W_{s}E[W_{t} - W_{s}] + E[(W_{t} - W_{s})^{2}]$$

$$(:: (W_t - W_s) \sim N(0, t - s) :: E[(W_t - W_s)^2] = var[(W_t - W_s)] = t - s)$$

$$= (t+s) + X_s > X_s$$

 $\therefore X_t$ is not a martingale.

(3)

$$E[X_t | F_s] = E[((W_t - W_s) + W_s)^3 - 3(t - s + s)((W_t - W_s) + W_s) | F_s], t > s$$

Let
$$A = (W_t - W_s), \tau = t - s$$

$$E[X_t | F_s] = E[A^3 + 3A^2W_s + 3A(W_s^2) - 3\tau A - 3\tau W_s - 3sA + W_s^3 - 3sW_s | F_s]$$

 $:: \tau, A^3, A^2$ and A are independent of F_s

$$= E[A^{3}] + 3E[A^{2}]W_{s} + 3E[A](W_{s}^{2} - \tau - s) - 3\tau W_{s} + X_{s} = X_{s}$$

 $\therefore X_t$ is a martingale.

Hint:
$$A \sim N(0, t - s), \phi(u) = E[e^{uA}] = e^{\frac{1}{2}u^2(t - s)^2}, \phi'''(0) = E[A^3] = 0$$