Disjoint Sets
@

e Givenaset {1, 2, ..., n} of n elements.

9

e Initially each element is in a different set.

= {1}, {2}, ..., {n}
* An intermixed sequence of union and find
operations 1s performed.

e A union operation combines two sets into one.

* A find operation identifies the set that contains
a particular element.

A Set As A Tree

e S={2,4,5,9,11, 13, 30}
e Some possible tree representations:

'\

»




Result Of A Find Operation

e Find(1) 1s to 1dentify the set that contains element 1.

* In most applications of the union-find problem, the
user does not provide set identifiers.

e The requirement is that Find(i) and Find(j) return
the same value iff elements 1 and j are in the same
set.

Find(1) will return the element that is in the tree root.

Strategy For Find(1)

(9
& W GO

 Start at the node that represents element 1 and
climb up the tree until the root is reached.

e Return the element in the root.

e To climb the tree, each node must have a parent
pointer.




Trees With Parent Pointers

Possible Node Structure

e Use nodes that have two fields: element and
parent.

= Use an array table[] such that table[1] 1s a
pointer to the node whose element is 1.

* To do a Find(i) operation, start at the node
given by table[1] and follow parent fields until a
node whose parent field is null is reached.

» Return element in this root node.




Example

(13)
(5)
@ 11
A4S
(D

table][] ‘ \

0 5 10 15

(Only some table entries are shown.)

Better Representation

e Use an integer array parent[] such that
parent[i] 1s the element that 1s the parent of
element 1. @

ol

5§ e

parent[] [T]2 (O] 13]i3 41 5] [0




Simple Union Operation

e Union(i,))
" i and j are the roots of two different trees, 1 !=j.

e To unite the trees, make one tree a subtree
of the other.

= parent[j] =1

Simple Union Example

e Union(7,13)




Simple Union Method

void SimpleUnion(int 1, int j)

{parent[i] =;}
The time complexity O(1)

Simple Find Method

int SimpleFind(int 1)
{
while (parent[i] >= 0)
1 = parent[i]; // move up the tree

return 1;




]

e Tree height may equal number of elements n in
tree.

= Union(2,1), Union(3,2), Union(4,3), Union(5,4)...

]

* For a tree with height n
— The find operation for a node at level 1 1s O(1)
— The total time for finding all nodes
— O(14243+...4n)=0(n"2)
— The cost is too large.




Smart Union Strategies

@e

:
@ a9 Gf (9

e Union(7,13)

e Which tree should become a subtree of the other?

Weight Rule

e Make tree with fewer number of elements a subtree
of the other tree.

(il Union(7,13)




Implementation

* Root of each tree must record either its
height or the number of elements 1n the tree.

 When a union is done using the height rule,
the height increases only when two trees of
equal height are united.

 When the weight rule is used, the weight of
the new tree is the sum of the weights of the
trees that are united.

Height Of A Tree

e Suppose we start with single element trees
and perform unions using either the height
or the weight rule.

e The height of a tree with p elements 1s at
most floor (log,p) + 1.

e Proof is by induction on p. See text.




Proof
e m=1 - Clearly true

e Assume it 1s true for all trees with 1 nodes,
i<=m-1 = Show that it’s true for i=m

 Consider Union(k,j)
— j has a nodes, a<=m/2

— k has m-a nodes

— The height 1s
e the height of k: |[log,(m-a)|+1<|log,m |+1
e the height of j+1 |[log,a]|+2<|log,m/2|+2<|log,m |+1

Sprucing Up The Find Method

* Do Find(1) many times > It costs time to find the root
e Do additional work to make future finds easier.




Path Compaction (See Program 5.26)

e Make all nodes on find path point to tree root.

 Find(1) Y
(7)
e 5
(8 (3 (&)
(5)
AT
o 20 (16) (12
/‘ L a, b, c,d,e,f, and g are subtrees
d C

Makes two passes up the tree.

Homework: Height Rule

e Sec. 5.10 Exercise 4@P316

e Make tree with smaller height a subtree of the
other tree.

O e@e aa
1

(il Union(7,13)

29 (¢ (9 @




