Disjoint Sets

- Given a set $\{1,2, \ldots, n\}$ of n elements.
- Initially each element is in a different set.
- \{1\}, \{2\}, ..., \{n\}
- An intermixed sequence of union and find operations is performed.
- A union operation combines two sets into one.
- A find operation identifies the set that contains a particular element.

A Set As A Tree

- $S=\{2,4,5,9,11,13,30\}$
- Some possible tree representations:

Result Of A Find Operation

- Find(i) is to identify the set that contains element i.
- In most applications of the union-find problem, the user does not provide set identifiers.
- The requirement is that Find(i) and Find(j) return the same value iff elements i and j are in the same set.

Find(i) will return the element that is in the tree root.

Strategy For Find(i)

- Start at the node that represents element i and climb up the tree until the root is reached.
- Return the element in the root.
- To climb the tree, each node must have a parent pointer.

Trees With Parent Pointers

Possible Node Structure

- Use nodes that have two fields: element and parent.
- Use an array table[] such that table[i] is a pointer to the node whose element is i.
- To do a Find(i) operation, start at the node given by table[i] and follow parent fields until a node whose parent field is null is reached.
- Return element in this root node.

Example

(Only some table entries are shown.)

Better Representation

- Use an integer array parent[] such that parent $[\mathrm{i}]$ is the element that is the parent of element i .

parent[]

	2	9	13	13			4		5	

Simple Union Operation

- Union(i,j)
- i and jare the roots of two different trees, i != j .
- To unite the trees, make one tree a subtree of the other.
- parent[j] = i

- Union(7,13)

Simple Union Method

void SimpleUnion(int i, int j) \{parent[i] = j; \}
The time complexity $\mathrm{O}(1)$

Simple Find Method

int SimpleFind(int i)
while (parent[i] >=0)
$\mathrm{i}=$ parent[i]; // move up the tree
return i;

Time Complexity of SimpleFind()

- Tree height may equal number of elements n in tree.
- Union(2,1), Union(3,2), Union(4,3), Union(5,4)...

So complexity is $\mathrm{O}(\mathrm{n})$.

Time Complexity of SimpleFind() $\underset{A}{\text { A }}$

- For a tree with height n
- The find operation for a node at level i is $\mathrm{O}(\mathrm{i})$
- The total time for finding all nodes
$-\mathrm{O}(1+2+3+\ldots+\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$
- The cost is too large.

Smart Union Strategies

- Union(7,13)
- Which tree should become a subtree of the other?

Weight Rule

- Make tree with fewer number of elements a subtree of the other tree.

Implementation

- Root of each tree must record either its height or the number of elements in the tree.
- When a union is done using the height rule, the height increases only when two trees of equal height are united.
- When the weight rule is used, the weight of the new tree is the sum of the weights of the trees that are united.

Height Of A Tree

- Suppose we start with single element trees and perform unions using either the height or the weight rule.
- The height of a tree with p elements is at most floor $\left(\log _{2} \mathrm{p}\right)+1$.
- Proof is by induction on p . See text.

Proof

- $\mathrm{m}=1 \rightarrow$ Clearly true
- Assume it is true for all trees with i nodes, $\mathrm{i}<=\mathrm{m}-1 \rightarrow$ Show that it's true for $\mathrm{i}=\mathrm{m}$
- Consider Union(k, ${ }^{\text {) }}$
-j has a nodes, $\mathrm{a}<=\mathrm{m} / 2$
- k has m-a nodes
- The height is
- the height of $\mathrm{k}:\left\lfloor\log _{2}(m-a)\right\rfloor+1 \leq\left\lfloor\log _{2} m\right\rfloor+1$
- the height of $\mathbf{j}+1\left\lfloor\log _{2} a\right\rfloor+2 \leq\left\lfloor\log _{2} m / 2\right\rfloor+2 \leq\left\lfloor\log _{2} m\right\rfloor+1$

Sprucing Up The Find Method

- Do Find(1) many times \rightarrow It costs time to find the root
- Do additional work to make future finds easier.

Path Compaction (See Program 5.26)

- Make all nodes on find path point to tree root.

Makes two passes up the tree.

Homework: Height Rule

- Sec. 5.10 Exercise 4@P316
- Make tree with smaller height a subtree of the other tree.

