Graphs

- G = (V,E)
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

u → v

Graphs

- Undirected edge has no orientation (u,v).
 u v
- Undirected graph => no oriented edge.
- Directed graph => every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications—Communication Network

• Vertex = city, edge = communication link.

Driving Distance/Time Map

• Vertex = city, edge weight = driving distance/time.

• Some streets are one way.

Complete Undirected Graph

Has all possible edges.

Number Of Edges—Undirected Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is the same as edge (v,u), the number of edges in a complete undirected graph is n(n-1)/2.
- Number of edges in an undirected graph is <= n(n-1)/2.

Number Of Edges—Directed Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is n(n-1).
- Since edge (u,v) is not the same as edge (v,u), the number of edges in a complete directed graph is n(n-1).
- Number of edges in a directed graph is <= n(n-1).

Number of edges incident to vertex. degree(2) = 2, degree(5) = 3, degree(3) = 1

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

In-Degree Of A Vertex

in-degree is number of incoming edges indegree(2) = 1, indegree(8) = 0

Out-Degree Of A Vertex

out-degree is number of outbound edges outdegree(2) = 1, outdegree(8) = 2

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex

sum of in-degrees = sum of out-degrees = e,
where e is the number of edges in the
digraph

Graph Operations And Representation

Sample Graph Problems

- Path problems.
- Connectedness problems.
- Spanning tree problems.

Path Finding

Path between 1 and 8.

Path length is 20.

Another Path Between 1 and 8

Path length is 28.

Example Of No Path

No path between 2 and 9.

Connected Graph

- Undirected graph.
- There is a path between every pair of vertices.

Example Of Not Connected

Connected Graph Example

Connected Components

Connected Component

- A maximal subgraph that is connected.
 - Cannot add vertices and edges from original graph and retain connectedness.
- A connected graph has exactly 1 component.

Not A Component

Communication Network

Each edge is a link that can be constructed (i.e., a feasible link).

Communication Network Problems

- Is the network connected?
 - Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

Strongly connected for a digraph

- For every pair u,v in the graph
 - there is a directed path from u to v and v to u.

In Class Exercise

• Is this graph a strongly connected one?

Cycles And Connectedness

Removal of an edge that is on a cycle does not affect connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and minimum number of edges has no cycles.

- Connected graph that has no cycles.
- n vertex connected graph with n-1 edges.

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
 - If original graph has n vertices, the spanning tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.

Spanning tree cost = 51.

Minimum Cost Spanning Tree

Spanning tree cost = 41.

A Wireless Broadcast Tree

Graph Representation

- Adjacency Matrix
- Adjacency Lists
 - Linked Adjacency Lists
 - Array Adjacency Lists

Adjacency Matrix

- 0/1 n x n matrix, where n = # of vertices
- A(i,j) = 1 iff (i,j) is an edge

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1	0

Adjacency Matrix Properties

•Diagonal entries are zero.

•Adjacency matrix of an undirected graph is symmetric.

•A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

•Diagonal entries are zero.

•Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n² bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
 - (n-1)n/2 bits
- O(n) time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.

aList[1] = (2,4)aList[2] = (1,5)aList[3] = (5)aList[4] = (5,1)aList[5] = (2,4,3)

Linked Adjacency Lists

• Each adjacency list is a chain.

Array Length = n # of chain nodes = 2e (undirected graph) # of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Weighted Graphs

- Cost adjacency matrix.
 - C(i,j) = cost of edge (i,j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)

Number Of C++ Classes Needed

- Graph representations
 - Adjacency Matrix
 - Adjacency Lists
 - Linked Adjacency Lists
 - ➢Array Adjacency Lists
 - 3 representations
- Graph types
 - Directed and undirected.
 - Weighted and unweighted.
 - 2 x 2 = 4 graph types
- 3 x 4 = 12 C++ classes

Homework

• Section 6.1 Exercise 2,3,4 @P339