
Graphs

• G = (V,E)

• V is the vertex set.

• Vertices are also called nodes and points.

• E is the edge set.

• Each edge connects two different vertices.

• Edges are also called arcs and lines.

• Directed edge has an orientation (u,v).

u v

Graphs

• Undirected edge has no orientation (u,v).
u v

• Undirected graph => no oriented edge.

• Directed graph => every edge has an
orientation.

Undirected Graph

2
3

8
101

4
5

9
11

6
7

Directed Graph (Digraph)

2
3

8
101

4
5

9
11

6
7

Applications—Communication Network

• Vertex = city, edge = communication link.

2
3

8
101

4
5

9
11

6
7

Driving Distance/Time Map

• Vertex = city, edge weight = driving
distance/time.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

Street Map

• Some streets are one way.

2
3

8
101

4
5

9
11

6
7

Complete Undirected Graph

Has all possible edges.

n = 1 n = 2 n = 3 n = 4

Number Of Edges—Undirected Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is
n(n-1).

• Since edge (u,v) is the same as edge (v,u),
the number of edges in a complete
undirected graph is n(n-1)/2.

• Number of edges in an undirected graph is
<= n(n-1)/2.

Number Of Edges—Directed Graph

• Each edge is of the form (u,v), u != v.

• Number of such pairs in an n vertex graph is
n(n-1).

• Since edge (u,v) is not the same as edge
(v,u), the number of edges in a complete
directed graph is n(n-1).

• Number of edges in a directed graph is <=
n(n-1).

Vertex Degree

Number of edges incident to vertex.

degree(2) = 2, degree(5) = 3, degree(3) = 1

2
3

8
101

4
5

9
11

6
7

Sum Of Vertex Degrees

Sum of degrees = 2e (e is number of edges)

8
10

9
11

In-Degree Of A Vertex

in-degree is number of incoming edges

indegree(2) = 1, indegree(8) = 0

2
3

8
101

4
5

9
11

6
7

Out-Degree Of A Vertex

out-degree is number of outbound edges

outdegree(2) = 1, outdegree(8) = 2

2
3

8
101

4
5

9
11

6
7

Sum Of In- And Out-Degrees

each edge contributes 1 to the in-degree of
some vertex and 1 to the out-degree of some
other vertex

sum of in-degrees = sum of out-degrees = e,

where e is the number of edges in the
digraph

Graph Operations And
Representation

Sample Graph Problems

• Path problems.

• Connectedness problems.

• Spanning tree problems.

Path Finding

Path between 1 and 8.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 20.

Another Path Between 1 and 8

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

Path length is 28.

Example Of No Path

No path between 2 and 9.

2
3

8
101

4
5

9
11

6
7

Connected Graph

• Undirected graph.

• There is a path between every pair of
vertices.

Example Of Not Connected

2
3

8
101

4
5

9
11

6
7

Connected Graph Example

2
3

8
101

4
5

9
11

6
7

Connected Components

2
3

8
101

4
5

9
11

6
7

Connected Component

• A maximal subgraph that is connected.
Cannot add vertices and edges from original
graph and retain connectedness.

• A connected graph has exactly 1
component.

Not A Component

2
3

8
101

4
5

9
11

6
7

Communication Network

Each edge is a link that can be constructed (i.e., a
feasible link).

2
3

8
101

4
5

9
11

6
7

Communication Network Problems

• Is the network connected?
Can we communicate between every pair of
cities?

• Find the components.

• Want to construct smallest number of
feasible links so that resulting network is
connected.

Strongly connected for a digraph

• For every pair u,v in the graph
– there is a directed path from u to v and v to u.

In Class Exercise

• Is this graph a strongly connected one?

Cycles And Connectedness

2
3

8
101

4
5

9
11

6
7

Removal of an edge that is on a cycle does not affect
connectedness.

Cycles And Connectedness

2
3

8
101

4
5

9
11

6
7

Connected subgraph with all vertices and minimum
number of edges has no cycles.

Tree

• Connected graph that has no cycles.

• n vertex connected graph with n-1 edges.

Spanning Tree

• Subgraph that includes all vertices of the
original graph.

• Subgraph is a tree.
If original graph has n vertices, the spanning
tree has n vertices and n-1 edges.

Minimum Cost Spanning Tree

• Tree cost is sum of edge weights/costs.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

A Spanning Tree

Spanning tree cost = 51.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

Minimum Cost Spanning Tree

Spanning tree cost = 41.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

A Wireless Broadcast Tree

Source = 1, weights = needed power.
Cost = 4 + 8 + 5 + 6 + 7 + 8 + 3 = 41.

2
3

8
101

4
5

9
11

6
7

4
8

6

6

7

5

2
4

4 5
3

8

2

Graph Representation

• Adjacency Matrix

• Adjacency Lists
Linked Adjacency Lists

Array Adjacency Lists

Adjacency Matrix

• 0/1 n x n matrix, where n = # of vertices
• A(i,j) = 1 iff (i,j) is an edge

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

Adjacency Matrix Properties

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 1 0 1 0
1 0 0 0 1
0 0 0 0 1
1 0 0 0 1
0 1 1 1 0

•Diagonal entries are zero.

•Adjacency matrix of an undirected graph is
symmetric.

A(i,j) = A(j,i) for all i and j.

Adjacency Matrix (Digraph)

2
3

1

4
5

1 2 3 4 5
1
2
3
4
5

0 0 0 1 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1
0 1 1 0 0

•Diagonal entries are zero.

•Adjacency matrix of a digraph need not be
symmetric.

Adjacency Matrix

• n2 bits of space

• For an undirected graph, may store only
lower or upper triangle (exclude diagonal).

(n-1)n/2 bits

• O(n) time to find vertex degree and/or
vertices adjacent to a given vertex.

Adjacency Lists

• Adjacency list for vertex i is a linear list of
vertices adjacent from vertex i.

• An array of n adjacency lists.

2
3

1

4
5

aList[1] = (2,4)

aList[2] = (1,5)

aList[3] = (5)

aList[4] = (5,1)

aList[5] = (2,4,3)

Linked Adjacency Lists

• Each adjacency list is a chain.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of chain nodes = 2e (undirected graph)

of chain nodes = e (digraph)

Array Adjacency Lists

• Each adjacency list is an array list.

2
3

1

4
5

aList[1]

aList[5]

[2]
[3]
[4]

2 4
1 5
5
5 1
2 4 3

Array Length = n

of list elements = 2e (undirected graph)

of list elements = e (digraph)

Weighted Graphs

• Cost adjacency matrix.
C(i,j) = cost of edge (i,j)

• Adjacency lists => each list element is a
pair (adjacent vertex, edge weight)

Number Of C++ Classes Needed
• Graph representations

Adjacency Matrix

Adjacency Lists

Linked Adjacency Lists

Array Adjacency Lists

3 representations

• Graph types
Directed and undirected.

Weighted and unweighted.

2 x 2 = 4 graph types

• 3 x 4 = 12 C++ classes

Homework

• Section 6.1 Exercise 2,3,4 @P339

