Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- V is the vertex set.
- Vertices are also called nodes and points.
- E is the edge set.
- Each edge connects two different vertices.
- Edges are also called arcs and lines.
- Directed edge has an orientation (u,v).

$$
\mathrm{u} \longrightarrow \mathrm{~V}
$$

Graphs

- Undirected edge has no orientation (u,v). $\mathrm{u} \longrightarrow \mathrm{V}$
- Undirected graph => no oriented edge.
- Directed graph => every edge has an orientation.

Undirected Graph

Directed Graph (Digraph)

Applications-Communication Network

- Vertex $=$ city, edge $=$ communication link.

Driving Distance/Time Map

- Vertex $=$ city, edge weight $=$ driving distance/time.

- Some streets are one way.

Complete Undirected Graph

Has all possible edges.

$\mathrm{n}=1 \quad \mathrm{n}=2$

$\mathrm{n}=3$
$\mathrm{n}=4$

Number Of Edges-Undirected Graph

- Each edge is of the form $(\mathrm{u}, \mathrm{v}), \mathrm{u}!=\mathrm{v}$.
- Number of such pairs in an n vertex graph is $\mathrm{n}(\mathrm{n}-1)$.
- Since edge (u, v) is the same as edge (v, u), the number of edges in a complete undirected graph is $\mathrm{n}(\mathrm{n}-1) / 2$.
- Number of edges in an undirected graph is $<=n(n-1) / 2$.

Number Of Edges-Directed Graph

- Each edge is of the form (u,v), u != v.
- Number of such pairs in an n vertex graph is $\mathrm{n}(\mathrm{n}-1)$.
- Since edge (u, v) is not the same as edge (v, u), the number of edges in a complete directed graph is $n(n-1)$.
- Number of edges in a directed graph is $<=$ $\mathrm{n}(\mathrm{n}-1)$.

Vertex Degree

Number of edges incident to vertex. degree $(2)=2$, $\operatorname{degree}(5)=3$, $\operatorname{degree}(3)=1$

Sum Of Vertex Degrees

Sum of degrees $=2 \mathrm{e}(\mathrm{e}$ is number of edges $)$

In-Degree Of A Vertex

in-degree is number of incoming edges indegree $(2)=1$, indegree $(8)=0$

Out-Degree Of A Vertex

out-degree is number of outbound edges outdegree $(2)=1, \operatorname{outdegree}(8)=2$

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of some vertex and 1 to the out-degree of some other vertex
sum of in-degrees $=$ sum of out-degrees $=e$, where e is the number of edges in the digraph

Graph Operations And Representation

Sample Graph Problems

- Path problems.
- Connectedness problems.
- Spanning tree problems.

Path Finding

Path between 1 and 8 .

Path length is 20.

Another Path Between 1 and 8

Path length is 28 .

Example Of No Path

No path between 2 and 9 .

Connected Graph

- Undirected graph.
- There is a path between every pair of vertices.

Example Of Not Connected

Connected Graph Example

Connected Components

Connected Component

- A maximal subgraph that is connected.
- Cannot add vertices and edges from original graph and retain connectedness.
- A connected graph has exactly 1 component.

Not A Component

Communication Network

Each edge is a link that can be constructed (i.e., a feasible link).

Communication Network Problems

- Is the network connected?
- Can we communicate between every pair of cities?
- Find the components.
- Want to construct smallest number of feasible links so that resulting network is connected.

Strongly connected for a digraph

- For every pair u, v in the graph
- there is a directed path from u to v and v to u.

In Class Exercise

- Is this graph a strongly connected one?

Cycles And Connectedness

Removal of an edge that is on a cycle does not affect connectedness.

Cycles And Connectedness

Connected subgraph with all vertices and minimum number of edges has no cycles.

Tree

- Connected graph that has no cycles.
- n vertex connected graph with $\mathrm{n}-1$ edges.

Spanning Tree

- Subgraph that includes all vertices of the original graph.
- Subgraph is a tree.
- If original graph has n vertices, the spanning tree has n vertices and $\mathrm{n}-1$ edges.

Minimum Cost Spanning Tree

- Tree cost is sum of edge weights/costs.

A Spanning Tree

Spanning tree cost $=51$.

Minimum Cost Spanning Tree

Spanning tree cost $=41$.

A Wireless Broadcast Tree

Source $=1$, weights $=$ needed power.
Cost $=4+8+5+6+7+8+3=41$.

Graph Representation

- Adjacency Matrix
- Adjacency Lists
- Linked Adjacency Lists
- Array Adjacency Lists

Adjacency Matrix

- $0 / 1 \mathrm{nx} \mathrm{n}$ matrix, where $\mathrm{n}=\#$ of vertices
- $A(i, j)=1$ iff (i, j) is an edge

	1	2	3	4	5
1	0	1	0	1	0
2	1	0	0	0	1
3	0	0	0	0	1
4	1	0	0	0	1
5	0	1	1	1	0

Adjacency Matrix Properties

-Diagonal entries are zero.
-Adjacency matrix of an undirected graph is symmetric.
$-A(i, j)=A(j, i)$ for all i and j.

Adjacency Matrix (Digraph)

	1	2	3	4	5
1	0	0	0	1	0
2	1	0	0	0	1
3	0	0	0	0	0
4	0	0	0	0	1
5	0	1	1	0	0

-Diagonal entries are zero.
-Adjacency matrix of a digraph need not be symmetric.

Adjacency Matrix

- n^{2} bits of space
- For an undirected graph, may store only lower or upper triangle (exclude diagonal).
- ($\mathrm{n}-1$) $\mathrm{n} / 2$ bits
- $\mathrm{O}(\mathrm{n})$ time to find vertex degree and/or vertices adjacent to a given vertex.

Adjacency Lists

- Adjacency list for vertex i is a linear list of vertices adjacent from vertex i.
- An array of n adjacency lists.

Linked Adjacency Lists

- Each adjacency list is a chain.

Array Length $=\mathrm{n}$
\# of chain nodes $=2 \mathrm{e}$ (undirected graph)
\# of chain nodes $=\mathrm{e}$ (digraph)

Array Adjacency Lists

- Each adjacency list is an array list.

Array Length $=\mathrm{n}$
\# of list elements $=2 \mathrm{e}$ (undirected graph)
$\#$ of list elements $=\mathrm{e}($ digraph $)$

Weighted Graphs

- Cost adjacency matrix.
- $\mathrm{C}(\mathrm{i}, \mathrm{j})=$ cost of edge (i, j)
- Adjacency lists => each list element is a pair (adjacent vertex, edge weight)

Number Of C++ Classes Needed

- Graph representations
- Adjacency Matrix
- Adjacency Lists
$>$ Linked Adjacency Lists
>Array Adjacency Lists
- 3 representations
- Graph types
- Directed and undirected.
- Weighted and unweighted.
- $2 \times 2=4$ graph types
- $3 \times 4=12 \mathrm{C}++$ classes

Homework

- Section 6.1 Exercise 2,3,4 @P339

