
Graphs

• G = (V,E)

• V is the vertex set.

• Vertices are also called nodes and points.

• E is the edge set.

• Each edge connects two different vertices. 

• Edges are also called arcs and lines.

• Directed edge has an orientation (u,v).

u v

Graphs

• Undirected edge has no orientation (u,v).
u v

• Undirected graph => no oriented edge.

• Directed graph => every edge has an 
orientation.



Undirected Graph
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Directed Graph (Digraph)
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Applications—Communication Network

• Vertex = city, edge = communication link.
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Driving Distance/Time Map

• Vertex = city, edge  weight = driving 
distance/time.
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Street Map

• Some streets are one way.
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Complete Undirected Graph

Has all possible edges.

n = 1 n = 2 n = 3 n = 4



Number Of Edges—Undirected Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is 
n(n-1).

• Since edge (u,v) is the same as edge (v,u), 
the number of edges in a complete 
undirected graph is n(n-1)/2.

• Number of edges in an undirected graph is 
<= n(n-1)/2.

Number Of Edges—Directed Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is 
n(n-1).

• Since edge (u,v) is not the same as edge 
(v,u), the number of edges in a complete 
directed graph is n(n-1).

• Number of edges in a directed graph is <= 
n(n-1).



Vertex Degree

Number of edges incident to vertex.

degree(2) = 2, degree(5) = 3, degree(3) = 1
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Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)
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In-Degree Of A Vertex

in-degree is number of incoming edges

indegree(2) = 1, indegree(8) = 0
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Out-Degree Of A Vertex

out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2
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Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of 
some vertex and 1 to the out-degree of some 
other vertex

sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the 
digraph

Graph Operations And 
Representation



Sample Graph Problems

• Path problems.

• Connectedness problems.

• Spanning tree problems.

Path Finding

Path between 1 and 8.
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Path length is 20.



Another Path Between 1 and 8
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Path length is 28.

Example Of No Path

No path between 2 and 9.
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Connected Graph

• Undirected graph.

• There is a path between every pair of 
vertices.

Example Of Not Connected
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Connected Graph Example
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Connected Components
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Connected Component

• A maximal subgraph that is connected.
Cannot add vertices and edges from original 
graph and retain connectedness.

• A connected graph has exactly 1 
component.

Not A Component
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Communication Network

Each edge is a link that can be constructed (i.e., a 
feasible link).
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Communication Network Problems

• Is the network connected?
Can we communicate between every pair of 
cities?

• Find the components.

• Want to construct smallest number of 
feasible links so that resulting network is 
connected.



Strongly connected for a digraph

• For every pair u,v in the graph
– there is a directed path from u to v and v to u.

In Class Exercise

• Is this graph a strongly connected one?



Cycles And Connectedness

2
3

8
101

4
5

9
11

6
7

Removal of an edge that is on a cycle does not affect 
connectedness.

Cycles And Connectedness
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Connected subgraph with all vertices and minimum 
number of edges has no cycles.



Tree

• Connected graph that has no cycles.

• n vertex connected graph with n-1 edges.

Spanning Tree

• Subgraph that includes all vertices of the 
original graph.

• Subgraph is a tree.
If original graph has n vertices, the spanning 
tree has n vertices and n-1 edges.



Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.
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A Spanning Tree

Spanning tree cost = 51.
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Minimum Cost Spanning Tree

Spanning tree cost = 41.
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A Wireless Broadcast Tree

Source = 1, weights = needed power.
Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.
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Graph Representation

• Adjacency Matrix

• Adjacency Lists
Linked Adjacency Lists

Array Adjacency Lists

Adjacency Matrix

• 0/1 n x n matrix, where n = # of vertices
• A(i,j) = 1 iff (i,j) is an edge
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0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0



Adjacency Matrix Properties
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0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

•Diagonal entries are zero.

•Adjacency matrix of an undirected graph is 
symmetric. 

A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)
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0 0 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 1 1 0 0

•Diagonal entries are zero.

•Adjacency matrix of a digraph need not be 
symmetric. 



Adjacency Matrix

• n2 bits of space

• For an undirected graph, may store only 
lower or upper triangle (exclude diagonal).

(n-1)n/2 bits

• O(n) time to find vertex degree and/or 
vertices adjacent to a given vertex.

Adjacency Lists

• Adjacency list for vertex i is a linear list of
vertices adjacent from vertex i.

• An array of n adjacency lists.
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aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)



Linked Adjacency Lists

• Each adjacency list is a chain.
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aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
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5 1
2 4 3

Array Length = n

# of chain nodes = 2e (undirected graph)

# of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.
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Array Length = n

# of list elements = 2e (undirected graph)

# of list elements = e (digraph)



Weighted Graphs

• Cost adjacency matrix.
C(i,j) = cost of edge (i,j)

• Adjacency lists => each list element is a 
pair (adjacent vertex, edge weight)

Number Of C++ Classes Needed
• Graph representations

Adjacency Matrix

Adjacency Lists

Linked Adjacency Lists

Array Adjacency Lists

3 representations

• Graph types
Directed and undirected.

Weighted and unweighted.

2 x 2 = 4 graph types

• 3 x 4 = 12 C++ classes



Homework

• Section 6.1  Exercise 2,3,4 @P339


