
Disjoint Sets

• Given a set {1, 2, …, n} of n elements.
• Initially each element is in a different set.

{1}, {2}, …, {n}

• An intermixed sequence of union and find
operations is performed.

• A union operation combines two sets into one.

• A find operation identifies the set that contains
a particular element.

A Set As A Tree
• S = {2, 4, 5, 9, 11, 13, 30}
• Some possible tree representations:

4

2 9 11 30 5 13

4

2

9
30

5

13

11

11

4

2

9

30

5

13

Result Of A Find Operation

• Find(i) is to identify the set that contains element i.

• In most applications of the union-find problem, the
user does not provide set identifiers.

• The requirement is that Find(i) and Find(j) return
the same value iff elements i and j are in the same
set.

4

2 9 11 30 5 13

Find(i) will return the element that is in the tree root.

Strategy For Find(i)

• Start at the node that represents element i and
climb up the tree until the root is reached.

• Return the element in the root.
• To climb the tree, each node must have a parent

pointer.

4

2

9
30

5

13

11

Trees With Parent Pointers

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

Possible Node Structure

• Use nodes that have two fields: element and
parent.

Use an array table[] such that table[i] is a
pointer to the node whose element is i.

To do a Find(i) operation, start at the node
given by table[i] and follow parent fields until a
node whose parent field is null is reached.

Return element in this root node.

Example

4

2

9
30

5

13

11

1

table[]
0 5 10 15

(Only some table entries are shown.)

Better Representation

• Use an integer array parent[] such that
parent[i] is the element that is the parent of
element i.

4

2

9
30

5

13

11

1

parent[]
0 5 10 15

2 9 13 13 4 5 0

Simple Union Operation

• Union(i,j)
i and j are the roots of two different trees, i != j.

• To unite the trees, make one tree a subtree
of the other.

parent[j] = i

Simple Union Example

• Union(7,13)

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

Simple Union Method

void SimpleUnion(int i, int j)

{parent[i] = j;}

The time complexity O(1)

Simple Find Method

int SimpleFind(int i)

{

while (parent[i] >= 0)

i = parent[i]; // move up the tree

return i;

}

Time Complexity of SimpleFind()

• Tree height may equal number of elements n in
tree.

Union(2,1), Union(3,2), Union(4,3), Union(5,4)…

2

1

3
4

5

So complexity is O(n).

Time Complexity of SimpleFind()

• For a tree with height n
– The find operation for a node at level i is O(i)

– The total time for finding all nodes

– O(1+2+3+…+n)=O(n^2)

– The cost is too large.

Smart Union Strategies

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

• Union(7,13)

• Which tree should become a subtree of the other?

Weight Rule
• Make tree with fewer number of elements a subtree

of the other tree.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12
Union(7,13)

Implementation

• Root of each tree must record either its
height or the number of elements in the tree.

• When a union is done using the height rule,
the height increases only when two trees of
equal height are united.

• When the weight rule is used, the weight of
the new tree is the sum of the weights of the
trees that are united.

Height Of A Tree

• Suppose we start with single element trees
and perform unions using either the height
or the weight rule.

• The height of a tree with p elements is at
most floor (log2p) + 1.

• Proof is by induction on p. See text.

Proof
• m=1 Clearly true

• Assume it is true for all trees with i nodes,
i<=m-1 Show that it’s true for i=m

• Consider Union(k,j)
– j has a nodes, a<=m/2

– k has m-a nodes

– The height is
• the height of k:

• the height of j+1

2 2log () 1 log 1m a m− + ≤ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

2 2 2log 2 log / 2 2 log 1a m m+ ≤ + ≤ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Sprucing Up The Find Method

• Do Find(1) many times It costs time to find the root
• Do additional work to make future finds easier.

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Path Compaction (See Program 5.26)
• Make all nodes on find path point to tree root.
• Find(1)

121420

10

22

a

4

2

9
30

5

13

11

1

7

8 3 6

16

b c

d

e
f g

a, b, c, d, e, f, and g are subtrees

Makes two passes up the tree.

Homework: Height Rule
• Sec. 5.10 Exercise 4@P316
• Make tree with smaller height a subtree of the

other tree.

4

2

9
30

5

13

11

1

7

8 3 22 6

10

20 16 14 12

Union(7,13)

