Graph Search Methods

- A vertex u is reachable from vertex v iff there is a path from v to u .

Graph Search Methods

- A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v .

Graph Search Methods

- Many graph problems solved using a search method.
- Path from one vertex to another.
- Is the graph connected?
- Find a spanning tree.
- Etc.
- Commonly used search methods:
- Depth-first search.
- Breadth-first search.

Depth-First Search

DFS(v)
\{
Label vertex v as reached.
for (each unreached vertex u adjacenct from v)

DFS(u);
\}

Depth-First Search Example

Start search at vertex 1.
Label vertex 1 and do a depth first search
from either 2 or 4.
Suppose that vertex 2 is selected.

Label vertex 2 and do a depth first search from either 3,5 , or 6 .

Suppose that vertex 5 is selected.

Depth-First Search Example

Label vertex 5 and do a depth first search from either 3,7 , or 9 .
Suppose that vertex 9 is selected.

Label vertex 9 and do a depth first search from either 6 or 8 .
Suppose that vertex 8 is selected.

Depth-First Search Example

Label vertex 8 and return to vertex 9 .
From vertex 9 do a DFS(6).

Label vertex 6 and do a depth first search from either 4 or 7 .

Suppose that vertex 4 is selected.

Depth-First Search Example

Label vertex 4 and return to 6 .
From vertex 6 do a DFS(7).

Label vertex 7 and return to 6 .
Return to 9.

Depth-First Search Example

Return to 5.

Depth-First Search Example

Do a DFS(3).

Depth-First Search Example

Label 3 and return to 5 .
Return to 2.

Return to 1.

Depth-First Search Example

Return to invoking method.

In Class Exercise
Do Depth first search on the following tree

Depth-First Search Property

- All vertices reachable from the start vertex (including the start vertex) are visited.

Path From Vertex v To Vertex u

- Start a depth-first search at vertex v.
- Terminate when vertex u is visited or when DFS ends (whichever occurs first).
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Is The Graph Connected?

- Start a depth-first search at any vertex of the graph.
- Graph is connected iff all n vertices get visited.
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Connected Components

- Start a depth-first search at any as yet unvisited vertex of the graph.
- Newly visited vertices (plus edges between them) define a component.
- Repeat until all vertices are visited.

Connected Components

Time Complexity

- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e})$ when adjacency lists used (e is number of edges)

Spanning Tree

Depth-first search from vertex 1.
Depth-first spanning tree.

Spanning Tree

- Start a depth-first search at any vertex of the graph.
- If graph is connected, the n-1 edges used to get to unvisited vertices define a spanning tree (depth-first spanning tree).
- Time
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ when adjacency matrix used
- $\mathrm{O}(\mathrm{n}+\mathrm{e}$) when adjacency lists used (e is number of edges)

Breadth-First Search

- Visit start vertex and put into a FIFO queue.
- Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

Breadth-First Search Example

Start search at vertex 1.

Breadth-First Search Example

Visit/mark/label start vertex and put in a FIFO queue.

Breadth-First Search Example

Remove 1 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue 24

Remove 1 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 2 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 4 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 5 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 3 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 6 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 9 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue 78

Remove 9 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 7 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue 8

Remove 7 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

Remove 8 from Q; visit adjacent unvisited vertices; put in Q .

Breadth-First Search Example

FIFO Queue

Queue is empty. Search terminates.

Time Complexity

- Each visited vertex is put on (and so removed from) the queue exactly once.
- When a vertex is removed from the queue, we examine its adjacent vertices.
- $\mathrm{O}(\mathrm{n})$ if adjacency matrix used
- O (vertex degree) if adjacency lists used
- Total time
- $\mathrm{O}(\mathrm{mn})$, where m is number of vertices in the component that is searched (adjacency matrix)

Time Complexity

- $\mathrm{O}(\mathrm{n}+$ sum of component vertex degrees) (adj. lists)
$=\mathrm{O}(\mathrm{n}+$ number of edges in component $)$

Breadth-First Search Properties

- Same complexity as DFS.
- Same properties with respect to path finding, connected components, and spanning trees.
- There are problems for which bfs is better than dfs and vice versa.

Homework

- Sec. 6.2 Exercise2 @P352

